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Background: ST-elevation myocardial infarction (STEMI) remains a leading cause

of morbidity and mortality globally. Early risk stratification and detection of

complications are critical for optimizing patient outcomes. Point-of-care

ultrasound (POCUS) has emerged as a valuable bedside tool in the acute

evaluation of STEMI patients.

Objectives: To explore the role of POCUS in the early assessment of STEMI

patients, focusing on its diagnostic and prognostic utility.

Methods: A comprehensive review of current literature was conducted,

examining the application of POCUS in STEMI.

Results: Lung ultrasound (LUS) enables rapid detection of pulmonary congestion

through the identification of B-lines, offering superior sensitivity compared to

traditional methods. Left ventricular outflow tract velocity-time integral (LVOT-

VTI) provides a quantitative assessment of stroke volume and cardiac output,

aiding in the identification of low-flow states. Integrating these modalities

enhances hemodynamic evaluation. Moreover, a systematic POCUS

assessment may facilitate early detection of high-risk patients with acute heart

failure or cardiogenic shock, as well as the identification of

mechanical complications.

Conclusions: The incorporation of POCUS, specifically LUS and LVOT-VTI, into

the early evaluation of STEMI patients enhances diagnostic accuracy and

prognostic assessment. Future research should focus on standardizing

protocols and evaluating the impact of POCUS-guided management on

patient outcomes.

KEYWORDS

STEMI, point-of-care ultrasound, lung ultrasound, LVOT-VTI, acute heart failure,
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Introduction

ST-elevation myocardial infarction (STEMI) is associated with significant morbidity

and mortality. Despite significant advances in pharmacological and reperfusion

strategies, particularly percutaneous coronary intervention (PCI), early risk stratification

and adequate in-hospital management remain pivotal in optimizing outcomes (1).

Timely identification of high-risk features and associated complications such as acute

heart failure (AHF) or cardiogenic shock (CS) can guide appropriate clinical

management, from intensive monitoring to urgent mechanical support.

Conventional evaluation in myocardial infarction relies on clinical examination,

electrocardiography, and biomarkers. However, these tools have limitations, particularly

in detecting early hemodynamic deterioration or guiding fluid and pharmacologic
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therapy. For example, the cornerstone Killip classification (2) is a

useful tool, however, it may sometimes be imprecise. The

distinction between Killip groups II and III is defined by the

level on the chest at which rales are audible, making it difficult

to distinguish, especially in a noisy environment such as an

emergency room (2). As the complexity of STEMI patients

increases—with increasing age and prevalence of comorbidities

such as diabetes, chronic kidney disease, and prior heart failure—

there is a growing need for dynamic, bedside tools that can

provide real-time insights into cardiac function, volume status,

and pulmonary congestion.

Point-of-care ultrasound (POCUS) has emerged as a rapid,

non-invasive assessment of cardiac and pulmonary parameters,

and has been suggested as a fifth pillar of bedside physical

examination (3). Its portability, user-friendliness and diagnostic

accuracy have contributed to its broad integration into

emergency medicine, critical care and cardiology. In the setting

of STEMI, POCUS can play a pivotal role as an early triage

and prognostic modality, facilitating the identification of

acute complications, alternative diagnosis, and guiding

hemodynamic optimization.

This manuscript explores the evolving role of POCUS in the

early evaluation of STEMI patients, with a particular emphasis

on lung ultrasound (LUS) and the measurement of left

ventricular outflow tract velocity-time integral (LVOT-VTI). By

integrating current evidence and outlining future perspectives,

this review aims to emphasize the clinical significance of POCUS

in enhancing risk stratification and guiding early therapeutic

decision-making in the management of STEMI (Figure 1—

Central Illustration).

Point-of-care ultrasound in
contemporary practice

POCUS has improved bedside assessment across various

medical specialties, particularly in acute and critical care settings.

Once considered an adjunct to physical examination, POCUS is

now recognized as a frontline diagnostic tool, offering real-time,

reproducible insights into cardiopulmonary physiology, volume

status, and organ perfusion (4–6).

In contemporary clinical practice, the limitations of the

physical examination are well recognized. While auscultation and

inspection remain fundamental, they are hampered by substantial

interobserver variability and limited sensitivity in detecting subtle

or evolving pathologies. For example, the sensitivity of rales to

detect right atrial pressure ≥10 mmHg and left atrial pressure

≥20 mmHg are 28% and 25%, respectively (7). The sensitivity of

jugular venous distension for identifying elevated right atrial

pressures follows the same trend, being only 39% (8). In contrast,

POCUS allows for direct visualization of underlying

pathophysiological processes—such as B-lines on lung ultrasound

indicative of pulmonary edema, a plethoric inferior vena cava

(IVC) suggestive of elevated right atrial pressures, or a

mechanical complication on focused cardiac ultrasound.

A growing body of evidence demonstrates that incorporating

POCUS into the physical examination markedly enhances

diagnostic accuracy, particularly in patients presenting with

undifferentiated dyspnea (9), shock (10) or chest pain (11).

In patients admitted with acute dyspnea, for example, the

lung ultrasound sensitivity to detect acute pulmonary edema is

97% (12).

In the emergency department, POCUS protocols such as the

Focused Assessment with Sonography in Trauma (FAST) (13),

the Rapid Ultrasound in Shock (RUSH) (14) exam, and the

Bedside Lung Ultrasound in Emergency (BLUE) (12) protocol

have been well validated. These approaches streamline diagnostic

workflows, shorten the time to diagnosis, and often lead to

immediate changes in management. Similarly, in the intensive

care unit, POCUS is increasingly used for guiding fluid

resuscitation, evaluating response to therapy, and identifying

reversible causes of hemodynamic instability (14–16).

Cardiovascular applications of POCUS are expanding rapidly.

Focused cardiac ultrasound (FoCUS) (17) can identify pericardial

effusion, assess left ventricular systolic function, and evaluate

valve dysfunction with high specificity. LUS and Venous Excess

Ultrasound (VExUS) identify pulmonary and systemic congestion

with excellent accuracy in acute heart failure, serving as useful

tools for both diagnosis and decongestion management (18), as

well as a potential application on acute coronary syndromes (19,

20) and transcatheter aortic valve implantation (21, 22).

Importantly, POCUS is not intended to replace comprehensive

echocardiography or advanced imaging modalities. Rather, it serves

as a dynamic, bedside extension of clinical evaluation—allowing for

real-time reassessment and serial monitoring. As such, its utility is

enhanced when performed by clinicians directly involved in patient

care, who can integrate findings immediately into

therapeutic decisions.

Lung ultrasound

For many years after the introduction of ultrasound

technology, it was commonly accepted that ultrasound imaging

was not useful for the evaluation of pulmonary parenchyma, due

to the poor transmission of ultrasound waves through air. It was

not until the late 1990s that lung ultrasound was popularized,

with pioneering applications in critically ill patients, including

the detection of acute pulmonary edema (23). Since then, there

has been a continuous and growing body of evidence supporting

its clinical utility, particularly in cardiology (24).

Lung ultrasound provides a direct, real-time visualization of

extravascular lung water through the detection of B-lines—

vertical, hyperechoic artifacts arising from the pleural line and

moving with respiration. These artifacts reflect increased fluid

within the interlobular septa and alveolar interstitium, making

them a sensitive marker of pulmonary congestion, defined as at

least two positive sites (≥3 B-lines each) bilaterally (25). Studies

have demonstrated that LUS is superior to both auscultation and

chest radiography in detecting pulmonary edema, with diagnostic

accuracies exceeding 90% in many acute care settings (26). It is

important to emphasize that, although a single positive zone
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does not strictly define pulmonary congestion, its presence may still

carry prognostic implications, as will be discussed below.

Therefore, for this review, we will define “pulmonary congestion”

as the presence of one or more lung zones demonstrating three

or more B-lines.

Since its introduction and particularly over the last fifteen

years, the cardiology community has increasingly recognized the

potential of LUS to aid in the diagnosis and management of

both acute and chronic heart failure (27). A notable example of

the method’s utility in this setting is a randomized trial

demonstrating that tailored LUS-guided diuretic therapy for

pulmonary congestion reduced the incidence of heart failure

decompensations and improved walking capacity in ambulatory

patients, compared with standard follow-up (28). Although LUS

was first investigated in patients with acute coronary syndromes

in 2010 (29), it was not until 2020 that it was specifically studied

in patients with STEMI (30).

In the context of STEMI, LUS can be performed rapidly at the

bedside, typically within a few minutes using an 8-zone scanning

protocol (25) (Figure 2). Importantly, the identification of B-lines

does not require advanced ultrasound training, as interobserver

agreement among trained clinicians is high (30, 31), and it is

suggested that one morning of hands-on experience or even a

standardized internet-based module of two hours is enough to

achieve excellent reproducibility in the identification and

quantification of B-lines (24). Of note, both curvilinear and

phased array transducers may be recommended for LUS

assessment, as there is a good correlation among users who

had at least one month of POCUS training (32). The use of

the sectorial transducer may be unfamiliar to non-cardiologists

or doctors who are not as experienced with this type of

transducer. However, an interesting analysis by Walsh (32)

and colleagues compared both transducers for lung

ultrasound assessment and found a good correlation among

trained users.

Left ventricular outflow tract velocity-
time integral

LVOT-VTI is a Doppler-based measurement that estimates

stroke volume and, by extension, cardiac output. It is obtained

FIGURE 1

Central Illustration. Evolution of point-of-care assessment in ST-elevation myocardial infarction. Figure created in Biorender.com.
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via pulsed-wave Doppler at the level of the LV outflow tract in the

apical five-chamber (Figure 3). The VTI represents the distance

that blood travels during one cardiac cycle; when multiplied by

the LVOT cross-sectional area and heart rate, it yields cardiac

output. Five to seven cardiac cycles should be averaged for a

patient in atrial fibrillation (33). In practice, however, VTI alone

(without indexing to LVOT area) is often sufficient as a bedside

surrogate of flow, with normal values typically ranging between

18 and 22 cm. Values ≤16 cm are considered indicative of an

impaired forward flow, can provide insights into cardiac function

even when the LVEF is preserved and it is a strong predictor

of mortality in critically ill patients (34). Moreover, it can

predict hemodynamic deterioration even when classic signs of

cardiogenic shock are absent.

While LUS provides valuable insight into pulmonary

congestion, it does not directly quantify cardiac output or

systemic perfusion. In acute coronary syndromes—particularly

STEMI complicated by heart failure or cardiogenic

shock—congestion and hypoperfusion may coexist, and

distinguishing between these hemodynamic states is critical

for appropriate management. In this context, adding a

measure of forward flow, such as the LVOT-VTI, to LUS

protocols enhances both diagnostic and prognostic utility as

will be discussed.

The LVOT-VTI is a valuable echocardiographic parameter for

estimating stroke volume and cardiac output. However, its accuracy

can be significantly affected by technical and physiological factors.

Common pitfalls include poor Doppler beam alignment,

misinterpretation of waveforms, and inadequate averaging

techniques. Moreover, certain clinical conditions—particularly

moderate-to-severe aortic regurgitation and subaortic obstruction

(either fixed or dynamic)—can lead to substantial overestimation

of VTI. Dynamic left ventricular outflow tract obstruction

(LVOTO), for instance, may occur in settings of severe

hypovolemia or in patients with asymmetric septal hypertrophy,

especially under conditions of low preload and heightened

inotropic stimulation. Both dynamic LVOTO and aortic

regurgitation increase flow velocities through the outflow tract,

leading to falsely elevated VTI values. Additionally, the presence

of mechanical circulatory support devices such as Impella

may interfere with native flow dynamics and Doppler signal

interpretation, further complicating VTI assessment. When

technical quality is suboptimal or when interfering pathology is

present, reliance on serial trends or adjunctive hemodynamic

parameters is advised (35). Despite its limitations, LVOT-VTI

remains a practical and dependable tool for bedside assessment

of hemodynamic status, especially when performed by trained

physicians in emergency and critical care settings.

FIGURE 2

Lung ultrasound measurement illustration. (A) Normal lung with air-filled alveoli. (B) Congested lung with multiple B-lines (comet tail appearance).

Figure created in Biorender.com.
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Importance of prognostic evaluation
in STEMI

The management of STEMI has evolved significantly over

recent decades, primarily due to advances in reperfusion therapy

and pharmacological management. Nevertheless, STEMI remains

a major cause of morbidity and mortality worldwide. While early

reperfusion is the cornerstone therapy, outcomes are substantially

influenced by the patient’s baseline risk profile and the

development of complications such as acute heart failure,

arrhythmias, or cardiogenic shock. In this context, accurate and

timely prognostic evaluation is critical—not only to guide

immediate therapeutic decisions but also to guide resource

allocation, determine level of care, support early discharge, and

anticipate long-term outcomes.

Traditional prognostic tools such as the TIMI (Thrombolysis in

Myocardial Infarction) (36) and GRACE (Global Registry of Acute

Coronary Events) (37) risk scores have been widely validated and

are commonly used to estimate short- and long-term mortality

in patients with acute coronary syndromes. These scores

incorporate clinical, electrocardiographic, and laboratory variables

to stratify risk, enabling clinicians to identify patients who may

benefit from more intensive monitoring or early invasive

strategies. However, these tools provide a static snapshot of risk

and may not adequately reflect dynamic changes in a patient’s

clinical trajectory.

In real-world practice, patients often present with complex and

evolving physiology. For example, a STEMI patient with initially

stable hemodynamics may develop subtle signs of volume

overload or low cardiac output within hours. Physical

examination findings may lag behind pathophysiological

deterioration, and reliance on static risk scores alone may lead to

delayed recognition of clinical worsening. As such, dynamic,

bedside assessment tools are increasingly being recognized as

valuable adjuncts to traditional prognostic models.

POCUS and acute heart failure
in STEMI

The impact of acute heart failure on short- and long-term

prognosis in patients admitted with STEMI is well established. In

a seminal study conducted in the late 1960s, Drs. Killip and

Kimball demonstrated that in-hospital mortality increased with

FIGURE 3

LVOT-VTI measurements illustrations and common pitfalls. Figure created in Biorender.com.
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the severity of heart failure, ranging from the absence of

pulmonary rales at one end to the presence of cardiogenic

shock at the other (Killip classification) (2). Decades later, the

degree of acute heart failure remains one of the most

important prognostic markers in myocardial infarction. More

recent evidence shows that, beyond in-hospital outcomes, the

Killip classification also predicts events up to five years after

admission in patients with both ST-elevation and non–ST-

elevation myocardial infarction (38).

Motivated by these findings and aware of the limitations of

physical examination in assessing the degree of congestion, we

proposed in 2020 a reclassification of the Killip system based on

lung ultrasound findings, termed the LUCK (Lung Ultrasound

Combined with Killip) classification (30). This novel approach

demonstrated a significantly higher area under the curve to

predict in-hospital mortality compared to the original Killip

classification, with a net reclassification index of 18%. A key

finding of this study was the negative predictive value of the

LUCK classification for in-hospital mortality, which reached

98.1%. This highlights the higher sensitivity of lung ultrasound,

enabling more accurate identification of patients who do not

develop congestion in the context of STEMI—those who

ultimately exhibit a better prognosis. Notably, 32% of patients

initially classified as Killip class I (absence of pulmonary rales on

auscultation) had at least one positive lung field on ultrasound.

Similarly, a Spanish research group developed a different score

from a multicenter cohort, also based on the superior accuracy of

lung ultrasound compared to physical examination. In this score,

patients classified as Killip I with at least one positive lung field,

as well as those classified as Killip II but without pulmonary

congestion, were reclassified as Killip I pLUS (39). This new

score not only demonstrated a higher area under the curve

compared to the original Killip classification but also

outperformed the LUCK classification in predicting in-hospital

mortality and combined cardiovascular outcomes at one year.

This finding was later confirmed in the cohort where LUCK was

originally developed (40). Regarding medium- and long-term

outcomes, data from the same multicenter cohort revealed that

the presence of subclinical congestion (defined as at least one

positive zone, comprising 14% of the sample) was associated

with a fivefold increased risk of death or hospital readmission

due to heart failure or acute coronary syndrome at 30 days

(41), and a threefold increase in the combined endpoint at one

year (42).

It is important to emphasize that while the presence of even a

single positive zone on lung ultrasound in the context of STEMI

carries significant prognostic value, it should not be formally

interpreted as pulmonary congestion. As previously discussed,

the diagnosis of pulmonary congestion requires at least two

bilateral positive zones. Furthermore, even when pulmonary

congestion is present, it may not be directly attributable to left

ventricular systolic or diastolic dysfunction. Alternative

mechanisms—such as increased pulmonary vascular permeability

due to systemic inflammation or concomitant lung disease—may

also produce B-lines. These potential confounders were not

consistently excluded in some of the previously referenced studies.

POCUS and cardiogenic shock in
STEMI

Cardiogenic shock represents the most severe form of acute

heart failure and remains a major cause of in-hospital mortality

in patients with STEMI. It is characterized by inadequate tissue

perfusion due to impaired cardiac output, often accompanied by

hypotension, elevated filling pressures, and end-organ

hypoperfusion. Despite advances in revascularization and

mechanical circulatory support, mortality in CS continues to

exceed 30%–40% in contemporary cohorts. As early recognition

and protocol-based management are essential to improve

survival, the Society for Cardiovascular Angiography and

Interventions (SCAI) proposed a staging system emphasizing a

dynamic and multidimensional approach to shock classification,

based on clinical criteria to risk-stratify patients with CS from

stages A to E (43).

Lung ultrasound may serve as a useful adjunct to the SCAI

shock classification, particularly in stages A and B, where it

enables detection of subclinical pulmonary congestion that may

not be apparent on physical examination alone. In a previous

study conducted by our group, higher SCAI shock stages were

independently associated with an increased number of positive

LUS zones, with an adjusted odds ratio of 2.2 (95% CI: 1.9–2.5;

P < 0.001) (44). This suggests a 2.2-fold increase in the odds of

detecting additional positive lung zones with each incremental

stage in the SCAI classification.

In another study, we observed that left ventricular end-diastolic

pressure (LVEDP), unlike B-lines on LUS, was not independently

associated with in-hospital mortality (OR: 1.00; 95% CI: 0.97–

1.03) or the occurrence of cardiogenic shock (OR: 1.01; 95% CI:

0.97–1.05) (45). Although some authors have proposed elevated

LVEDP as part of the diagnostic criteria for cardiogenic shock—

alongside clinical and hemodynamic parameters—pulmonary

congestion identified by LUS appears to be a stronger marker.

Furthermore, these findings call into question the hemodynamic

rationale that increased left ventricular pressures—followed by

elevated capillary pressure and pulmonary congestion in acute

myocardial infarction—underlie the appearance of B-lines on

point-of-care ultrasound (POCUS), raising the possibility that

B-lines may instead be associated with other mechanisms such

as inflammation.

Recently, our group proposed a novel method that incorporates

LVOT-VTI into lung ultrasound assessment, as it offers key

insights into global systolic function and cardiac output (46),

similar to the Diamond Forrester classification (47) in this

setting, in which although it utilizes precise cutoff points of

Swan-Ganz measured pulmonary artery occlusion pressure

(18 mmHg) and cardiac index (2.2 L/min/m2), it is both time-

consuming and invasive. This non-invasive approach aims to

detect subclinical abnormalities and identify, at an earlier stage,

patients at risk of clinical deterioration despite the absence of

overt signs on physical examination. The combination of these

two ultrasound parameters forms the basis of the LUV

classification (Lung Ultrasound and Velocity Time Integral),

which categorizes patients into four distinct hemodynamic
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phenotypes according to the evidence of pulmonary congestion as

defined by ≥3 positive zone scans and evidence of hypoperfusion

as defined by a low VTI≤ 14 cm. LUV classification A was

defined as the absence of pulmonary congestion and normal

LVOT-VTI; LUV classification B as the presence of pulmonary

congestion and normal LVOT-VTI; LUV classification C as the

absence of pulmonary congestion and low LVOT-VTI; and LUV

classification D was defined as the presence of pulmonary

congestion and low LVOT-VTI. This classification allows

clinicians to move beyond simple binary distinctions (wet vs. dry,

warm vs. cold) and into more nuanced bedside phenotyping. We

have found in-hospital mortality rates of 0% for LUV A, 3% for

LUV B, 12% for LUV C, and 45% for LUV D. The LUV

classification demonstrated high predictive accuracy for in-

hospital mortality (AUC = 0.915). Additionally, among patients

not in Killip class IV at admission, the incidence of cardiogenic

shock within 24 h increased progressively across LUV categories:

0% (A), 5% (B), 12.5% (C), and 30.8% (D), with an AUC of 0.90

for predicting shock. Moreover, the LUV classification

outperformed LUCK and other LUS-based protocols in

predicting in-hospital mortality and the development of

cardiogenic shock within 24 h (48). This highlights the

importance of hemodynamic assessment in the prognosis of such

patients. While LUS plays an undeniable role in assessing STEMI

patients, the incorporation of the LVOT-VTI variable provides

an important hemodynamic assessment parameter that is more

accurate than LUS alone. Acute hemodynamic dysfunction is

undoubtedly a marker associated with poor prognosis in these

patients. The incorporation of LUS with LVOT-VTI

enhances the prognostic ability for adverse outcomes in

patients without marked clinical signs of hemodynamic

compromise. Notably, it can identify patients at risk of

developing CS who might otherwise be classified as low-risk

by other traditional methods.

For many years, survival rates in STEMI complicated by

cardiogenic shock remained largely unchanged. During this

period, primary percutaneous coronary intervention was the only

intervention consistently associated with improved outcomes.

However, in the late 2010s, the implementation of standardized

management protocols with clearly defined thresholds for

therapeutic escalation led to a significant improvement in

survival—28% in comparison to historic controls—marking the

first major advance in decades for this high-risk population (49).

Among the thresholds used to guide escalation to mechanical

circulatory support, cardiac power output (CPO) and pulmonary

artery pulsatility index (PAPI) require invasive right heart

catheterization, which is time-consuming and not always readily

available. In this context, POCUS may serve as a valuable non-

invasive alternative, particularly when rapid decision-making is

critical to impact outcomes.

Of note, the absence of B-lines in a hypotensive STEMI patient

should raise suspicion for an alternative etiology of shock, such as

right ventricular infarction, pericardial tamponade, or massive

pulmonary embolism. In these contexts, volume status may be

low or normal, and pulmonary congestion may be minimal.

Thus, LUS contributes not only to diagnosis but also to shock

phenotype classification, which is increasingly recognized as

central to guiding individualized therapy.

Systematic POCUS evaluation

In a prospective cohort of 262 patients with acute coronary

syndrome, systematic hand-held echocardiography demonstrated

good-to-excellent agreement with comprehensive transthoracic

echocardiography (TTE) across key parameters (Cohen’s κ 0.60–

1.00), achieving an overall negative predictive value of 95%. It

was completed in a mean of 7.7 ± 1.6 min—about 5 h earlier

than standard TTE—and identified clinically important cardiac

abnormalities in 50% of cases, and altered management in 42%,

with 85% of exams deemed sufficient to forego further imaging

(50). A similar single-center study in patients hospitalized with

acute myocardial infarction (N = 82) found that handheld

echocardiography (using a V-scan) correlated well with standard

TTE for global left ventricular function (concordance coefficient

0.75) and overall wall-motion assessment (0.69), though the

agreement was weaker for regional wall-motion and structural

abnormalities, supporting its role as a rapid adjunct rather than a

replacement for comprehensive TTE (51).

Moreover, a systematic POCUS assessment such as the Focused

Assessment in ST Elevation Myocardial Infarction (FASTEMI) is

feasible and might change diagnosis and/or medical management

in 12% of patients admitted with STEMI in the emergency room

(52). The FASTEMI protocol involves performing an 8-zone LUS

to assess for B-lines, screening for mechanical complications,

identifying severe left-sided valvular regurgitations, assessing left

and/or right ventricular dysfunction, measuring the LVOT-VTI,

and estimating central venous pressure (CVP) through inferior

vena cava (IVC) evaluation (Figure 4). POCUS enables rapid

detection and facilitates early intervention, often before formal

imaging can be arranged.

Although some authors have proposed using filling pressures,

such as the E/e′ ratio, to assess critically ill patients (53), this

approach can be time-consuming and is often unreliable in the

setting of STEMI. As previously discussed, LVEDP demonstrated

only a weak correlation with LUS findings and was not

independently associated with in-hospital mortality or the

development of CS (45). Pulmonary congestion in acute

heart failure complicating STEMI represents a complex

pathophysiological process that extends beyond simple fluid

overload or elevated filling pressures.

In the context of STEMI, there are several clinical scenarios

where the rapid hemodynamic evaluation provided by POCUS is

particularly beneficial. Even patients in SCAI A or Killip Class

I/II, POCUS can identify evolving congestion or low cardiac

output before overt clinical deterioration. In cases of delayed

hospital presentation (>24 h), POCUS enables detection of

mechanical complications — such as papillary muscle rupture,

ventricular septal defect, or pericardial tamponade—enabling life-

saving interventions. Furthermore, in patients with complex

presentations, including sepsis, pneumonia, or renal dysfunction,

the use of POCUS supports tailored fluid and vasopressor
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strategies based on real-time cardiac and pulmonary findings.

These scenarios exemplify the potential of POCUS to guide not

only diagnosis and prognosis but also initial therapeutic decision-

making in STEMI.

Future perspectives

POCUS, particularly when integrated with LUS and LVOT-VTI,

represents a paradigm shift in bedside hemodynamic assessment in

STEMI. While current evidence supports the use of POCUS in

early evaluation, several important directions are emerging that may

further enhance its utility, accessibility, and impact.

Integration into standardized STEMI
pathways

Despite its diagnostic and prognostic value, POCUS is not yet

routinely incorporated into formal STEMI management

algorithms. Future practice guidelines may benefit from integrating

focused ultrasound protocols into existing workflows—particularly

for patients presenting with atypical symptoms, signs of heart

failure, or suspected hemodynamic instability. Structured protocols,

such as FASTEMI (52), combining lung ultrasound and LVOT-

VTI could be used to enable early identification of high-risk

phenotypes such as evolving cardiogenic shock, subclinical

pulmonary edema, or mechanical complications.

Artificial intelligence and automated
interpretation

Technological innovations, particularly in artificial intelligence,

are poised to reduce barriers to adoption by simplifying image

acquisition and interpretation. AI-assisted POCUS platforms are

already being developed to automatically detect B-lines, assess LV

function, and even calculate VTI. These tools could make high-

quality ultrasound assessments accessible to a broader range of

clinicians—including non-cardiologists—and standardize reporting

across institutions. Integration of AI into POCUS workflows may

reduce operator dependency and training burdens while ensuring

consistent, evidence-based decision support.

Education, training, and credentialing

As the role of POCUS expands, formalized education and

credentialing will become increasingly important. Interdisciplinary

training programs, simulation-based learning, and online

certification platforms can help standardize competence across

emergency medicine, cardiology, and critical care. Establishing

minimum standards for training and image interpretation—similar

FIGURE 4

Checklist of parameters suggested in a systemic evaluation protocol. Figure created in Biorender.com.
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to advanced cardiac life support protocols—could improve the

quality of POCUS implementation while maintaining patient safety.

Research and clinical trials

Several studies have demonstrated the prognostic value of

bedside sonographic parameters in risk stratification and

prediction of adverse events (Table 1). However, despite

reinforcing POCUS’s potential as a prognostic marker, it remains

unclear whether its application to guide therapeutic decisions

(e.g., adjustments in hemodynamic support, selection of inotropic

agents, or reperfusion strategies) translates into improved clinical

outcomes such as reduced mortality or heart failure

readmissions. Randomized clinical trials with standardized

POCUS-guided intervention protocols are therefore needed to

delineate the true impact of this approach on the prognosis of

patients with acute myocardial infarction. Key research priorities

include validating the LUV classification in diverse populations,

evaluating the impact of early POCUS-guided therapy on

mortality and heart failure rehospitalization, and determining

cost-effectiveness compared to standard care.

While the prognostic value of POCUS in STEMI is increasingly

supported by observational data, evidence of its impact on

therapeutic strategies remains limited. However, studies in

ambulatory heart failure populations—such as the LUS-HF trial

(28)—have demonstrated that LUS-guided diuretic therapy

significantly reduces rehospitalization and improves functional

capacity. Whether such benefits extend to the acute STEMI

population, particularly in cases of subclinical congestion or early

hypoperfusion, remains an open question. Future randomized trials

are needed to determine whether therapeutic strategies guided by

real-time POCUS findings (e.g., adjustment of vasopressors, fluids,

or reperfusion timing) translate into improved clinical outcomes.

Current limitations

Despite its growing use, several factors may limit the optimal

implementation of POCUS in the STEMI setting. Image quality

and interpretation are operator-dependent and may vary

significantly with training level. The performance of certain

assessments, such as LVOT-VTI, requires adequate acoustic

windows and technical skill, which may not always be available in

emergency scenarios. Several factors may lead to inaccurate

estimation of LVOT-VTI, particularly in critically ill patients.

Moderate-to-severe aortic valve disease (stenosis or regurgitation),

subvalvular flow acceleration (e.g., basal septal hypertrophy), or

mechanical circulatory support devices can all significantly affect

the measurement of stroke volume. In atrial fibrillation or

tachyarrhythmias, beat-to-beat variation further reduces reliability.

Moreover, malalignment of the Doppler beam or incorrect

positioning of the sample volume may result in underestimation of

flow. Crucially, any delay to door-to-balloon time must be avoided.

Therefore, we emphasize that POCUS should complement clinical

evaluation—not replace—and not delay reperfusion strategies.

Conclusion

Point-of-care ultrasound has emerged as a valuable bedside tool

in the early evaluation of STEMI patients. In a glimpse into the

future, its broader integration into clinical pathways, and

supported by evidence-based protocols, may redefine the standard

of care in acute myocardial infarction. Beyond its role in the initial

assessment, POCUS contributes significantly to prognostic

stratification, aids in the identification of alternative diagnoses, and

facilitates the early detection of mechanical complications. With

the promise of earlier recognition, tailored interventions, and

improved outcomes, POCUS is well-positioned to become an

essential component of modern cardiovascular emergency medicine.
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TABLE 1 Studies of point-of-care ultrasound assessment in STEMI.

Study N Primary Outcome Moment of
assessment

AUC Comparatives
AUC

Araujo et al. (30) (LUCK) 215 In-hospital mortality Pre pPCI 0.89 Killip: 0.86

Carreras-Mora et al. (39)

(Killip pLUS)

373 In-hospital mortality Within 24 h 0.90 Killip: 0.85

LUCK (30): 0.83

Parras et al. (54) 200 Heart failure Pre pPCI 0.91 —

Araiza-Garaygordobil

et al. (55)

226 Composite of death for any cause, new episode or worsening of heart

failure, recurrent myocardial infarction, and cardiogenic shock at 30 days

Within 24 h 0.73 —

Machado et al. (46) (LUV) 308 In-hospital mortality Within 24 h 0.915 Killip: 0.846

Machado et al. (48)a

(LUV)

145 In-hospital mortality Pre pPCI 0.940 LUCK (30): 0.707

Killip pLUS (39): 0.691

Araiza-Garaygordobil

(55): 0.704

aExcluded patients in Killip 4.

AUC, area under the curve; pPCI, primary percutaneous coronary intervention.
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