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tRNA-derived small RNAs (tsRNAs) are a class of non-coding RNAs that are

generated by cleavage of precursors or mature tRNAs under stress conditions

such as hypoxia, oxidative stress and nutrient deficiency. Recent

breakthroughs in RNA sequencing technology have revealed their association

with cardiovascular diseases (CVDs), including myocardial infarction (MI),

atherosclerosis, cardiac hypertrophy, aortic coarctation, and pulmonary arterial

hypertension. tsRNAs play important biological functions in these diseases,

including the inhibition of apoptosis, epigenetic modification, intercellular

signaling mediation, translation, and regulation of gene expression. In addition,

tsRNAs show promise as both detectable indicators and intervention targets

for CVD. This review examines the biogenesis, classification, and multifaceted

functions of tsRNAs in CVD, emphasizing their dual roles as diagnostic tools

and therapeutic targets. future research should focus on elucidating tsrna-

mediated regulatory networks and developing RNA-based interventions to

address unmet needs in cardiovascular medicine.
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1 Introduction

Transfer RNAs (tRNAs) represent a class of compact non-protein-coding RNA (70–

90 nt), that predominantly adopted into L-shaped spatial configuration. Their canonical

function involves facilitating the precise incorporation of amino acid residues into

growing polypeptide chains according to messenger RNA templates (1). Beyond this

classical role, tRNAs can be cleaved into tRNA-derived small RNAs (tsRNAs), initially

misclassified as random degradation byproducts (2). Unlike other small non-coding

RNAs, tsRNAs are generated through precise cleavage of mature or precursor tRNAs by

endonucleases such as angiogenin (ANG,exclusively referring to angiogenin), exhibiting

exceptional stability due to their heavily modified tRNA origins (3–5).

Initial identification of tsRNA occurred during analysis of malignant disease patients’

urinary specimens in the 1970s (6), yet their biological significance remained overlooked

until 2009, when Fu et al. identified stress-induced tsRNAs (tiRNAs) produced via
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ANG-mediated cleavage (7). Advances in sequencing technologies,

including PANDORA-seq and CPA-seq, enabled comprehensive

profiling of tsRNA expression across diverse tissues and cell

types (8, 9), revealing their evolutionary conservation and

tissue-specific expression patterns (5).

Functionally, tsRNAs regulate genetic expression through

transcriptional, post-transcriptional, and epigenetic levels (10,

11), modulating stress responses, gene silencing, translation

control, cell cycle progression, and apoptosis (12, 13). Notably,

their involvement in hypoxia and other stress responses (14)

highlights their role in CVDs. Emerging evidence links

dysregulated tsRNA profiles to pathological processes such as

cardiac hypertrophy and ischemia-reperfusion injury. tsRNAs

serve as both molecular indicators and therapeutic candidates in

CVD management, offering novel strategies for disease

intervention (15). Their remarkable stability in plasma and

exosomes positions them as promising tools for early disease

detection and prognosis, while their participation in intercellular

signaling underscores their regulatory significance (16, 17).

Furthermore, their ability to modulate critical cellular processes

suggests therapeutic potential in mitigating myocardial injury,

preventing plaque rupture, and reducing fibrosis (18).

Thus, this review summarizes the biogenesis and fundamental

functions of tsRNAs, particularly emphasizing their biological

significance and mechanistic implications in CVDs. A deeper

understanding of tsRNA-mediated regulatory networks could

improve pathophysiology and provide a theoretical foundation

for innovative therapeutic approaches aimed at improving

clinical outcomes.

2 Article types

This manuscript is a Review article prepared in accordance

with the requirements outlined for Review articles on the

Frontiers in Cardiovascular Medicine journal website.

3 Classification and discovery of
tsRNAs

tsRNAs are a class of small non-coding RNAs (sncRNAs) with

18–40 nucleotides lengths that result from precise cleavage of

precursor or mature tRNAs (4). According to variations in their

biogenesis patterns and structural characteristics, tsRNAs are

classified into two groups: tRNA-derived fragments (tRFs) and

tRNA-derived stress-induced RNA (tiRNA) (19). tRFs originate

from specific cleavage sites in mature or precursor tRNAs, while

tiRNAs form when stress cleaves the mature tRNA anticodon

loop (19). This cleavage process is highly environmentally

dependent. Ribonucleases like ANG, Dicer, and ribonuclease Z/P

recognize and cleave tRNA molecules at different sites under

various physiological or pathological conditions (20–22).

Initially viewed as tRNA degradation byproducts (23, 24).

However, recent studies have overturned this notion, revealing

that tsRNAs can regulate gene expression through interaction

with target genes. They are involved in diverse physiological

processes, including cellular multiplication, motility, apoptosis,

and phenotypic transformation (25). Substantial evidence also

links their dysregulation with the progression of CVDs and other

conditions (26). As research progresses, tsRNAs are gradually

emerging as potential new targets for disease diagnosis and

therapy, offering promising prospects for their clinical

application (20) (Figure 1).

3.1 tRFs: tRNA-derived fragment

tRFs are 14–30 (nt) fragments and most tRFs are produced by

precise cleavages at various locations within mature tRNA

molecules. In some cases, tRFs are generated by the Dicer-

mediated degradation of misfolded pre-tRNAs, a mechanism that

ensures the systematic removal of aberrant tRNA species (27).

Based on cleavage sites, tRFs can be systematically categorized

into five main subclasses: (1) tRF-1: ribonuclease Z-cleaved 3’

trailer sequences from pre-tRNAs, containing the poly-U tract.

(2) tRF-3: 3’-derived fragments, including the CCA sequence

generated by ANG, Dicer, or other ribonucleases. Based on their

length, tRF-3 fragments are further subdivided into tRF-3a

(18 nt) and tRF-3b (22 nt) (28, 29). (3) tRF-5: Produced from

the 5’ end of mature tRNAs, generated through enzymatic

cleavage occurring either within the D-loop or at the junction

between the D-loop and the anticodon loop. These fragments

vary in length and are categorized into three subtypes: tRF-5a

(14–16 nt), tRF-5b (22–24 nt), and tRF-5c (28–30 nt) (4, 30). (4)

tRF-2: Generated from the anticodon loop of specific tRNAs,

such as tRNATyr, tRNAGly, tRNAAsp, or tRNAGlu. These

fragments retain portions of the double-stranded region and the

anticodon loop but lack both the 5’ and 3’ termini of the original

tRNA molecule (4, 30). (5) i-tRFs: Internal fragments that do not

correspond to the traditional ends of tRNAs but are derived

from internal sequences, often spanning the anticodon loop or

other internal regions of tRNA (31). i-tRF is divided into 3 types:

A-tRF, V-tRF, and D-tRF, which contain structures of anticodon

rings, variable rings, and D-rings, respectively (32, 33).

3.2 tiRNAs: stress-induced tRNA halves

tiRNAs (31–40 nt) as longer fragments, generated through the

cleavage of mature tRNAs at the anticodon loop. This cleavage is

induced by various stressors, such as oxidative damage, oxygen

deprivation, viral invasion, or thermal stress. In mammalian cells,

the enzyme ANG serves as the primary mediator of this process,

also along with RNase T2 and RNase L (3, 7, 34–36). Based on

their biogenesis and structural characteristics, tiRNAs can be

categorized into two distinct subtypes: (1) 5’-tiRNAs: These

fragments originate from the 5’ terminus of mature tRNAs and

terminate at cleavage sites within the anticodon stem-loop

(37).The formation of 5’-tiRNAs often occurs in regions of tRNA

with abnormal methylation (38). It has been confirmed to be

unrelated to most extracellular vesicles and is transported in the
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blood in the form of a complex (39). (2) 3’-tiRNAs: These

fragments span from the cleavage site of the anticodon loop to

the 3’ terminus of the tRNA, encompassing the CCA

trinucleotide sequence (37).

Comparisons between the two types of tiRNAs reveal a distinct

role for 5’- and 3’-tiRNAs. Only 5’-tiRNAs can inhibit protein

translation, while 3’-tiRNAs lack this function. This may be due

to the additional terminal hydroxyl group and the V region

present at the extra end of 3’-tiRNAs after cleavage (40). It has

been pointed out that 5’-tiRNAs participate in angiogenesis and

the regulation of inflammatory genes by inducing histone

modifications (41). Based on the classification and functional

characteristics of tiRNAs described above, our findings provide

preliminary insights for further exploration of the expression

patterns, molecular mechanisms, and clinical translational

potential of specific tsRNAs in cardiovascular diseases (CVD).

These discoveries also offer novel molecular targets for the

diagnosis and treatment of cardiovascular disorders.

Exposure to stress results in a upregulation of tiRNAs

fragment. In experimental models of renal ischemia/reperfusion

injury and cisplatin-induced nephrotoxicity, stress-mediated

tiRNAs formation showed in injured renal tissues (42). Notably,

ANG overexpression fails to produce tiRNAs under non-stressful

conditions, these ANG-overexpressing cells generate significantly

more tiRNAs during stress, even mild. This suggests that stress

triggers ANG-mediated cleavage of tRNA, which in turn inhibits

protein translation (43). Experimental findings demonstrate that

tiRNAs mediate stress-related translational suppression by

modulating translation initiation factors, including eukaryotic

translation initiation factors. This function allows cells to

downregulate translation machinery in response to

environmental challenges, preserving resources for stress recovery

(18). Beyond their role in translational regulation, certain tiRNAs

are involved in regulating apoptosis and other key cellular

processes. For example, tiRNAs could associate with cytochrome

c, thereby inhibiting the apoptotic cascade triggered by the

interaction between cytochrome c and APAF-1. ANG mutations

reduce tiRNA levels, decreasing their ability to inhibit

cytochrome c-mediated apoptosis (44).

3.3 RNA-seq and the discovery of tsRNAs

Technological advancements in RNA sequencing enhance

detection of functionally significant small non-coding RNAs.

Traditional methods construct cDNA libraries by ligating adapters

to sncRNA ends followed by reverse transcription. This method is

efficient for many sncRNAs with 5’-phosphate and 3’-hydroxyl

ends; however, it has inherent limitations (45). For example, some

sncRNAs contain specific RNA modifications, including 3’-

phosphate or 2’,3’-cyclic phosphate groups, which hinder the

adapter ligation process. Additionally, RNA methylation

modifications, including m1A, m3C, m1G, and m22G, disrupt the

process of reverse transcription (46). These modifications

significantly impair reverse transcription efficiency and result in

incomplete conversion, posing substantial challenges for the

detection of both tsRNAs and ribosomal RNA-derived small

RNAs. More critically, such technical limitations severely

FIGURE 1

Classification of tsRNAs based on cleavage sites and enzymatic sources. tsRNAs are generated from precursors or mature tRNAs via cleavage by

specific enzymes. On the left, a canonical tRNA structure is shown, including key regions such as the acceptor stem, D loop, anticodon loop, and

T loop. In the middle, cleavage by enzymes such as Dicer and angiogenin (ANG) yields distinct tsRNA subclasses. On the right, tRNA-derived

fragments (tRFs) are divided into five main types: tRF-1, tRF-3, tRF-5, tRF-2, and i-tRF (internal fragments covering the anticodon region). Stress-

induced tiRNAs are generated through enzymatic processing by ANG at the anticodon region, yielding both 5’- and 3’-derived tiRNA species. Each

subclass varies in length and biogenesis pathway, reflecting its unique functional potential in cellular processes.
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compromise the analytical efficacy for studying cardiovascular

diseases associated with specifically modified tsRNAs.

To address these issues, researchers developed PANDORA-seq,

which specifically targets modified sncRNAs missed by

conventional RNA-seq. This innovative approach employs a

dual-enzyme strategy: AlkB family enzymes remove RNA

methylation modifications such as m1G, m1A, m3C, and m22G,

ensuring efficient reverse transcription, while T4 polynucleotide

kinase converts problematic 3’-P or 2’,3’-cP to ligation-competent

3’-OH and add a 5’-phosphate end. This method is suitable for

sequencing both small and large RNA molecules (8). Traditional

single-enzyme treatments are ineffective at capturing modified

sncRNAs, while PANDORA-seq optimizes the adapter ligation

and reverse transcription process of small RNA fragments (15–

50 nt) through sequential enzymatic treatments, significantly

improving cDNA library construction efficiency (8).Compared to

existing methods, PANDORA-seq demonstrates greater breadth

and accuracy in detecting extensively modified sncRNAs within

murine and human tissue samples and cellular systems. The

advent of this novel high-throughput sequencing technology has

overcome the limitations of conventional sequencing approaches,

providing unprecedented opportunities for precise profiling of

specially modified tsRNAs in cardiovascular diseases.

4 Biological function of tsRNA

tsRNAs emerging as versatile regulators of gene expression, far

surpassing their original identification as tRNA cleavage

byproducts. The varied expression patterns of tRNA genes enable

tRNAs to exhibit non-canonical roles beyond their traditional

functions (47). Investigations have revealed that tsRNAs are

involved in diverse biological pathways, encompassing gene

silencing, as well as transcriptional and post-transcriptional

modulation, protein translation control, and viral reverse

transcription, contributing to diverse physiological and

pathological outcomes, including CVDs. The following sections

outline the known mechanisms through which tsRNAs exert

their regulatory roles.

4.1 miRNA-like gene silencing

One of the most well-studied mechanisms of tsRNAs is their

capacity to modulate gene expression in a manner analogous to

miRNAs, which are small, single-stranded non-coding RNAs,

usually ranging from 20 to 25 nt (48). Like miRNAs, tsRNAs

engage with Ago proteins to assemble RNA-induced silencing

complexes (RISC). These complexes are bound to target mRNAs

at the 3’ untranslated regions, triggering either inhibition of

translation or breakdown of mRNA (49). This miRNA-like

behavior is primarily exhibited by tRF-5 and tRF-3 fragments.

Research has demonstrated that tRF-3, in combination with

Ago3 and Ago4 proteins, forms a silencing complex that can

directly bind to the mRNA of targeted genes. This complex

enlists mRNA degradation enzymes into specific cytoplasmic

processing bodies (P-bodies). Ultimately, this process gives rise to

the degradation of the target mRNA, thereby inhibiting the

translation of the target gene (4). This miRNA-like behavior is

primarily exhibited by tRF-5 and tRF-3 fragments, which can

attach to Ago proteins such as Ago1, Ago3, and Ago4, and target

mRNAs for silencing (5, 50).

For example, originating from tRNA-Leu and pre-miRNA, tRF/

miR-1280 suppresses JAG2, a critical ligand in the Notch pathway,

enhancing the progression of colorectal cancer (51). In the uveal

melanoma, miRNA and tRF subtype expression levels correlate

with diverse molecular phenotypes, metastatic patterns, and

survival rates in patients (52). Notably, miR-1247a is mapped to

tRNALys3, while miR-1247b aligns with tRNALys5 (53, 54). These

two miRNAs exhibit a significant positive correlation with their

corresponding tRNAs, indicating a potential correspondence

between these miRNAs and tRFs (55, 56). This miRNA-like

mechanism provides an avenue for potential therapeutic

interventions in diseases where aberrant gene expression plays a

critical role, including cardiovascular conditions.

4.2 Engagement with RNA-binding proteins
(RBP)

tsRNAs modulate gene expressions by engaging with RBPs, key

mediators of post-transcriptional regulation by influencing RNA

stability, splicing, and translation processes (25, 57). Several

tsRNAs, including tRF-Glu, tRF-Asp, and tRF-Gly, bind to

YBX1, a typical RBP that modulates mRNA stability and stress

responses. These interactions drive cancer progression such as

breast cancer by altering transcript stability (26). YBX1 also

coordinates stress granule formation and cell survival pathways

through associations with 5’tiRNA-Ala and 5’tiRNA-Cys (58).

In another example, tRF-2-Ser-TGA binds to the La/SSB

(LARP3) protein, stabilizing viral mRNA and potentially

contributing to viral replication. This interaction indicates that

tsRNAs may be implicated in viral pathogenesis and could be

exploited as targets for antiviral therapies (59). These RBP-tsRNA

interactions influence diverse cellular processes including cellular

growth, adaptation to environmental stressors, and regulation of

viral replication. The impact of this RBP-tsRNA combination on

CVD-related pathways needs to be further explored (Figure 2).

4.3 Regulation of protein translation

tsRNAs bidirectionally regulate protein translation through

various mechanisms that correlate to the interaction with AGO.

They primarily inhibit translation by interfering with translation

initiation. For instance, certain 5’ tRFs suppress the initiation of

specific mRNAs, including those with a canonical “cap,” a

unique “A Cap”, or non-adenylated structures, by interfering

with the recognition of mRNA by the eIF4F complex and Poly

(A)-binding protein (PABP), critical components of translation

initiation (60, 61). Other research illustrates that some tsRNAs

with 5’terminal oligoguanine, including 5’tRF-Ala, 5’tRF-Cys, and
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5’tRF-Val, can also undergo pseudouridylation modification by

PUS7, which enhances their ability to block translation initiation

of PABPC1 (62). Furthermore, tRFs and tiRNAs may inhibit

protein synthesis by interfering with the assembly of stable,

active ribosomes (63). Gebetsberger et al. demonstrated that the

halophilic archaeon H. volcanii produces a tRF derived from the

5’ fragment of tRNAVal5 under certain stress conditions. This tRF

binds to the small ribosomal subunit, suppressing peptidyl

transferase function and consequently blocking protein synthesis

(64). This mechanism highlights the regulatory role of tRFs in

modulating protein synthesis under stress conditions. Conversely,

some tsRNAs can promote translation. For example, tRF-Leu-

CAG enhances the synthesis of RPS28 by modification of mRNA

secondary structure, which facilitates access to translation

initiation regions (65). Similarly, tRF-Gln19 regulates ribosomal

biogenesis by interacting with the multi synthetase complex

(MSC), thereby promoting protein synthesis (66). Under stress,

tRFs certain tRFs may activate Argonaute 2 (AGO2) to enhance

translation (67), suggesting these molecules function as context-

dependent regulatory switches (Figure 3).

4.4 Regulation of reverse transcription

tsRNAs are critically involved in modulating reverse

transcription, particularly during viral replication processes. For

instance, in HIV, the tsRNA tRF-3006 derived from tRNA

interacts with viral RNA at the primer binding site, acting as a

primer for reverse transcription, a critical stage in viral replication

(68, 69). Similarly, tRF5-Glu-CTC has been implicated in

enhancing the replication of Respiratory Syncytial Virus by

binding to the 3’UTR of APOER2, thereby inhibiting its antiviral

function and promoting viral replication (69). Also, in HTLV-1,

numerous tRFs are expressed, with tRF-3019, originating from the

3’ end of tRNA-proline which is the most abundant. While tRNA-

Pro typically acts as the reverse transcription primer in HTLV-1, it

can be cleaved into tRF-3019, which is shorter but more tightly

binding with PBS compared to tRNA-Pro, enhancing the

effectiveness and robustness of reverse transcription (70).

Beyond facilitating reverse transcription, specific tsRNAs can

also suppress this process. In the study of the mouse stem cell,

abundant tRFs bind to primer binding sites, inhibiting the

reverse transcription and mobilization of LTR retrotransposons

and endogenous retroviruses, thereby preventing the synthesis of

complementary DNA (71). The 22 nt tRF-3b interacts with AGO

proteins, directing the RISC complex to target mRNA, resulting

in its breakdown or translational inhibition (71). This process

underscores the dual functionality of tsRNAs in facilitating and

restricting viral replication (Figure 4).

4.5 Regulation of rRNA biogenesis

Emerging evidence indicates that tsRNAs may also regulate the

biogenesis of rRNA, which is essential for ribosome assembly and

protein translation. For instance, tRF-3 has been found to associate

with the Twi12-Xrn2 complex (a ribonucleoprotein complex for

rRNA processing), an exonuclease responsible for processing

precursor rRNA. The tRF-3-Twi12 complex, in coordination with

Xrn2 and tRNA-associated protein 1 (Tan1), facilitates the

maturation of rRNA, thereby promoting ribosome assembly and

ensuring efficient protein synthesis (72–74). Although evidence

in this field continues to accumulate, the involvement of tsRNAs

FIGURE 2

(A) tsRNA-mediated miRNA-like gene silencing. Certain tRFs can interact with Ago proteins to assemble RISC. These complexes recognize and bind to

complementary target mRNAs, resulting in either inhibition of protein synthesis or transcript destabilization through the recruitment of mRNA

degradation enzymes. (B) Interaction between tsRNAs and RNA-binding proteins (RBPs). tsRNAs can directly bind to RBPs and influence their

stability, localization, or activity. These interactions modulate post-transcriptional gene regulation by affecting mRNA splicing, transport,

translation, or decay.
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in rRNA biogenesis underscores their broader role in regulating

cellular homeostasis.

4.6 Regulation of cell cycle and apoptosis

Beyond their involvement in RNA silencing and protein

synthesis, tRFs play essential roles in regulating programmed cell

death. In healthy cells, tRFs function as intrinsic apoptotic signals

by suppressing apoptosis-related protein regulators, maintaining

homeostasis. However, under stress conditions, tRFs are markedly

upregulated, resulting in the evasion of apoptotic regulation and

simultaneously inducing the proliferation of malignant cells (66).

For instance, depletion of tRF-1001, generated from the 3’ end of

the Ser-TGA tRNA precursor, results in decreased cell viability,

reduced proliferation, and G2 phase arrest (4). Likewise,

transfection of NSCLC cells with a tRF-Leu-CAG inhibitor leads

to an increase in G0/G1 phase cells and a decline in proliferative

FIGURE 3

(A) The promotive mechanism of tsRNAs on protein translation certain tsRNAs act as molecular switches under specific conditions, triggering

argonaute 2 (Ago2), a translation enhancer, thereby facilitating the initiation and enhancing protein synthesis. (B) The suppressive mechanism of

tsRNAs on protein translation. Certain 5’ tRF fragments inhibit translation initiation by interfering with critical initiation factors, such as eIF4F

complex and PABP, thereby reducing mRNA translation efficiency.

FIGURE 4

(A) The promotive mechanism of tsRNAs on reverse transcription. tRF-3006 derived from tRNA-Lys binds to the PBS on viral RNA, acting as a primer to

initiate and enhance the process of reverse transcription. (B) The suppressive mechanism of tsRNAs on reverse transcription. tsRNAs (tRF-3 and tRF-5)

interact with AGO proteins to form complexes that facilitate recruitment of mRNA-degrading enzymes, ultimately leading to mRNA silencing and

inhibition of reverse transcription.
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capacity (75). Under hyperosmolar stress, tiRNAs can engage with

cytochrome c unleashed from the mitochondria in vivo. This

interaction facilitates the assembly of Cyt c-tiRNA complexes

mediated by ANG, which suppress apoptotic body formation

under stress, thereby protecting cells from apoptosis (44). Research

indicates that the tsRNA-Cyt c complex hinders tsRNA binding to

Apaf-1, preventing caspase-9 activation and apoptotic body

assembly, thus averting apoptosis (44, 76). Additionally,

TRMT10A deficiency, mediated by 5’ tRNAGln fragments (a tRNA

methyltransferase), induces pancreatic β-cell death (77) (Figure 5).

4.7 New type of epigenetic factors

Epigenetic modifications refer to heritable changes that occur

without altering the nucleotide sequence. Emerging evidence

positions tsRNAs as potential new epigenetic factors, potentially

exerting a substantial influence in the realm of epigenetic

mechanisms. Numerous studies have elucidated the functions of

tsRNAs in genetics and metabolism, noting that offspring of male

mice induced with lipopolysaccharide to develop epididymitis later

exhibit metabolic dysfunctions, including impaired glucose tolerance

and obesity (78, 79). Further investigation has revealed that sperm

cells are rich in tsRNAs, and in the absence of ANG function, the

alteration of the sperm tsRNA expression profile triggered by

inflammation is effectively prevented, thereby eliminating the

metabolic disruptions induced in the offspring by paternal

inflammation. Additionally, when 30–40 nt RNA, primarily 5’-

tsRNA, extracted from the sperm of male mice with inflammation, is

microinjected into normal sperm, it leads to the manifestation of

metabolic disorders in the offspring (78, 79).

Further mechanistic insights reveal that DNA methyltransferase

2(DNMT2) knockout disrupts sperm tsRNA expression. This

aberrant expression is strongly associated with alterations in the

mRNA transcriptome of pronuclear embryos derived from wild-

type oocytes carrying Kit gene mutations. The knockout of

DNMT2 completely blocks the transmission of phenotypic

mutations via the oocyte. Further research has demonstrated that

both paternal and maternal epigenetic phenotypic inheritance rely

on the complete function of DNMT2 in male germ cells (80).

This provides a research idea for further study of the potential of

tsRNA as a novel epigenetic factor (Figure 6).

5 Potential effects of tsRNAs in CVDs

CVDs comprise a spectrum of pathological conditions

impacting cardiac and vascular system, representing a worldwide

public health challenge (81). In 2022, CVDs accounted for

approximately 1.9 million deaths worldwide (81), with

pathologies including myocardial ischemia, cardiac hypertrophy,

atherosclerosis, varicose veins, and pulmonary arterial

hypertension, among other clinical manifestations. Despite

notable advancements in diagnostic and therapeutic technologies,

the molecular mechanisms underlying the homeostasis of

cardiomyocytes in the development and progression of CVDs

remain incompletely elucidated (82), a gap in knowledge that

limits the development of more effective treatment strategies.

Recent research has demonstrated the involvement of tsRNAs in

the pathophysiological processes of CVDs through gene

expression modulation (83). Owing to their exceptional detection

accuracy and molecular stability in biofluids including plasma

and exosomes, these make them not only serve as optimal

noninvasive indicators for disease detection and outcome

prediction but also provide new research directions for the

development of precision medicine (84) (Table 1).

FIGURE 5

(A) The role of tsRNAs in regulating ribosomal RNA biogenesis. tRF-3 interacts with Twi12, Xrn2, and Tan1 proteins, facilitating rRNA maturation and

ribosome assembly. (B) The regulatory role of tsRNAs in cell cycle and apoptosis. tsRNAs function as endogenous apoptotic signals, leading directly or

indirectly to programmed cell death.
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5.1 tsRNA and MI

MI, clinically termed as heart attack, arises from the blockage

of a coronary artery, resulting in diminished blood flow and

oxygen delivery to the cardiac muscle. This ischemic event

results in cardiomyocyte death and tissue necrosis, contributing

to impaired heart function. The pathogenesis of MI is often

described in three distinct stages: (1) Atherosclerotic plaque

rupture—A plaque in the coronary artery, composed of lipids

and fibrous tissue, ruptures, triggering thrombus formation and

TABLE 1 Functional roles and mechanisms of tsRNAs in CVDs.

Cardiovascular
disease type

tsRNA [example] Key function Mechanism Disease model Reference

Atherosclerosis tsRNA-21 Early biomarker for coronary

events

Early diagnostic biomarker Plasma from coronary artery

disease patients

(110)

Heart failure tRF-60:76-Val-AAC-

1-M5

Prediction of drug response Sacubitril/valsartan resistance

regulation

Peripheral blood (HF patients on

sacubitril/valsartan)

(95)

Heart failure tRF-Tyr-GTA-010/tRF-

Tyr-GTA-011

Regulation of calcium signaling

for cardiac protection

Sphingolipid, adrenergic, and

calcium signaling

Mouse heart tissue (HF model) (85)

Cardiac hypertrophy tRF-16-R29P4PE Regulation of cardiac

metabolism and hypertrophy

PACE4 and metabolic signaling Human plasma; H9c2 cells;

Sprague-Dawley rats

(122)

Myocardial infarction tsRNA-0406 Prevention of excessive scar

formation.

ceRNA-mediated extracellular

matrix regulation（ECM）

MI mouse model; neonatal mouse

cardiomyocytes

(85)

Myocardial infarction tsr007330 Regulation of myocardial

fibrosis

Inhibition of NAT10/

EGR3-mediated fibrosis

MI rat model (94)

Myocardial infarction 5’tRF-LysCTT Regulation of ferroptosis Promotes ferroptosis MI mouse model, H9c2

cardiomyocytes

(93)

Myocardial infarction HC83 Protection of cardiomyocytes Regulation of MIAT/VEGFA

and mitochondrial integrity

MI mouse model; neonatal mouse

cardiomyocytes

(95)

Myocardial infarction tiRNA-Val-AAC-2-32/

tiRNA-Lys-TTT-1-34

Early diagnosis of myocardial

infarction

Early plasma biomarker Human plasma samples (92)

Myocardial infarction tRF-50304 Promotion of cardiomyocyte

apoptosis

Pro-apoptotic regulation under

hypoxia

AC16 cardiomyocytes, H9c2 cells (90)

Myocardial infarction tRF5-22-SerGCT-1 Protection of cardiomyocytes Inhibition of MSK1; modulation

of MAPK and autophagy

pathways

MI mouse model; OGD-treated

cardiomyocytes

(97)

Fulminant myocarditis tiRNA-Gln-TTG-001 Early diagnosis of acute

inflammatory cardiomyopathy

Acute-phase biomarker for FM Coxsackievirus B3-induced FM

mouse model; serum from FM

patients

(113)

Atherosclerosis tsRNA-5001a Enhancement of plaque

stability

m6A-mediated BCL2 regulation

for plaque stability

ApoE knockout mice; vascular

smooth muscle cells

(114)

Atherosclerosis tsRNA-0420 Contribution to plaque

instability

Activation of NLRP3

inflammasome

ApoE knockout mice; RAW264.7

macrophages

(86)

Atherosclerosis tRF-2 Loss of protective expression in

normal vessels

Marker of vascular homeostasis ApoE knockout mice; human

vascular tissue samples

(108)

Atherosclerosis tRF-3b Downregulation in disease

progression

Loss of vascular protective

function

ApoE knockout mice; human

vascular tissue samples

(108)

Atherosclerosis tRF-5a Upregulation in disease

progression

Promotion of vascular

dysfunction

ApoE knockout mice; human

vascular tissue samples

(108)

Atherosclerosis tiRNA-Glu-CTC Induction of VSMC

phenotypic switching and

vascular injury

Cacna1f downregulation and

mitochondrial damage

Vascular smooth muscle cells (in

vitro)

(115)

FIGURE 6

Microinjection of 5’-tsRNAs from inflamed male mice sperm into normal sperm can trigger metabolic dysregulation in offspring, highlighting tsRNAs

as epigenetic regulators.
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occlusion of the vessel; (2) Ischemia-reperfusion injury—

Reperfusion induces oxidative stress and mitochondrial damage,

which exacerbate cellular injury damage via reactive oxygen

species(ROS) generation, necessitating cardiomyocyte necrosis

and programmed cell death; (3) Maladaptive cardiac remodeling

—Post-infarction, the heart undergoes structural changes

including fibrosis, which reduces contractile function and

increases the risk of heart failure (65). Although clinical markers

such as cardiac troponins are utilized for MI diagnosis, they

exhibit delayed elevation post-infarction, limiting early detection

(85). Further understanding of the molecular mechanisms of MI

opens the door to studying diagnostic and therapeutic strategies

for non-coding RNAs.

Evidence indicates the decisive role of tsRNAs in the

pathophysiology of MI. Under pathological stimuli including

ischemia and oxidative stress, tRNA undergoes cleavage,

generating tRF and tiRNA fragments. These RNA fragments

modulate multiple signaling cascades related to cell survival,

programmed cell death, and inflammatory processes (86).

Clinically, tsRNAs present in cellular and plasma samples as

distinctive biomarkers of cellular stress status. These small RNAs

exhibit dynamic changes after cardiopulmonary bypass (CPB)

cardiac surgery. Experimental evidence reveals that cardiac

fibroblasts and cardiomyocytes secrete 4,025 and 3,500

extracellular tsRNAs respectively during nutrient deprivation,

while releasing 3,931 and 5,259 distinct tsRNA species under

oxygen-deficient conditions. Importantly, 122 tsRNAs show

significant changes in expression after CPB surgery, with 41

upregulated in-patient plasma (87). In ischemic cardiomyocytes,

the expression pattern of tsRNAs undergoes significant changes.

Dhahbi et al. discovered age-dependent fluctuations in 5’ tiRNAs

in mouse serum, which were regulated by caloric restriction (CR)

(88). Sequencing analysis revealed that during myocardial

ischemia, 166 tsRNAs were upregulated, while 136 tsRNAs were

downregulated, suggesting that these molecules may participate

in the cardioprotective mechanisms of CR and mediate ischemic

stress adaptation and myocardial tissue remodeling. Specifically,

in CR-treated mice, cardiac tissue exhibited upregulation of

tRNA-His-GTG-004 and downregulation of tRF-Cys-GCA-022,

tRF-Lys-CTT-026, and tRF-Met-CAT-008. These dysregulated

tsRNAs potentially mediate therapeutic outcomes through

modulation of specific genetic targets including Med13l, Sucla2,

and Wls (89). Temporal regulation is evident as 5’ tRNA-Val-

ACC peaks 3 h post-ischemia (7).

Specifically, tsRNAs regulate cardiomyocyte death by

regulating pathways such as apoptosis, necroptosis, and

autophagy, which as crucial mechanisms in MI pathogenesis. For

example, tsRNAs (such as tRF-50304) have been identified to

bind to specific mRNA targets, promoting the stability of pro-

apoptotic genes and exacerbating cardiomyocyte death under

hypoxic conditions (90). Additionally, certain tiRNAs, such as 5’-

tiRNA-Gly-CCC, are associated with platelet activation and

thrombus formation, two key events that exacerbate ischemic

injury (91). In the process of fibrosis and remodeling after

tsRNAs regulate MI, with fragments such as tsRNA-0406 acting

as competitive endogenous RNAs to regulate extracellular matrix

proteins and prevent excessive scarring (85). In the mouse model

of AMI, tiRNA-Val-AAC-2-32 and tiRNA-Lys-TTT-1-34 are

specifically elevated in plasma early after infarction, with tiRNA-

Lys-TTT-1-34 increasing as early as 6 h after injury, indicating

their potential diagnostic relevance (92).

tsRNAs not only have potential diagnostic value but also

demonstrate novel therapeutic strategies in MI or myocardial

injury. For instance, 5’tRF-LysCTT is associated with ischemia-

reperfusion injury, and its knockdown can alleviate H/R-induced

cardiomyocyte ferroptosis, while its overexpression exacerbates

cell death. This suggests that 5’tRF-LysCTT represents a

promising druggable target for managing myocardial ischemia-

reperfusion damage (93). The tsRNA tsr007330 is significantly

downregulated after MI, and by antagonizing N-acetyltransferase

NAT10, it inhibits the ac4C modification of early growth

response protein 3 (EGR3) mRNA mediated by NAT10, thereby

reducing myocardial fibrosis and improving cardiac function.

This regulatory axis (tsr007330/NAT10/EGR3) reveals a new

mechanism for tsRNA regulation in myocardial fibrosis after MI,

providing a new direction for targeted intervention (94).

Comprehensive profiling of epicardial adipose tissue from heart

failure cases identified 343 distinct tsRNA species, among which

24 exhibited marked differential expression patterns. Distinct

fragments including tRF-Tyr-GTA-010 and tRF-Tyr-GTA-011

could potentially preserve cardioprotective function by

modulating calcium homeostasis through sphingolipid metabolic

pathways and adrenergic receptor signaling. Computational

biology analyses indicate these tsRNAs could participate in

molecular pathways associated with heart failure development

(85). Notably, tsRNAs can be used to predict drug treatment

responses, particularly in post-MI heart failure cases. Elevated

tRF-60:76-Val-AAC-1-M5 levels correlate significantly with

treatment responsiveness, with ROC curve validation confirming

its robust predictive capacity. This tsRNA may affect treatment

response by regulating lipid metabolism and apoptosis-related

genes, such as Tnfrsf10b and Bcl2l1, suggesting its potential as a

marker for therapeutic efficacy (95). Additionally, the tRNA-

derived fragment HC83 from the traditional Chinese medicine

ginseng shows significant cardioprotective effects in ischemia/

reperfusion injury models. By targeting lncRNA MIAT, it

upregulates VEGFA expression, improves mitochondrial function

and cytoskeletal stability, and significantly promotes

cardiomyocyte survival. Animal experiments show that the

protective effect of HC83-mimic is far stronger than metoprolol,

suggesting that plant-derived tsRNAs may become a new

direction for RNA therapy (95). tsRNAs may contribute to

therapeutic variability in sacubitril/valsartan treatments among

post-MI heart failure patients (96). The tsRNA sRNA-04002

regulates endothelial-mesenchymal transition to prevent excessive

fibrosis and vascular remodeling after cardiac injury (86). In

addition, a recent study identified tRF5–22-SerGCT-1 as a

cardioprotective tsRNA that targets MSK1, thereby modulating

MAPK and autophagy pathways to mitigate myocardial injury in

MI mouse models and OGD-treated cardiomyocytes (97). These

discoveries demonstrate the dual utility of tsRNAs as both

diagnostic indicators and therapeutic candidates for MI,
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providing new approaches for interventions to improve myocardial

recovery after MI and prevent further damage.

5.2 tsRNA and atherosclerosis

Atherosclerosis represents a chronic inflammatory condition

affecting the arterial walls, marked by lipids deposition, immune

cell infiltration, fibrous tissue expansion and atherosclerotic

plaques formation (98). This process begins with endothelial

dysfunction triggered by various risk factors, including elevated

blood pressure, hyperlipidemia, and smoking. These factors cause

endothelial cells to become more permeable, allowing LDL

particles to infiltrate the intima. LDL retention and oxidation

exacerbate further inflammation via endothelial activation and

monocyte recruitment, with subsequent differentiation into

macrophages. These phagocytes internalize oxidized LDL,

transforming into lipid-accumulating foam cells that constitute

the lipid-laden core of plaques (99–102). During plaque

development, smooth muscle cells undergo trans-migration into

the intimal layer, where cellular proliferation and extracellular

matrix deposition contribute to fibrous cap formation (103).

However, plaque rupture typically occurs when the fibrous cap

weakens, a process closely linked to matrix metalloproteinase

(MMP) activity. MMP-1, MMP-8, and MMP-13 contribute to

collagen degradation within the fibrous cap, thinning its structure

and increasing the risk of rupture. Additionally, MMP-2 and

MMP-9 promote intraplaque neovascularization, further

destabilizing the plaque. Once a rupture occurs, exposure of

prothrombotic factors triggers thrombosis, which may lead to MI

or stroke (104). NF-κB and MAPK signaling pathways critically

regulate this oxidative stress and inflammatory cascade (105).

tsRNAs (tRFs and tiRNAs) have emerged as significant

modulators of gene expression in cardiovascular pathologies,

such as atherosclerosis. Produced from mature or precursor

tRNAs during cellular stress or cellular injury, these sncRNAs are

instrumental in modulating key cellular processes, including

inflammation, lipid metabolism, and cellular proliferation (18,

106). Recent studies demonstrated differences in tsRNA

expression between atherosclerotic vascular tissues and normal

vessels. Specifically, 315 tsRNAs exhibited altered expression in

atherosclerotic vessels, with 131 upregulated and 184

downregulated (107). Among them, tRF-2 was absent in

atherosclerotic tissues but present in healthy tissue, while tRF-3b

expression was markedly reduced, and tRF-5a was notably

upregulated (108). Notably, recent research has demonstrated

that overexpression of tRF-5cs, tRFGly-GCC-009, and tRF-Gly-

GCC-008, as well as down-regulation of tRF-Pro-AGG-006 and

tRF-Pro-AGG-005, were detected in tissue samples of AS patients

relative to healthy controls, implying their potential role in AS-

associated pathological signaling pathways (109). Experimental

analyses revealed that the upregulation of tRF-Gly-GCC-009 may

induce abnormal cellular adhesion dysfunction and contribute to

the development of AS. Furthermore, this class of tsRNAs

demonstrates significant associations with the Apelin pathway,

calcium signaling, and Notch signaling pathways. Nevertheless,

the exact biological mechanisms governing these regulatory

effects remain to be fully elucidated (109). in vitro experiments

have substantiated that elevated expression of tRF-Gly-GCC

proliferation and migration of VSMCs and boost monocyte

adhesion to endothelial cells, potentially facilitating atherogenesis

(108). Increased concentrations of tiRNA-Gly-GCC have been

identified in both vascular tissues and plasma of atherosclerosis

patients, suggesting its prospective as an innovative biomarker

and therapeutic target for atherosclerosis (110). Moreover,

tsRNA-21 has been demonstrated to have a strong correlation

with early coronary artery calcification, showing 92% sensitivity

and 88% specificity in plasma samples (110). A novel high-

throughput sequencing method, PANDORA-Seq, was employed

to analyze the intimal tissue of LDLR−/− mouse atherosclerosis

models, identifying 195 differentially expressed tsRNAs. Among

these, tsRNA-Arg-CCG was identified as a potential regulator of

pro-atherosclerotic gene expression, possibly by acting on

vascular endothelial cells to promote lesion formation (111).

Notably, HDL-associated m1A-tDR-ArgACG-1 activates macrophage

adhesion and pro-inflammatory responses through the SR-BI-

mediated signaling pathway, independently of cholesterol efflux,

suggesting its potential involvement in atherogenesis (112).

Comparative analysis reveals differential expression profiles of

tRF-Gly-GCC and tRF-Pro-AGG in atherosclerotic plaques vs.

normal carotid tissues, implicating their contribution to disease

pathogenesis (113). For instance, tsRNAs such as tsRNA-0420,

which is derived from platelet-derived RNA, have been

implicated in the induction of the NLRP3 inflammasome in

macrophages, amplifying the inflammatory response and

enhancing the secretion of IL-1β, a cytokine that contributes to

plaque instability (86). tsRNAs can modulate the phenotypic

transition of VSMCs, a critical mechanism influencing plaque

stability. For instance, tsRNA-5001a, enriched in VSMCs, has

been found to inhibit apoptosis and promote the formation of a

stable fibrous cap by modulating BCL2 expression through m6A

modification, thus contributing to plaque stability (114).

Emerging evidence indicates that nanoplastics exposure triggers

the overexpression of tiRNA-Glu-CTC, which facilitates the

transition of VSMC from contractile to synthetic phenotype. This

transformation is accompanied by mitochondrial dysfunction,

ROS accumulation and dysregulation of calcium signaling,

thereby exacerbating vascular injury. This tiRNA exerts its effects

by regulating the expression of Cacna1f, indicating that it may

function as a novel intervention target for environmentally

induced CVDs (115). These findings collectively establish

tsRNAs as both diagnostic markers and therapeutic targets for

atherosclerosis management.

5.3 tsRNA and cardiac hypertrophy

Myocardial hypertrophy represents an adaptive alteration in

response to physiological or pathological stimuli, increasing

cardiomyocyte size rather than number. Pathological myocardial

hypertrophy can lead to heart failure through myocardial

remodeling, serving as a primary determinant of elevated disease
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burden and mortality in aging population (116). Both nuclear-

encoded and mitochondria-derived tsRNAs exhibit altered

expression during this pathological process, suggesting a close

relationship between tsRNAs and myocardial hypertrophy.

Nuclear-encoded tsRNAs participate in the modulation of

cardiac hypertrophy, particularly in response to hypertrophic

stimuli and oxidative stress (86). In isoproterenol-induced

hypertrophic myocardium, tRF molecules like tRF-1 tRNA-Gly-

CCC exhibit significantly elevated expression levels (117).

Mechanistically, these tRF molecules can mimic miRNA

functions by specifically targeting the 3’ UTR of the Timp3 gene

to regulate myocardial hypertrophy progression. Experimental

evidence confirms that overexpression of tRFS1 and tRFS2

enhances the expression of cardiac hypertrophy markers,

including ANF, BNP, and β-MHC (118). Oxidative stress-related

tsRNAs, such as Val-and Gly-5’-tiRNA, are enriched in

hypertrophic cardiomyocytes, indicating their role in stress

adaptation (88). Previous research has also shown that tRFs in

paternal germ cells can affect cardiovascular development in

offspring through epigenetic modifications, contributing to

heritable cardiac hypertrophy (119). In mouse fibroblasts,

upregulated tsRNAs competitively interact with cytochrome c,

disrupting its association with apoptotic protease-activating

factor-1. This process inhibits apoptosome assembly and

programmed cell death via activation of caspase-9 and caspase-3

(120). Compared to hyperosmotic conditions, oxidative stress

activates more tiRNAs, with enhanced binding to cytochrome c

resulting in decreased availability of apoptosis-inducing free

cytochrome c (37).

Beyond nuclear tsRNAs, mt-tRFs have been linked to genetically

inherited forms of cardiac hypertrophy. The m.3243A >G mutation

in mitochondrial tRNA-Leu-UUR, clinically linked to mitochondrial

encephalomyopathy, lactic acidosis, and stroke-like episodes, has

been shown to alter mt-tRF expression, potentially affecting

mitochondrial function in hypertrophic cardiomyopathy(HCM)

(88). ELAC2 mutations have been found to disrupt mt-tRF

biogenesis, contributing to infantile HCM (121). Furthermore,

tRF-16-R29P4PE is significantly downregulated in patients with

pathological cardiac hypertrophy, demonstrating its potential as a

biomarker. Research indicates that this tsRNA regulates

cardiomyocyte metabolism and mitochondrial function by

modulating the PACE4 and HIF-1α/PPARα signaling pathways,

thereby attenuating the hypertrophic phenotype. Targeting tRF-

16-R29P4PE or its downstream signaling pathways may offer

novel intervention strategies for treating cardiac hypertrophy and

associated metabolic disorders. These findings position tRF-

16-R29P4PE as a potential therapeutic candidate for attenuating

pathological cardiac hypertrophy progression and associated

metabolic dysregulation (122).

5.4 tsRNA and aortic dissection

Aortic dissection (AD) stands as a cardiovascular catastrophe

exhibiting low prevalence yet exceptionally high mortality. Its

pathogenesis involves the intricate three-layer structure of the

aortic wall—intima, media, and adventitia. AD is characterized

by intimal tearing, allowing blood to flow into the media,

forming true and false lumens, typically accompanied by severe

tearing pain at onset (123). The underlying pathological

mechanisms encompass complex, multifactorial processes

involving dynamic interplay between diverse cellular components

and the extracellular matrix elements (124).The development of

AD is closely linked to the activity of inflammatory cells,

including lymphocytes and macrophages. Throughout this

process, there is an upregulation of protease and calmodulin

expression, accompanied by the release of ROS. These factors

contribute to the apoptosis of VSMCs, which in turn lead to the

rupture of AD (123, 125). Immune cell infiltration into the aortic

wall constitutes a defining pathological feature. Macrophages

orchestrate inflammatory responses by recruiting various immune

cell populations, mediating essential regulatory functions in

disease progression (124).

In the study of AD, Zong et al. observed a significant

reduction in 5’tiRNA-Cys-GCA levels in a mouse AD model.

This molecule is regarded as a potential modulator of

phenotypic transition, as its overexpression inhibits VSMCs

proliferation and migration while elevating α-smooth muscle

actin expression (126). Investigations further reveal that

oxidized LDL stimulation upregulates STAT4, a crucial

transcription factor directly modulated by 5’tiRNA-Cys-GCA,

thereby enhancing cellular proliferation, motility and

phenotypic switching. However, this process can be reversed

by the overexpression of 5’tiRNA-Cys-GCA. Treatment with

5’tiRNA-Cys-GCA reduces the incidence of AD in mice

induced by angiotensin II and β-aminopropionitrile, as well as

prevents its malignant progression (126).

Fu et al. conducted research shown that comparison of aortic

tissues from AD patients with healthy controls, revealing

significant dysregulation of tsRNAs in AD samples, with tRF-

1:30-chrM.Met-CAT showing marked upregulation (127). in vitro

studies confirmed this tsRNA enhanced VSMC proliferation,

migration, and phenotypic transition. Investigators compared

tsRNA expression patterns between quiescent and proliferating

human aortic smooth muscle cells (HASMCs), finding that two

tsRNAs promoted aortic smooth muscle proliferation through

different mechanisms: AStDR-000067 promotes HASMC

proliferation by inhibiting p53 transcription through binding to

the promoter region, while AS-tDR-000076 accelerates HASMC

proliferation by targeting the 3’-UTR to reduce MFN2 levels (128).

Li et al. have developed an innovative gene therapy approach for

aortic dissection/aneurysm (AAD) by leveraging the role of

tsRNAs to modulate VSMC functionality and inflammatory cell

regulation. They employed neutrophil membrane-mimetic

nanovesicles encapsulating therapeutically active tRF-Gly-CCC as a

delivery platform. The results indicate that novel microvesicles

display superior stability in the circulatory system, achieving

precise localization to aortic lesion and significantly decreasing

mortality in acute aortic dissection cases. This approach

illuminates the therapeutic potential of tsRNAs for AAD, offering

a promising avenue for early intervention and improved clinical

outcomes (129). In conclusion, a variety of tsRNAs participate in
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VSMC proliferation and motility through different mechanisms, and

have significant contributions to the occurrence and progression

of AD.

5.5 tsRNA and pulmonary arterial
hypertension

Idiopathic pulmonary hypertension (PAH) represents a lethal

pulmonary vascular disorder causing progressive vascular

remodeling, pulmonary artery occlusion, and elevated pulmonary

vascular resistance (130). Pathophysiologically, idiopathic PAH

demonstrates cancer-like properties, featuring dysregulated

cellular metabolism, aberrant proliferation, and apoptotic

resistance (131). Better treatments are urgently needed despite

recent advances. tsRNAs appear to influence PAH through

multiple mechanisms. Researchers identified tsRNA expression

patterns in murine circulatory, right ventricular tissue, and lung

samples by establishing a monocrotaline-induced pulmonary

hypertension rodent model, while comparing plasma samples

from PAH patients with healthy individuals. Analytical results

included identification of 2,716 unique tsRNA species in human

plasma vs. 4,733 in rodent tissues, demonstrating a 7.84%

concordance rate. Also, 204 tsRNAs showed high conservation

across all sample types, indicating their potential critical

regulatory functions in PAH pathogenesis (132).

A separate small RNA microarray study comparing idiopathic

PAH patients with healthy controls revealed 816 differentially

expressed tsRNAs, with 243 upregulated and 573 downregulated.

Real-time qPCR confirmed the differential expression of eight

tsRNAs, including four upregulated (such as tRF3a-AspGTC-9,

5’tiRNA-31-GluCTC-16) and four downregulated (such as

5’tiRNA-33-LysTTT-4, i-tRF-8:32-Val-AAC-2). Bioinformatics

analysis suggested these tsRNAs potentially contribute to PAH

development through modulation of critical genes including

BMPR2 and AQP1. Notably, i-tRF-31:54-Val-CAC-1 may

promote the progression of PAH by targeting BMPR2 (133).

Studies demonstrated that angiopoietin, a newly discovered

mediator of pulmonary hypertension, dose-dependently

upregulated tRFs, including 5-tRF-Gly-GCC and tRF-Glu-CTC

and accelerated cell death (134). In a PAH rat model, ANG

modulates endothelial apoptosis via the ANG-tsRNAs-caspase-3

axis with a sponge effect (44). Mitochondrial tsRNAs (such as

mt-i-tRF-Glu-UUC) exhibited significant expression abnormalities

in PAH patients, further supporting the association between

tsRNAs and PAH pathogenesis (135). These insights reveal

promising therapeutic targets for PAH management.

5.6 tsRNA and other CVDs

Fulminant myocarditis (FM) is an uncommon yet rapidly

progressing inflammatory cardiac condition, characterized by

fast progression and high mortality rate (136). While

endomyocardial biopsy remains the diagnostic criterion

standard, its invasive nature renders the procedure intolerable

for many patients (137). There is currently a lack of sensitive

biomarkers for early assessment of disease severity and

prognosis. Through small RNA sequencing plasma samples

from pediatric FM cases during acute/recovery phases and

healthy controls revealed markedly elevated tiRNA-Gln-TTG-

001 levels in acute FM. in vitro experiments showed a

significant increase in its generation and extracellular release,

suggesting diagnostic utility (113).

In calcific aortic valve disease (CAVD), a condition associated

with metabolic disorders, abnormal lipid metabolism and Ca2⍰

deposition initiate the disease, which often coexists with

atherosclerosis and aortic stenosis (138). Research has identified

tsRNA-5006c (5’tRF-Lys-CTT) as possessing distinctive biological

attributes. This tsRNA is detectable in extracellular vesicles from

M1-polarized macrophages and can be transported to aortic

valve interstitial cells (AVICs), where it acts as a “messenger” to

transmit signals. This signaling promotes mitotic activity and

enhances osteogenic differentiation in AVICs during CAVD

pathogenesis (139). Future research may explore the modulation

of tsRNA-5006c expression or activity blocking it signaling in

AVICs, thereby intervening in the abnormal mitotic and

osteogenic differentiation processes and achieving therapeutic

goals for CAVD (139). However, a comprehensive understanding

of this pathogenic mechanism is still required before specific

interventions can be effectively implemented.

Investigations in rheumatic heart disease populations

demonstrated marked dysregulation of tsRNA expression profiles in

AF patients compared to sinus rhythm counterparts, irrespective of

AF comorbidity status. Using high-throughput sequencing, 219

accurately matched tsRNAs were determined in three pairs of

cardiac papillary muscles, with 77 tsRNAs showing marked

differential expression between the two groups (140). Further

analysis indicated that AS-TDR-001269, AS-TDR-001363, and AS-

TDR-006049 were the most prominently differentially expressed

tsRNAs. Bioinformatic analysis indicated that these differentially

expressed genes participate in essential biological pathways

including transcriptional modulation, DNA binding, and

intracellular transcriptional regulation. Gene enrichment analysis

predicted that most of these genes are closely related to interactions

with cytokine receptors, especially the targeting relationship between

chemokine ligand 5 (CCL5) and AS-tDR-001363. In patients with

RHD and AF, CCL5 expression was significantly reduced. Further

experiments showed that CCL5 expression levels were reduced in

AC16 cells transfected with AS-tDR-001363 (140). Significant

abnormalities in tsRNA expression have been observed in age-

related atrial fibrillation (AF). Research indicates that curcumin

attenuates oxidative stress and inflammation levels while

ameliorating atrial fibrosis, ultimately decreases atrial fibrillation

susceptibility in aged murine through downregulation of the specific

mature mt-tRNA-Val-TAC-CCA termini in cardiac atria. This

finding suggests the potential for specific tsRNAs to be targeted as

an intervention strategy in age-related AF. The modulation of these

tsRNAs could offer a novel approach to mitigating the progression

of AF in older populations (141). These results elucidate the

molecular pathogenesis of AF secondary to RHD and identify

targets for its management and therapeutic intervention.
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6 Conclusions

As an emerging class of non-coding RNAs, tsRNAs can be

categorized into tRFs and tiRNAs, distinguished by their distinct

biogenesis pathways. These molecules are produced through

endonucleolytic processing of either mature tRNAs or precursor

tRNA transcripts by specialized ribonucleases. These molecules

participate extensively in fundamental cellular activities, including

gene transcription regulation, translational repression, stress

response, and epigenetic modification, and have demonstrated

complex and diverse regulatory functions, especially in CVD.

This review synthesizes recent advances in understanding

tsRNAs within CVD, elucidating their molecular functions and

regulatory mechanisms. In CVD pathogenesis, specific tsRNA

subtypes exhibit bidirectional roles in various cardiac pathologies,

including MI, atherosclerosis, and cardiac hypertrophy by

regulating VSMC proliferation, inflammatory responses,

apoptosis, and fibrosis through mechanisms that may either

exacerbate injury or promote repair, with specific effects

depending on subtype, target, and microenvironmental

conditions. Although much attention has been paid to the

diagnostic potential (e.g., as early biomarkers) and therapeutic

value (e.g., targeted intervention in inflammation and fibrosis) of

tsRNAs in CVD, there are still many blind spots in their

mechanism of action. For example, the interaction network

between tsRNAs and specific proteins, the specific pathways of

epigenetic regulation, and the spatial and temporal expression

characteristics of different isoforms in the disease have not been

fully elucidated. In addition, its clinical application still faces

technical challenges, including standardization of detection

methods, efficient capture of modified RNA, and optimization of

delivery systems. In the future, researchers should combine

multi-omics techniques, animal models and clinical cohorts to

systematically analyze the dynamic regulatory network of tsRNAs

and explore their application in precision medicine, to open new

avenues for the prevention and treatment of CVDs.
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