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Purpose: This study explores lactylation’s pivotal role in the disease progression

of heart failure (HF).

Methods: The GSE57345 dataset, encompassing 177 HF samples and 136 normal

controls (CTL), was sourced from Gene Expression Omnibus (GEO). Differentially

expressed genes between HF and CTL groups underwent enrichment analysis

using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways. Weighted correlation network analysis (WGCNA) and

unsupervised clustering were employed to identify HF-associated gene modules

and subtypes, and these were intersected with lactate-related genes (LRGs),

curated from the Molecular Signatures Database and GeneCards, to pinpoint

hub genes implicated in lactylation-mediated HF (Lcy-HF). The least absolute

shrinkage and selection operator (LASSO), XGBoost, Boruta algorithm, and

protein–protein interaction (PPI) networks were utilized to identify these hub

genes. The diagnostic potential and biological significance of these hub genes

in HF progression were assessed using receiver operating characteristic (ROC)

curves, gene set enrichment analysis (GSEA), and immune infiltration analysis.

Results: In the comparison between HF and CTL samples, 91 upregulated and 88

downregulated genes were identified, primarily enriched in inflammatory

responses and pathways. By intersecting 387 LRGs curated from databases, we

pinpointed six hub genes implicated in Lcy-HF: GATA2, HBB, JAK2, STAT2,

STAT4, and WARS2. Immune infiltration analysis further revealed that these

Lcy-HF hub genes are associated with macrophage polarization.

Conclusions: Lactylation plays a crucial role in the pathogenesis of HF, with

genes such as GATA2, HBB, JAK2, STAT2, STAT4, and WARS2 emerging as

potential lactylation biomarkers for HF identification. The lactylation-

macrophage polarization–inflammation axis stands out as a pivotal mechanism

driving HF progression.
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1 Introduction

Heart failure (HF) stands as a leading cause of cardiovascular mortality, affecting over

64 million people globally, with a 5-year mortality rate exceeding 75% (1). Primarily driven

by aberrant cardiac structural function and underpinned by various underlying heart

conditions, HF incidence is notably higher among individuals aged 65 and above (2).

The pathophysiology of HF encompasses neural activation, inflammation, oxidative

stress, and aberrant energy metabolism (3). Myocardial metabolic reprogramming has

TYPE Original Research
PUBLISHED 12 August 2025
DOI 10.3389/fcvm.2025.1622958

Frontiers in Cardiovascular Medicine 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2025.1622958&domain=pdf&date_stamp=2020-03-12
mailto:23237107@qq.com
mailto:7420465@qq.com
https://doi.org/10.3389/fcvm.2025.1622958
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1622958/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1622958/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1622958/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2025.1622958
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


been established as a central metabolic mechanism in HF,

marked by a shift from aerobic fatty acid oxidation to anaerobic

glycolysis. Lactate, the final product of glycolysis, has been shown

to modulate inflammatory factor production in HF (4, 5).

However, current research mainly centers on lactate levels, gene

expression, and protein function, leaving the mechanisms of

posttranslational modifications (PTMs), particularly lactylation,

largely unexplored.

Lactylation, a novel posttranslational modification of histones,

primarily governs gene expression through the covalent attachment

of lactate to histone lysine residues (Kla) (6). Recent research has

demonstrated that genes associated with lactylation can serve as

biomarkers for nasopharyngeal carcinoma, rheumatoid arthritis,

and acute myocardial infarction (7, 8), indicating that lactylation

is not only implicated in metabolic regulation but also plays

a role in tumor progression, inflammatory responses, and

cardiovascular diseases. Consequently, we hypothesize that an

abnormal increase in lactate levels may affect the progression of

HF through lactylation, which affects inflammatory responses

and regulates apoptosis. Recently, Li et al. (9) identified BRD4 as

a key biomarker for HF diagnosis, but the regulatory gene

network and precise mechanisms underlying lactylation’s role in

heart failure are still unclear.

Bioinformatics, an interdisciplinary field merging biology,

computer science, and statistics, offers a powerful approach to

dissecting the relationship between lactylation and HF by

integrating multi-omics datasets. In this study, bioinformatics

analysis combined with transcriptome was employed to construct

a regulatory gene network elucidating lactylation’s role in HF,

and the gene regulation and molecular mechanism of lactylation

in the course of HF were systematically discussed through

functional enrichment analysis, protein–protein interaction (PPI)

network construction, and immune microenvironment analysis.

The aim is to identify potential biomarkers and therapeutic

targets for HF, thereby laying a scientific foundation for precise

diagnostic and treatment strategies centered around lactylation.

2 Materials and methods

2.1 Data source

The RNA-seq dataset GSE57345, comprising 177 HF samples

and 136 CTL samples, was retrieved from the National Center

for Biotechnology Information’s Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The HF

samples included 144 males aged 18–75 years with a mean age

of 56 years and 33 females aged 31–69 years with a mean age of

55 years. The CTL samples consisted of 73 males aged 1–79

years with a mean age of 49 years and 63 females aged 8–80

years with a mean age of 51 years. The detailed background

information of the samples is shown in Supplementary Table 1.

By leveraging the Molecular Signatures Database (http://www.

gsea-msigdb.org/gsea/index.jsp) and the GeneCards database

(https://www.genecards.org/), we identified 387 LRGs

(Supplementary Table 2).

2.2 Differential gene analysis and functional
enrichment analysis

Differential expression analysis was conducted between HF and

CTL samples using the limma package (version 4.4.2) in the

R language (10), and genes with |log2FC| > 0.7 and P < 0.05 were

deemed differentially expressed genes (DEGs). These DEGs were

then subjected to Gene Ontology (GO) enrichment analysis,

covering biological processes, molecular functions, and cellular

components, as well as KEGG pathway analysis, utilizing the

“clusterProfiler” package in R software. Subsequently, the

intersection between the DEGs and lactate-related genes (LRG)

was calculated.

2.3 Analysis of immune infiltration
characteristics

The CIBERSORT software (version 1.03) (11) was employed to

quantify the relative abundance of 22 immune cell types in the

sample. For parameter settings, the gene expression matrix

was converted to transcripts per million (TPM) format,

deconvolution analysis of human samples was performed using

the LM22 signature matrix (22 immune cell types), 1,000

permutations were used to calculate P-values, and quantile

normalization was enabled (QN = TRUE). Based on the gene

expression matrix, the transposed convolution algorithm was

utilized to delineate the composition of immune-infiltrating cells

using the preset 547 barcode genes. The cumulative estimated

proportions of all immune cell types within each sample

summed to unity. The Wilcoxon rank-sum test was applied to

assess variations in immune cell infiltration across different

groups. A P-value below 0.05 was deemed indicative of

statistically significant differences.

2.4 Weighted gene co-expression network
analysis

Module-related genes were identified using the R package

“WGCNA” (version 4.4.2) (12), and the median absolute

deviation (MAD) was computed for each gene independently.

In addition, the top 50% of genes with the lowest MAD

values were excluded to focus on the most variable genes.

Subsequently, correlation coefficients among the remaining

genes were calculated, and the correlation matrix was

converted into a neighborhood matrix to construct a gene co-

expression network. Leveraging topological overlap, genes are

clustered into distinct modules based on nearest neighbor

measurements, grouping genes with inherent commonalities

and similarities into their grouping genes with inherent

commonalities and similarities into their respective functional

modules. The module genes related to HF were obtained, and

the intersection between these HF module-related genes and

LRG was taken.
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2.5 Machine-learning method and
consensus clustering analysis

To pinpoint hub genes within the lactylation-mediated

HF (Lcy-HF)-associated gene set, we employed three robust

methodologies: least absolute shrinkage and selection operator

(LASSO), Extreme Gradient Boosting (XGBoost), and the

Boruta algorithm. Subsequently, unsupervised cluster analysis

of HF samples was performed using the R package

“ConsensusClusterPlus” (version 4.4.2), leveraging the “means”

clustering method according to Lcy-HF hub genes. The sample

consistency cutoff value was set at 0.8, and the feature

consistency cutoff value was established at 1.

2.6 PPI network analysis and gene set
enrichment analysis

Fifteen Lcy-HF hub genes were input into the STRING

database (https://string-db.org/) to analyze protein–protein

interactions (PPIs), and the PPI network was constructed

using Cytoscape software (version 3.8.1). Genes with a

comprehensive interaction score exceeding 0.4 were designated

as hub regulatory genes. These hub genes were further

analyzed through gene set enrichment analysis (GSEA), with

significantly enriched pathways identified using an adjusted

P threshold of <0.05. Differential expression analysis was

conducted using the “limma” (version 4.4.2) in R, while

enrichment analysis of differential genes was performed with the

“clusterProfiler” (version 4.4.2) (13). Visualization of the

enrichment analysis results was achieved using the “ggstatsplot”

(version 4.4.2).

2.7 ROC curve

To assess the predictive capacity of hub genes for HF disease

progression, the ROC curve was plotted using the R package

“pROC” (version 4.4.2) (14), with the expression value of hub

genes as the variable and the disease situation (pCR or non-

pCR) as the predictor. The AUC function in the package was

used to calculate the area under the curve (AUC) value.

2.8 The risk scoring model by LASSO

A LASSO model was developed using the “glmnet” (version

4.4.2) package in the R language. Variables associated with Lcy-

HF were selected from the intersection genes, and the coefficients

for each variable were computed. The selected variables and their

respective coefficients were then utilized to calculate a risk score

for each sample using the following formula:

� 0:36�GATA2 þ 0:07�HBB þ 0:26�JAK2 þ 0:36�STAT2

þ 0:06�STAT4 þ 0:38�WARS2:

2.9 Statistical analysis

All bioinformatics analyses were conducted using the

R language (version 4.4.2). Statistical significance was set at

P < 0.05. For the animal experimental data, results are presented

as the mean ± SD.

3 Results

3.1 Expression of DEGs and pathogenesis
investigation of HF

Differential expression analysis was conducted on

transcriptomic data to compare the HF and CTL groups.

Applying the screening criteria of |log2FC| > 0.7 and P < 0.05, we

identified 91 upregulated and 88 downregulated genes in HF

(Figure 1A, Supplementary Table 3). The top 100 DEGs were

visualized in a heatmap (Figure 1B). Functional enrichment

analysis of these DEGs highlighted their regulatory roles in HF

pathogenesis. GO analysis revealed that DEGs are predominantly

involved in cell migration and proliferation, extracellular

matrix (ECM) dynamics, immune defense, and inflammatory

pathways (Figure 1C). KEGG analysis indicated that DEGs

are primarily enriched in inflammatory response pathways,

with notable activation of tumor necrosis factor (TNF)-α and

IL6-JAK-STAT3 (Figure 1D). Furthermore, analysis of the

immune microenvironment revealed significant differences

in the proportions of naive B cells (P = 0.00024), plasma

cells (P = 0.04798), CD8+ T cells (P = 1.2e-05), M2 macrophages

(P = 3.3e-07), resting mast (P = 0.00019) cells, and neutrophils

(P = 0.00362) between the two groups (Figures 1E,F). These

findings suggest an enhanced inflammatory response

and increased apoptosis in the heart, consistent with

previous observations.

3.2 Identification of HF-related genes

To further elucidate gene modules associated with HF, the gene

expression matrix was used for WGCNA analysis, and the gene

network was constructed when the soft threshold β = 5

(Figure 2A). Twenty-seven gene modules were identified, which

were subsequently merged into 15 modules based on correlation

coefficients exceeding 0.75 (Figures 2B,C). Next, the correlations

between gene modules and HF and CTL were calculated

(Figure 2D), and the Lightcyan and Darkgreen modules

demonstrated significant associations with HF (P < 0.05).

Therefore, these modules were selected for further analysis as

HF-related gene modules.

3.3 Identification of Lcy-HF hub genes

The Lightcyan and Darkgreen gene modules intersected

with LRG, yielding 11 and 22 Lcy-HF-related genes
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FIGURE 1

Expression of DEGs and pathogenesis investigation of HF. (A) Volcano plot of DEGs. (B) Heatmap of top 100 DEGs sorted by absolute difference

multiples (R package limma, |log2FC| > 0.7, P < 0.05). (C) Bubble plot of GO functional enrichment analysis. (D) Bubble plot of KEGG signaling

pathways enrichment analysis. (E) CIBERSORT-based analysis of 22 immune cell-type distributions in HF and CTL (Wilcoxon rank-sum test).

(F) Map of immune cell distribution between CTL and HF samples.
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(Figures 3A,B). Additionally, intersecting the 179 DEGs in HF

with LRGs identified 4 Lcy-HF-related genes. By integrating

these findings, we pinpointed 37 genes linked to Lcy-HF

(Figure 3C, Supplementary Table 4). Subsequently, three

established machine-learning methods were employed to

further screen and identify the hub genes within the Lcy-HF

network, and the results show that LASSO regression

analysis identified 21 genes associated with HF (Figures 3D,E).

Among these, the Boruta algorithm was utilized to select 15

hub genes (Figure 3F), which were then validated and

ranked using the XGBoost (Figure 3G). In addition,

among these hub genes, 10 were upregulated (CYP27A1,

GATD1, HBB, JAK2, LYST, STAT2, STAT4, TRMT5,

and WARS2) and 5 were downregulated (GATA2,

HMGCS2, HS6ST2, SLC2A1, and SPP1) in HF

(Supplementary Figure 1).

3.4 Categorization of Lcy-HF-related
subtypes and functional enrichment
analysis

To further delineate Lcy-HF subgroups, we performed

consensus clustering on 15 identified Lcy-HF hub genes. As

illustrated in Figures 4A,B, when the consensus matrix number

was set to 2, the cumulative distribution function (CDF) curve

exhibited minimal fluctuation across the consistency index range

of 0–1.0, indicating the most stable number of subtypes, the

FIGURE 2

Identification of HF-related genes. (A) WGCNA analysis plot of soft threshold β= 0.5 (horizontal axis, soft threshold; vertical axis, scale-free fitting

index; R package WGCNA). (B) Correlation heatmap of 27 gene modules. (C) Gene module clustering plot (top, gene hierarchical clustering

dendrogram; bottom, gene modules, distinguished by different colors). (D) Heatmap depicting the association between gene modules and HF.
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FIGURE 3

Identification of Lcy-HF hub genes. (A) Venn diagram illustrating the intersection between the Lightcyan module and LRG. (B) Venn diagram displaying

the intersection between the Darkgreen module and LRG. (C) Venn diagram of DEGs and LRG. (D) Plot with the horizontal axis representing the

logarithm of the regularization parameter λ (lambda) in LASSO regression, and the vertical axis showing the coefficient value of each feature

(variable). Each line depicts the trajectory of a feature’s coefficient change with respect to λ. (E) LASSO regression plot of mean square error

(R package glmnet). (F) Plot generated by the Boruta algorithm. (G) XGBoost-based ranking of feature gene importance.
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FIGURE 4

Categorization of Lcy-HF-related subtypes and functional enrichment analysis. (A) Consensus cumulative distribution function (CDF) plot (k= 2–6).

(B) Plot depicting the relative change in the area under the CDF curve (k= 2–6). (C) Cluster analysis heatmap (k = 2). (D) PCA plot for HF1 and HF2

subtypes. (E) Column diagram illustrating functional enrichment analysis for HF1 subtype. (F) Functional enrichment analysis outcomes for the

HF2 subtype.
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largest area under the CDF curve, and a more pronounced clustering

effect. Therefore, we selected k = 2 and ultimately classified the

samples into two distinct subtypes (Figure 4C), which we named

HF1 and HF2. Further PCA confirmed substantial differences

between the HF1 subgroup (Figure 4D). Functional enrichment

analysis revealed that MAPK, JAK/STAT, and TGF-β signaling

pathways were significantly enriched in the HF1 subtype

(Figure 4E), whereas the HF2 subtype was predominantly

associated with mitochondrial energy metabolism (Figure 4F).

3.5 Identification of hub genes in PPI
networks

PPI network was constructed and evaluated the interactions

among 15 identified Lcy-HF hub genes, and the analysis

pinpointed six dominant genes (GATA2, HBB, JAK2, STAT2,

STAT4, and WARS2) within the interaction network (Figure 5A).

Furthermore, ROC curve analysis underscored the strong

diagnostic potential of these six hub genes (Figure 5B). To

FIGURE 5

Identification of hub genes in PPI networks. (A) PPI network visualization of 15 Lcy-HF hub genes. (B) ROC curve presentation (R pROC) for six Lcy-HF

hub genes: GATA2 (95% CI: 0.7555–0.8523), HBB (95% CI: 0.6824–0.7967), JAK2 (95% CI: 0.7448–0.8477), STAT2 (95% CI: 0.611–0.7297), STAT4 (95%

CI: 0.7076–0.8126), WARS2 (95% CI: 0.6796–0.7908). (C–H) GSEA enrichment analysis (R limma) results for the six Lcy-HF hub genes (GATA2, HBB,

JAK2, STAT2, STAT4, WARS2).
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elucidate the functional roles of these six Lcy-HF hub genes in HF,

GSEA was conducted, revealing their involvement in TNF and

JAK/STAT signaling pathways (Figures 5C–H).

3.6 Relationship between Lcy-HF and
immune microenvironment

LASSO regression method was employed to construct a Lcy-

HF risk score model based on six Lcy-HF genes, and they were

stratified into high- and low-risk groups using the median

expression value as the cutoff. Upon analyzing “CTL and HF

samples” as well as “HF1 and HF2 subtypes,” we observed that a

greater proportion of HF samples were classified into the high-

risk group, whereas CTL samples predominantly fell into the

low-risk group (Figure 6A). Similarly, within the HF subtypes,

more HF1 samples were categorized as high-risk, while HF2

samples were more frequently classified as low-risk (Figure 6B),

further confirming that HF1 is associated with poor HF

outcomes. Immunoinfiltration analysis of the high- and low-risk

groups revealed a higher proportion of M1 macrophages

(P = 0.0341), CD4+ T cells (P = 0.0055) and NK cells (P = 0.0251)

in the high-risk group (Figure 6C), while correlation analysis of

the six Lcy-HF genes and immune cells demonstrated a positive

FIGURE 6

Relationship between Lcy-HF and immune microenvironment. (A) Risk scores impact plot comparison between CTL and HF samples. (B) Risk scores

impact plot for HF1 and HF2 subtypes. (C) Distribution map of immune cells across the high- and lower-rank groups. (D–I) Correlation analysis results

between six hub genes and immune cells (GATA2, HBB, JAK2, STAT2, STAT4, WARS2).
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correlation between STAT2 and M1 macrophages (Figures 6D–I).

This suggests that the Lcy-HF gene STAT2 may exacerbate HF

progression by promoting M1 macrophage polarization and

amplifying the inflammatory response.

4 Discussion

HF is characterized by the heart’s inability to adequately

meet the body’s metabolic demands, primarily manifesting as

reduced oxidation of fatty acids and glucose alongside increased

reliance on lactic acid oxidation and glycolysis (15). Despite

advancements in treatment, such as the use of angiotensin-

converting enzyme inhibitors, angiotensin receptor blockers, and

β-blockers, which have significantly improved patient outcomes

(3), the mortality rate among patients remains high, and

therapeutic challenges persist (16). Lactylation, a PTM that

links cellular metabolism with epigenetics and signaling

pathways, primarily involves the transfer of the lactyl moiety

from lactic acid to the ϵ-amino group of lysine residues. This

modification exists in both histones and non-histone proteins.

Histone lactylation relies on L-lactate-induced enzymatic

reactions, regulating chromatin conformation to modulate gene

transcription. In contrast, non-histone lactylation primarily

affects protein functions by regulating enzymatic activities (17).

In this study, bioinformatics combined with transcriptomic

analysis systematically revealed the molecular mechanism and

hub gene regulation of lactylation in the progression of HF.

GO and KEGG analyses were conducted on the 179 DEGs

identified between the HF and CTL groups. These DEGs were

predominantly found to be enriched in pathways associated with

the inflammatory response and related signaling pathways, such

as IL-6 and JAK/STAT. The downregulation of M2 macrophages

was observed through immune infiltration analysis, indicating

heightened myocardial inflammation in HF. The elevation of

tumor necrosis factor-α (TNF-α) and IL-6 levels, along with the

occurrence of inflammatory responses, has been extensively

documented in HF, though the diverse causes underlying these

inflammatory responses remain a subject of ongoing investigation

(18). Current studies have elucidated that elevated lactate levels

can modulate inflammatory factors in cardiac fibroblasts (5) and

are also associated with mortality in HF patients (19). Lactic acid

can be converted into lactoyl-CoA, participate in protein

posttranslational modifications (lactylation), regulate macrophage

polarization and inflammatory factor secretion, maintain

sarcomeric structure and function, and ultimately affect the

progression of HF (20, 21). Reduction in lactate production

decreases H3K18 lactylation expression, inhibits myocardial

cell hypertrophy, and reduces mortality in HF (22). Moreover,

the lactate dehydrogenase encoding gene LDHA, which

catalyzes the conversion between pyruvate and lactic acid, can

induce myocardial pyroptosis by enhancing NLRP3 lactation,

thereby promoting myocardial ischemia–reperfusion injury (23).

Monocarboxylate transporter 4 (MCT4), responsible for

exporting intracellular lactate, is abnormally upregulated on the

plasma membrane of cardiomyocytes in diabetic cardiomyopathy,

leading to excessive efflux of intracellular lactate. This process

increases histone H4K12 lactylation in macrophages,

promoting inflammatory infiltration in the microenvironment,

which confirms the regulatory role of lactylation in

inflammation (24).

Fifteen genes were identified as Lcy-HF genes, suggesting

their potential involvement in HF progression through

lactylation. Enrichment analysis of the lactylation–heart failure

subsets (HF1 and HF2), which were delineated by these

Lcy-HF genes, indicated that lactylation might modulate

cardiomyocyte apoptosis and facilitate cardiac fibrosis by

modifying kinases in the MAPK pathway and TGF-β proteins

(25, 26). Concurrently, in alignment with the differential gene

enrichment analysis of HF samples, an enhanced inflammatory

response was observed through the JAK/STAT pathway,

exacerbating the myocardial injury. The JAK/STAT signaling

pathway, known for its regulatory role in HF, comprises

members such as JAK2, STAT1, STAT2, STAT3, and STAT4

(27). Previous studies have demonstrated that JAK2/STAT1

can be used as a therapeutic target for HF (28), while a

complete deficiency of STAT2 can lead to inflammatory

diseases (29). STAT4 has been proposed as a potential

biomarker for HF comorbid with depression. However, our

analysis, for the first time, revealed that JAK2, STAT2, and

STAT4 can be utilized as lactylation hub regulatory genes to

identify HF. Moreover, GATA2, HBB, and WARS2 were also

identified as diagnostic markers for HF, a finding supported

by ROC curve analysis. GATA2, a transcription factor of the

GATA family, has been shown to regulate miRNA to promote

cardiac fibrosis (30) and aggravate HF induced by

experimental transverse aortic coarctation after GATA2

knockdown (31). Consistent with our findings, GATA2 was

found to be significantly downregulated in HF. Recent

studies have indicated that the downregulation of GATA2

reduces the pro-inflammatory phenotype of pulmonary

macrophages in chronic obstructive pulmonary disease (32),

but no significant association between GATA2 and

macrophages has been previously reported in HF, and the

specific underlying mechanism warrants further investigation.

The hemoglobin beta subunit (HBB) and angiogenesis factor

(Was2) have also been identified as potential biomarkers for

HF (33, 34).

Interestingly, the GSEA of six hub Lcy-HF genes revealed

their enrichment in the JAK/STAT signaling pathway. Previous

studies have shown that when lactylation occurs in the catalytic

or regulatory domains of kinases, the negatively charged

lactate moiety alters the local charge distribution, leading to

conformational changes in the kinase. For example, increased

lactylation of PKM2 at K62 directly drives PKM2 into a more

active tetrameric form and enhances its pyruvate kinase activity.

Lactate suppresses the Warburg effect by activating PKM2,

thereby promoting the transition of pro-inflammatory

macrophages to a reparative phenotype (35). Lactylation of

Vps34 enhances its binding to Beclin1, Atg14l, and UVRAG,

thereby increasing Vps34 lipid kinase activity and regulating

cellular autophagy. During intense exercise, Vps34 lactylation in
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skeletal muscle maintains muscle cell homeostasis (36).

Additionally, lactylation indirectly affects kinase activity. Wang

et al. (37) found that reducing H3K18 lactylation at the IRS1

promoter decreases IRS1 expression, weakens the activities of

PI3 K/AKT/mTOR and MAPK/ERK pathways, and suppresses

the growth and metastasis of hepatocellular carcinoma cells.

Therefore, we hypothesize that lactylation may directly or

indirectly regulate the JAK/STAT signaling pathway to exert

effects on HF, and the specific mechanism requires further in-

depth investigation. Furthermore, correlation analysis

demonstrated a positive correlation between STAT2 and M1

macrophages. This is consistent with previous findings that

STAT2 regulates macrophage polarization phenotypes during

influenza–bacterial coinfection and in multiple myeloma

(38, 39). However, no studies have explored the association

between STAT2 and macrophage polarization in heart

failure. Future research should validate lactylation-induced

macrophage polarization through STAT2 knockdown

experiments and further verification.

Finally, immunoinfiltration analysis was conducted among

the risk groups established using a risk score model for

lactylation in HF, which was constructed based on six Lcy-HF

genes. The observed increase in M1 macrophages further

suggested that lactylation might promote the M1 polarization

of macrophages, thereby exerting a pro-inflammatory effect in

HF. The JAK/STAT signaling pathway is also recognized as a

key player in macrophage polarization (40). It is therefore

proposed that lactylation may regulate M1 macrophage

polarization by modulating the JAK/STAT2 signaling

pathway, thereby promoting an inflammatory response that

contributes to HF progression. Previous clinical studies review

suggests that the immune response in HF is a secondary

phenomenon in response to myocyte injury (41). The

mechanism underlying HF is complex and multifaceted. In

HF, lactylation may not be a cause but rather a consequence

of macrophage polarization, occurring concurrently with

metabolic reprogramming induced by inflammatory stress

(42). Although the regulatory role of lactylation in

macrophage polarization requires further investigation, the

relationship between lactylation and inflammation is certainly.

Although this study employed bioinformatics to analyze

the mechanism of lactylation in HF, certain limitations persist.

Firstly, the findings derived from public databases necessitate

experimental validation, and we did not perform external

validation to confirm the AUC performance of the diagnostic

model, which limits the generalizability of our findings to

other populations or clinical settings. Secondly, the specific sites

of lactylation remain insufficiently explored, and a deeper

understanding of the regulatory mechanisms of histone and non-

histone lactylation in HF is warranted. Finally, the effects of lactic

acid metabolism in intestinal flora on homeostasis and the

progression of HF were not considered in the study. In future

research, emphasis can be placed on investigating how group

lactylation influences the regulatory mechanisms of macrophage

polarization in the pathogenesis of HF, potentially offering a novel

therapeutic target for this condition.

5 Conclusions

In summary, lactylation may contribute to the progression of

HF by regulating macrophage polarization and promoting

inflammatory response. GATA2, HBB, JAK2, STAT2, STAT4,

and WARS2 have been identified as potential novel biomarkers

to identify HF.
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