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Background: Myocardial Infarction with Non-Obstructive Coronary Arteries

(MINOCA) accounts for up to 15% of acute Myocardial Infarction (MI) cases and

presents significant diagnostic and therapeutic challenges. The specific targeting of

microthrombi involved in microthrombi-induced MINOCA with molecule-specific

precision has been challenging due to their omnipresence in the bloodstream,

highlighting the need for novel biomarkers and imaging strategies. Fibronectin, one

of these omnipresent extracellular matrix (ECM) proteins, exists in distinct physical

states in healthy versus diseased tissues, presenting stretched versus untensed

fibers, which may serve as potential diagnostic and therapeutic targets.

Methods: The peptide FnBPA5, a highly specific probe that binds selectively to

untensed fibronectin fibers, as its multivalent binding motif is destroyed upon

fiber stretching, was employed here to assess fibronectin’s fiber tension in

microthrombi before and after the onset of MINOCA in a pig model of

autologous microthrombi-induced MINOCA.

Results: Loss of fibronectin fiber tension was identified here as a novel key feature

of microthrombi in a pig model of autologous microthrombi-induced MINOCA,

whereas fibronectin fibers in the surrounding healthy myocardium remained

highly stretched. FnBPA5 can thus effectively visualizes fibronectin’s physical

signature, thereby distinguishing microthrombi from the surrounding healthy tissue.

Conclusion: These findings underscore FnBPA5’s unique capacity to

discriminate not merely the presence of an abundant ECM molecule within a

thrombus, but its distinct physical conformation. FnBPA5 enables the selective

detection of microthrombi in coronary arteries by targeting untensed

fibronectin fibers, a novel mechanical biomarker of microthrombi. Targeting a

protein’s physical state with high specificity makes FnBPA5 a promising tool

for advanced microthrombi detection and for mechano-therapeutic strategies

involving the targeted delivery of therapeutic agents.
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Introduction

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality

worldwide, accounting for an estimated 17.9 million deaths annually (1). Among its

various manifestations, acute myocardial infarction (MI) is a major contributor to

CVD-related mortality and disability. Acute MI has traditionally been associated with

obstructive coronary artery disease (CAD), resulting in ischemic injury, subsequent

myocardial necrosis and heart failure (2, 3). However, a subset of patients presents with

a similar clinical presentation to MI despite the absence of significant coronary artery

obstruction on angiography. This condition, known as Myocardial Infarction with Non-

Obstructive Coronary Arteries (MINOCA), is increasingly recognized as a distinct
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clinical entity. Defined as ischemic myocardial damage without

angiographic evidence of ≥50% coronary stenosis, MINOCA

accounts for up to 15% of all acute MI cases (3–6). Unlike

traditional MI caused by obstructive atherosclerosis, MINOCA is

a heterogeneous condition that can result from a variety of

pathophysiological processes, including coronary atherosclerosis,

vasospasm, thromboembolism, and spontaneous coronary artery

dissection. MINOCA is therefore considered a working diagnosis,

encompassing multiple potential underlying mechanisms which,

despite its relatively high prevalence, make its diagnosis and

management particularly challenging (4–6). Understanding the

pathophysiology, diagnostic challenges, and management

strategies of MINOCA is therefore crucial for optimizing

patient outcomes.

To advance our knowledge, Cesarovic et al. developed a

translational microthrombi-induced MINOCA pig model to

specifically study this subtype of MINOCA in depth, with the aim

of advancing the development of new therapeutic and diagnostic

strategies (4). In this model, they produce autologous

microthrombi, which are then injected into one of the main

epicardial arteries to induce the onset of microthrombi-induced

MINOCA. Microthrombi are small (micron size), fibrin- and

platelet-rich thrombotic aggregates that form in the

microvasculature or occur as microemboli and can obstruct blood

flow without causing significant coronary artery stenosis but still

contribute to myocardial ischemia and injury by impairing

perfusion at the microvascular level (4, 7–9). The use of tools that

specifically target microthrombi in coronary arteries, in

combination with advanced imaging modalities or treatments,

could be highly beneficial for the development of both new

diagnostic and therapeutic approaches, leading to improved

management of microthrombi-induced MINOCA. Fibronectin is a

ubiquitous glycoprotein that plays a vital role in tissue repair and

the wound healing process. Plasma fibronectin circulates in the

blood and is crucial for blood coagulation, clot formation, and the

development of microthrombi by being incorporated into the fibrin

clot, contributing to platelet function, fibrin network stabilization,

and mediating hemostasis (10). Even in mice lacking both of the

best-known platelet ligands, von Willebrand factor and fibrinogen,

they still form occlusive thrombi in injured arterioles as their

platelets accumulate excessive amounts of fibronectin (11). The

major involvement of Plasma fibronectin in microthrombi

formation could be used as potential biomarker for detecting

microthrombi-related cardiovascular events.

Since most molecules targeted in thrombi are ubiquitous and not

restricted to circulating microthrombi, we asked whether the physical

state of certain proteins, i.e., stretched vs. untensed, could potentially

be exploited. Since knowledge about the tension of any type of ECM

fiber in blood clots is very limited, we investigated here whether

fibronectin fibers are stretched or untensed in blood clots

circulating through the vasculature. While fibronectin fibers are

stretched in healthy organs (12, 13), the presence of untensed

fibronectin fibers in the extracellular matrix (ECM) in

pathologically remodeled ECM has emerged as a hallmark of

various inflammatory conditions (14, 15), as well as cancer (12, 13,

16, 17) and fibrotic diseases (18). These discoveries were enabled

by the systematic development and validation of a mechano-

regulated tension sensor in recent years (12, 19, 20). The peptide

FnBPA5, which specifically binds to untensed fibronectin fibers

with nM affinity, recognizes fibronectin’s N-terminal domains

FnI2–5 with high specificity if fibronectin is in equilibrium.

However, the peptide’s binding affinity is mechanically

downregulated upon fiber stretching, as this disrupts its multivalent

binding motif (19–21). Fibronectin fiber stretching assays

confirmed the high affinity of FnBPA5 for untensed fibronectin

fibers, while increasing fiber strain progressively reduced its binding

(12). This was further validated by labeling native fibronectin fibers

in cell culture using two complementary strain probes, a

fibronectin-fluorescence resonance energy transfer (FRET) probe

(22, 23) and FnBPA5, which showed a strong correlation between

the two readouts across a broad range of fibronectin fiber strains

(12, 24). In contrast, staining with a polyclonal fibronectin

antibody enables the detection of all fibronectin fibers, regardless of

their physical state or strain (12, 13, 19, 20). Not only can this

peptide be used to assess the presence of untensed fibronectin

fibers, but it also holds great potential for both imaging and

targeted therapy (12, 18). By linking FnBPA5 to fluorophores,

radioligands, or therapeutic agents, it can specifically target tissues

containing untensed fibronectin fibers (25), such as in cancer and

fibrotic stroma in mice (12–15) and human (17, 18).

In this study, we evaluated the presence of untensed fibronectin

fibers in the stroma of microthrombi before and after the onset of

microthrombi-induced MINOCA to determine whether FnBPA5

could serve as a potential tool for microthrombi detection or

MINOCA treatment. Our data show that microthrombi are highly

enriched in untensed fibronectin fibers and can be detected in

cardiac muscle using our peptide sensor, suggesting that our probes,

whether linked to imaging modalities or therapeutic agents, could

aid in the management of microthrombi-induced MINOCA.

Results

Microthrombi were obtained from the Center for Preclinical

Development, University Hospital Zurich. They were generated by

performing multiple carotid artery crushes using a surgical clamp on

female pigs (82 ± 5 kg; 4–5 months), as described in the study by

Cesarovic et al. (4). 60 minutes after artery crushing, microthrombi

were harvested, flash-frozen in liquid nitrogen, and stored at −80°C

until cryosectioning and immunofluorescence (IF) staining.

Pig microthrombi harvested after artery
crushing show enhanced relaxation of
fibronectin fibers

Stitched overview images of H&E stains for a representative

microthrombi prior injection into the myocardial arteries, along

with corresponding IF confocal images stained with a polyclonal

antibody to visualize all fibronectin fibers and Cy5-FnBPA5 to

visualize untensed fibronectin fibers from adjacent cryosections, are

shown in Figure 1. Additionally, zoom-in images stained with a
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FIGURE 1

Porcine microthrombi are enriched in untensed fibronectin fibers. (A) Representative H&E stains and confocal images of cryosections of porcine

microthrombi prior injection into myocardial arteries. Sections were stained with a polyclonal fibronectin antibody (green) to visualize the

presence of all fibronectin fibers, co-stained with Cy5-FnBPA5 tension probe (magenta) to visualize the untensed fibronectin fiber pixels. Scale

bar: 1,000 µm. (B) Higher resolution zoom-in confocal images stained with a polyclonal fibronectin antibody (green) to visualize the presence of

all fibronectin fibers, co-stained with the Cy5-FnBPA5 tension probe (magenta) to visualize the untensed fibronectin fiber pixels and DAPI to

visualize the cell nuclei. Scale bars of zoom-in images: 100 µm. (C) The Cy5-FnBPA5/fibronectin ratio shows the tensional heterogeneity within

the ECM at the tissue scale. (D) Pixel density for the Cy5-FnBPA5 signal was assessed as the percentage of positive pixels above a defined

threshold for Cy5-FnBPA5, normalized to the total number of positive pixels above a defined threshold for the fibronectin polyclonal antibody.
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polyclonal fibronectin antibody, the tensional probe (Cy5-FnBPA5),

and DAPI are presented to visualize all fibronectin fibers, untensed

fibronectin fibers, and nuclei, respectively.

The pink signal in the H&E-stained microthrombi reveals the

presence of cytoplasmic proteins and ECM fibers (Figure 1A),

along with darker regions containing a high number of cell nuclei.

Cryosections of the microthrombi show an abundance of

fibronectin fibers, with a high enhancement in untensed fibronectin

(Figure 1A). While the Cy5-FnBPA5 signal (untensed fibronectin

fibers) appears rather homogeneously distributed in the stitched IF

overview image, a zoomed-in view reveals heterogeneous patches of

fiber relaxation, with some areas highly stretched and others highly

untensed (Figure 1B). This observation is further supported by the

ratiometric image analysis of fibronectin and Cy5-FnBPA5 signals

(Figure 1C). On average, 40% of all fibronectin fibers are untensed,

as revealed by the ratiometric analysis of Cy5-FnBPA5+ pixels,

normalized to the total number of positive pixels for the fibronectin

polyclonal antibody (Figure 1D).

Platelets are found in close contact to
stretched fibronectin fibers, while further
away from untensed fibers in the stroma of
microthrombi

Observing fibronectin fiber relaxation was surprising, as

surface-exposed platelets typically assemble highly stretched

fibronectin nanofibrils upon activation (26). We thus asked

where the platelets are located in these microthrombi in

relationship to the stretched vs. untensed fibronectin fibers. IF

was performed using CD31, also known as platelet endothelial

cell adhesion molecule-1 (PECAM-1), a marker expressed by

endothelial cells, as well as by platelets and various lymphocytes,

including monocytes. While platelet activation drives thrombus

formation, and their activation gets further enhanced by

thrombin (27), blood-circulating lymphocytes get entrapped in

thrombi as the fibrin network is formed (28, 29), and surface-

exposure of CD31 triggers preferential platelet-monocyte

aggregation (30, 31). As the distribution of cellular components

in blood clots is highly heterogenous, CD31 staining provides

information about the localization of these cells with respect to

fibronectin fibers. CD31 staining was thus performed in

combination with a polyclonal fibronectin antibody and

Cy5-FnBPA5 to visualize all fibronectin fibers and untensed fiber

pixels, respectively (Figure 2A). To distinguish between nucleated

cells such as leukocytes and endothelial cells, and non-nucleated

platelets, DAPI was used to differentiate them. Spatial proximity

analyses were then performed between CD31+ cells lacking DAPI

staining (platelets) and both stretched and relaxed fibronectin

fibers (Figure 2B). This analysis computes the distance between

the center of the cell determined with CD31 stains, and the

closest Cy5-FnBPA5− pixel (stretched fibronectin fiber) or

Cy5-FnBPA5+ pixel (untensed fibronectin fiber). This analysis

revealed that ∼80% of platelets in microthrombi were in contact

with stretched fibronectin fibers, while only ∼33% were directly

in contact with untensed fibronectin fibers (Figure 2B). The data

for this analysis came from the same set of images, meaning that

a single platelet can be in contact with both stretched and

untensed fibronectin fibers. The average distance of platelets to

stretched fibers is close to 0 µm, whereas they are significantly

farther from untensed fibronectin fibers, with an average distance

of 2 µm (Figure 2C). These findings indicate a strong correlation

between the position of platelets and fibronectin fiber tension

within the microthrombi stroma, as most platelets are found in

direct contact with stretched fibers. This implies that platelets,

and potentially other leukocytes, may contribute to the stretching

of fibronectin fibers. Particularly platelets are known to assemble

highly stretched fibers which then surround platelet aggregates

(26). Contractile cell forces originating from platelets, and

perhaps from other leukocytes could further contribute to the

tensing of fibronectin fibers. Fibronectin fibers then appear

significantly more relaxed with increasing distance from platelets,

which might be due to various factors, including fibronectin fiber

proteolysis, the reduced exposure to platelet traction forces, or

due to other remodeling factors present in the thrombus.

FnBPA5 can be used to detect
microthrombi in epicardial arteries after the
onset of MINOCA

As fibronectin is present in blood, blood clots, and fibronectin

fibers are highly tensed in tissues from most healthy organs (13,

17), the presence of untensed fibronectin fibers in microthrombi,

as seen in the section above, could enable precise identification

of microthrombi by leveraging the contrast between untensed

and stretched fibers. Therefore, as a next step, we stained for the

presence of untensed fibronectin fibers in microthrombi after

their injection into one of the main epicardial arteries thereby

inducing the onset of MINOCA, as described by Cesarovic et al.

(4). Ischemic cardiac tissues were harvested 6 h post

microthrombi injection. Triphenyl tetrazolium chloride (TTC)

staining was used to visualize infarcted areas in the whole heart,

aiding in the localization of injected microthrombi. Infarcted

regions were carefully collected, cryosectioned, and subjected to

detailed H&E microscopic evaluation to precisely locate the

injected microthrombi. After localization, IF was performed

using a polyclonal fibronectin antibody co-stained with our

tension probes (Cy5-FnBPA5) and DAPI to visualize untensed

fibronectin fibers and nuclei, respectively (Figure 3). The high

presence of untensed fibronectin fibers observed in microthrombi

before injection (Figure 1) is also evident after injection into the

coronary arteries, as shown in Figure 3A, as well as in the zoom-

in images of microthrombi embedded in blood vessels

(Figure 3B). Microthrombi distinctly stand out from the

surrounding cardiac muscle, where fibronectin fibers get only

stained by the fibronectin antibody confirming previous findings

that fibronectin fibers are tensed in the healthy heart (13). This

confirms the effectiveness of our tension probe to specifically

target microthrombi. Previous studies have shown that

fibronectin fibers are stretched not only in the heart but also in

other healthy organ tissues (12, 13), while our results clearly
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demonstrate the presence of untensed fibronectin fibers within

microthrombi. This contrast further validates the ability of our

probe to differentiate microthrombi from myocardium based on

fibronectin’s fiber tension.

The ability to specifically target microthrombi in cardiac tissue

after MINOCA onset using FnBPA5 represents a significant

advancement for diagnosing microthrombi-induced MINOCA

and offers potential therapeutic applications by enabling the

targeted delivery of antithrombotic drugs directly to microthrombi.

Discussion

MINOCA presents a significant diagnostic and therapeutic

challenge due to its complex and heterogeneous nature (3, 4,

6). Conventional imaging and biomarker-based methods often

fail to identify the underlying cause, highlighting the need for

more refined diagnostic and therapeutic approaches to rapidly

determine the etiology and improve patient management (4, 5).

To address these challenges, a pig model of autologous

microthrombi-induced MINOCA was developed in 2023,

providing a physiologically relevant platform for studying this

specific form of MINOCA and for developing novel diagnostic

and therapeutic approaches for better patient management (4).

Using our peptide tension probe FnBPA5, whose nM affinity to

fibronectin fibers is destroyed by fiber stretching (12, 13), we

discovered here that fibronectin fibers are partially untensed in

the stroma of microthrombi both before and after MINOCA

onset, suggesting that fibronectin fiber relaxation may be a key

marker of microthrombi and could potentially be used to

improve patient management. Furthermore, we observed a strong

correlation between the position of platelets and stretched

fibronectin fibers, with platelets predominantly located near

stretched rather than untensed fibronectin fibers in the stroma of

FIGURE 2

Platelets are found in closer proximity to highly stretched fibronectin fibers than to untensed ones in the stroma of microthrombi. (A) Representative

confocal images stained with a polyclonal fibronectin antibody (green) to visualize the presence of all fibronectin fibers, co-stained with Cy5-FnBPA5

tension probe (magenta) to visualize the untensed fibronectin fiber pixels and CD31 to visualize the platelets. Scale bar: 100 µm. (B) Spatial proximity

analysis of CD31+ platelets to stretched (green) and untensed (magenta) fibronectin fiber pixels showed the percentage of cells in close proximity to

fibronectin fibers, depending on their tensional states. (C) Average distance of CD31+ platelets to fibronectin fibers of different strains: stretched or

untensed. Each dot represents a single microthrombi, with multiple areas analyzed for each microthrombi. Mean ± SD. Unpaired Student’s t test.

P-value: ** < 0.01.

Miéville et al. 10.3389/fcvm.2025.1627917

Frontiers in Cardiovascular Medicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1627917
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


microthrombi generated by carotid artery crush and collected after

60 min.

While it was initially surprising to observe the presence of

untensed fibronectin fibers in circulating microthrombi, since

platelets are key drivers of the assembly of highly stretched

fibronectin fibers, which play a critical role in clot stabilization

and tissue repair (10), this observation may be explained by

platelet-driven remodeling processes. Activated platelets secrete

matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9,

both of which can contribute to fibronectin fragmentation (32)

and potentially induce fibronectin fiber relaxation. Leukocytes are

also known to be present in the stroma of blood clots and to

FIGURE 3

FnBPA5 allows to target the tensional signature of fibronectin fibers for the efficient identification of microthrombi in the cardiac muscle of a pig

model. (A) Representative H&E staining image and confocal image of cryosections of porcine cardiac muscle with microthrombi, stained with a

polyclonal fibronectin antibody (green) to visualize the presence of all fibronectin fibers, co-stained with Cy5-FnBPA5 tension probe (magenta) to

visualize the untensed fibronectin fibers and DAPI to visualize the cells. Scale bar: 1,000 µm. (B) Higher resolution zoom-in confocal images

(maximal intensity projection) stained with a polyclonal fibronectin antibody (green) to visualize the presence of all fibronectin fibers, co-stained

with Cy5-FnBPA5 tension probe (magenta) to visualize the untensed fibronectin fibers and DAPI to visualize the cells. Scale bar zoom-in images:

100 µm.
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play a significant role in thrombus formation and maturation (33).

Neutrophile, and to a lesser extent monocytes, also express MMPs

as well as serine proteases such as cathepsin G, which is known to

degrade fibronectin, beyond its other functions in blood

coagulation (33, 34). A further explanation could thus be that the

activated platelets within the thrombi progressively recruit

circulating neutrophils (33, 35), which in turn triggers the release

of further proteolytic enzymes that degrade ECM fibers,

including serine proteases like neutrophil elastase (NE),

proteinase 3 and cathepsin G, all of which are known to degrade

fibronectin (36).

While this study highlights, for the first time, the significant

presence of untensed fibronectin fibers in the stroma of circulating

microthrombi, it has several limitations. First, it focuses exclusively

on fresh microthrombi generated in a pig model. Second, we

examined only acute MINOCA with a short induction period

(6 h), thereby overlooking the effects of ischemia on surrounding

tissues and blood clot maturation. Future studies should therefore

investigate the tension state of fibronectin fibers in more mature

thrombi, formed over longer time periods or even in human

thrombi, as well as in ischemic tissues. This would be highly

relevant for patient management, as it could help define the

therapeutic window for the application of our peptide probes

following partial vascular occlusion. A detailed investigation into

the exact composition of microthrombi and the specific roles of

various cell types in the relaxation of fibronectin fibers would

provide valuable insights into the mechanisms underlying

thrombus maturation and remodeling.

Conclusion

Our discovery shows for the first time how the tensional

signature of omnipresent proteins can be utilized for specific

targeting in microthrombi. Our findings presented here open

new avenues for using peptides that specifically bind to untensed

fibronectin fibers as mechanical biomarkers of microthrombi in

coronary arteries. The ability of FnBPA5 to specifically detect

untensed fibronectin fibers makes it a promising tool for both

diagnostic and therapeutic vascular applications. Like other

peptides, FnBPA5 can be conjugated with contrast agents or

radioligand for advanced imaging techniques, such as MRI or

SPECT/CT, as demonstrated in previous studies (12, 18), to

enhance microthrombus detection in patients. Additionally, it

can be linked to thrombolytic agents for targeted drug delivery,

offering a novel therapeutic strategy for dissolving microthrombi

in affected blood vessels.

Materials and methods

Sample collection and processing

Animal experiments were performed on female domestic pigs

(82 ± 5 kg; 4–5 months old) by veterinarians from the Center for

Preclinical Development, University Hospital Zurich, and the

Department of Health Sciences and Technology, ETH Zurich,

Zurich, Switzerland. Animal studies were approved by the

Veterinary Office (License ZH213/2019). The development and

validation of the translational autologous microthrombi-induced

MINOCA pig model are fully described in Cesarovic et al. (4).

Briefly, microthrombi were produced by multiple carotid artery

crushes and collected after 60 min. Some microthrombi were

directly flash frozen in liquid nitrogen and stored at −80°C for

cryosectioning and IF staining. After filtration, microthrombi

(<200 µm) were injected into one of the main epicardial arteries,

and the pig was monitored for 5 h. Ischemic tissues were stained

with Triphenyl tetrazolium chloride (TTC) to facilitate the

identification of injected microthrombi. After 6 h, the animal was

euthanized, and the heart was harvested for histopathological

analysis. Ischemic areas, as seen with TTC staining, were

harvested, flash frozen in liquid nitrogen and stored at −80°C

until cryosectioning.

Hematoxylin and eosin (H&E) staining

H&E staining was performed on microthrombi and ischemic

cardiac tissue sections of 10 µm thickness using the linear stainer

COT 20 (Medite, Germany), which performs automated H&E

staining. After staining, slides were mounted using Eukitt (Sigma-

Aldrich) and imaged using the Olympus VS200 slide scanner.

Immunofluorescence (IF)

Microthrombi and ischemic cardiac tissue were sectioned at

10 µm using a cryostat and placed directly onto microscope

slides. Slides were stored at −80°C until staining. Cryosections

were stained for specific ECM markers and for the Cy5-FnBPA5

tension probe following the previously developed protocol (12,

13, 16). Briefly, cryosections were first blocked 30 min with 4%

bovine serum albumin (BSA) before being incubated for 1 h at

room temperature with 5 µg/ml of Cy5-FnBPA5 or Cy5-labeled

scrambled-FnBPA5 as control. Sections were further washed and

fixed with 4% paraformaldehyde (PFA) in 1xPBS for 10 min.

Tissue sections were further blocked with 5% goat serum with

0.3 M glycine for 1 h and later incubated with primary antibodies

overnight at 4°C. Secondary antibodies were then applied for 1 h

at room temperature and some sections were further stained with

DAPI 2 µg/ml for 10 min before being mounted with a

hardening DAKO Fluorescence mounting medium (DAKO,

Denmark). The stained and mounted slides were imaged after

24 h using a confocal microscope (Leica SP8).

Confocal imaging of IF-stained
microthrombi and tissue sections

Stained cryosections were imaged with a Leica SP8 confocal

microscope. Full tissue cryosections overviews were acquired with
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a 10x objective and further zoom-in of specific areas was done with

higher resolution, using a 20x objective.

Ratiometric image analysis to visualize
untensed vs. tensed fibronectin fibers

Ratiometric image analysis of Cy5-FnBPA5 staining relative to

total fibronectin was performed using a custom program written in

MATLAB (Natick, MA, USA). Briefly, images were thresholded

using Otsu’s method, and masked based on where both

fibronectin and Cy5-FnBPA5 signals passed the threshold. The

fluorescence intensities of Cy5-FnBPA5 vs. total fibronectin

were calculated.

Proximity analyses between platelets and
fibronectin fibers (Cy5-FnBPA5+;
Cy5-FnBPA5−)

Confocal images of zoom-in areas of cryosections stained with

the Cy5-FnBPA5, a fibronectin polyclonal antibody, and the

platelets marker CD31 were processed in Qupath (37). The

detection of untensed/relaxed fibronectin fibers was based on a

machine learning approach. To train the model, several training

images were randomly selected on zoom-in areas of cryosections

stained with Cy5-FnBPA5. For each class, negative (non-

untensed fibronectin fibers) and positive (untensed fibronectin

fibers), manual annotations were performed until the model was

successfully able to recognize relaxed fibronectin fibers. After

successful training of the model, the classifier was then applied

to tissue sections, and masks with positive pixels for untensed

and stretched fibronectin fibers were created. Platelets were

detected using the built-in function “cell detection” and

identified based on their CD31 signal. Since CD31 is not specific

to platelets alone, DAPI was used to distinguish nucleated cells,

such as leukocytes, from platelets. Finally, the proximity analysis

between CD31+ cells and both stretched and untensed

fibronectin fibers was performed using Qupath’s built-in function

“spatial analysis- distance to annotations 2D”, which calculates

the smaller distance between cells and Cy5-FnBPA5 positive or

negative pixels. This analysis computes the distance between the

center of the cell, and the closest positive/negative pixel of

Cy5-FnBPA5.

Statistical analysis

Statistical analyses were performed using GraphPad Prism

10.1.2. Parametric or non-parametric distribution was assessed

based on four normality tests, D’Agostino-Pearson, Anderson–

Darling, Shapiro–Wilk and Kolmogorov–Smirnov, and based on

QQplot graphical assessment as provided by GraphPad Prism.

Statistical significance of two parametric groups was performed

using the unpaired Student’s t test, while two non-parametric

groups were analyzed using the Mann–Whitney test.
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