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Pyroptosis is an inflammatory form of programmed cell death, distinct from

apoptosis, necroptosis, and ferroptosis, and is primarily mediated by

gasdermin proteins and inflammatory caspases. Recent advances highlight the

central role of pyroptosis in the pathogenesis and progression of a spectrum

of cardiovascular diseases, including myocardial infarction, myocarditis, heart

failure, atherosclerosis, hypertension, and cardiac arrhythmias. Activation of

inflammasomes and the subsequent cleavage of gasdermins drive cell

membrane pore formation, leading to the release of interleukin-1β (IL-1β),

interleukin-18 (IL-18), and other pro-inflammatory mediators, amplifying tissue

injury and sterile inflammation. Both experimental and clinical evidence reveal

that targeting key molecules in the pyroptotic pathway, such as NLRP3

inflammasome, caspase-1, and gasdermin D, can attenuate myocardial injury,

inhibit adverse cardiac remodeling, and stabilise atherosclerotic plaques. This

review systematically summarises the current understanding of the molecular

mechanisms of pyroptosis in cardiovascular pathology, details its disease-

specific roles, and discusses translational and therapeutic perspectives.

Modulating pyroptosis may provide new opportunities for the diagnosis, risk

stratification, and treatment of cardiovascular diseases.
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1 Introduction

Despite major advances in cardiovascular medicine, inflammation-driven cell death

remains a fundamental challenge in the pathogenesis and progression of cardiovascular

diseases (CVDs). While traditional forms of cell death such as apoptosis and necrosis

have been extensively studied, the discovery of pyroptosis has unveiled a new

dimension in inflammatory tissue injury. Pyroptosis is an inflammatory form of

regulated cell death distinguished by gasdermin-mediated plasma membrane pore

formation, cell swelling, and release of pro-inflammatory intracellular contents (1, 2). It

is typically triggered by the activation of cytosolic pattern-recognition receptors

(inflammasomes) in response to danger signals, leading to caspase-1 (canonical

pathway) or caspase-4/5/11 (non-canonical pathway) activation and cleavage of

gasdermin family effectors (3–6).

Pyroptosis has been shown to impact the development and progression of various

CVDs, including myocardial infarction (MI), myocarditis, heart failure (HF),
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atherosclerosis, hypertension, and arrhythmias (7, 8). However, key

questions persist regarding the triggers of pyroptosis in cardiac and

vascular tissues, the interplay between different inflammasome

pathways, and the clinical value of targeting pyroptosis as a

therapeutic strategy. Additionally, the molecular distinction

between pyroptosis and other cell death modalities in the

cardiovascular context is not fully resolved. Addressing these

gaps, this review summarises recent advances in our

understanding of the molecular mechanisms of pyroptosis in

cardiovascular pathology, highlighting key disease models and

potential clinical implications. Notably, this review offers several

novel insights beyond previous works. First, we integrate recent

findings on non-canonical pyroptosis mediated by gasdermin E

(GSDME), particularly in immune checkpoint inhibitor–induced

myocarditis—an emerging and clinically relevant form of

inflammatory cardiotoxicity. Second, we explore the contribution

of pyroptosis to atrial arrhythmogenesis, including its impact on

structural and electrical remodeling in atrial fibrillation, which

remains under-recognized. Third, we provide a mechanistic

overview of pyroptosis within broader inflammatory signaling

frameworks such as PANoptosis and the cGAS–STING pathway.

Finally, we discuss the clinical translation of pyroptosis-related

biomarkers and therapies, highlighting current limitations and

future opportunities. These elements collectively distinguish our

review as a forward-looking synthesis that bridges molecular

insights with potential clinical applications.

2 Myocardial infarction and ischaemic
injury

2.1 Pathophysiological evidence

MI triggers an intense inflammatory reaction in the

myocardium, and pyroptotic cell death has been strongly

implicated in this process (9). In experimental models of

myocardial ischaemia-reperfusion injury, cardiomyocyte

pyroptosis is detected soon after reperfusion, contributing to

infarct expansion and cardiac dysfunction (10). Genetic ablation

of key pyroptosis mediators confers cardioprotection: mice

lacking gasdermin D (GSDMD) have significantly reduced infarct

sizes, less cardiomyocyte death, and improved post-MI cardiac

function compared to wild-type mice (10–12). In a seminal

study, GSDMD knockout in mice attenuated myocardial injury

after coronary ligation, with fewer infiltrating neutrophils and

macrophages in the infarct and reduced release of IL-1β (11).

Correspondingly, pharmacological inhibition of caspase-1 with

specific inhibitors (e.g., VX-765) during reperfusion limits infarct

size and preserves left ventricular function in rodents (13). These

findings indicate that the inflammasome-caspase-1-GSDMD

pathway is activated by ischaemic injury and contributes to

cardiomyocyte loss beyond apoptosis or necrosis (7).

Mechanistically, I/R releases DAMPs including ATP, HMGB1,

reactive oxygen species (ROS) that activate inflammasomes

(especially NLRP3) in cardiomyocytes, macrophages, and

infiltrating neutrophils (14, 15). The resulting pyroptotic cell

death amplifies inflammation, creating a feed-forward cycle of

injury. Clinically, patients with AMI have elevated circulating

markers of pyroptosis. A study reported that plasma GSDMD

levels are significantly higher in acute MI patients than in

controls, correlating with infarct biomarkers and inflammatory

cytokines (16). These human data support that pyroptosis is not

merely a laboratory phenomenon but is active in human

MI pathophysiology.

2.2 Molecular mechanisms

MI engages both canonical and non-canonical pyroptotic

pathways. The canonical pathway is driven by inflammasome

activation (chiefly NLRP3) and caspase-1 (17). In mouse models,

myocardial I/R rapidly activates NLRP3 and caspase-1 in the

heart, leading to IL-1β/IL-18 maturation and GSDMD cleavage

in cardiomyocytes and resident immune cells (10). GSDMD

N-terminal fragments form membrane pores, inducing osmotic

lysis of cells and spillage of pro-inflammatory contents.

Neutrophils have been shown to undergo pyroptosis in infarcted

hearts, which exacerbates tissue injury; interestingly, neutrophil-

derived proteases can also cleave GSDMD and contribute to

IL-1β release (11). The non-canonical pathway involves caspase-

11 (in mice; caspase-4/5 in humans) sensing intracellular LPS,

which has relevance in sterile MI through gut microbial

translocation or endogenous oxidised lipids acting similarly to

activate caspase-11 (10, 18). Caspase-11 can induce pyroptosis by

directly cleaving GSDMD and indirectly via NLRP3 activation.

Indeed, one study showed that caspase-11 deficiency reduced

infarct size, suggesting that non-canonical inflammasome

activation contributes to myocardial I/R injury (10). Upstream,

multiple inflammasome sensors may be involved: NLRP3 is the

most studied and responds to mitochondrial ROS, Ca2+ flux, and

ion imbalances during reperfusion (19, 20), but AIM2 (activated

by DNA from necrotic cells) may also drive caspase-1 in MI, as

suggested by elevated DNA-sensing pathway activation in infarct

tissue (19, 21). Downstream, IL-1β and IL-18 released from

pyroptotic cells act on surviving myocardium and infiltrating

cells to augment inflammation and apoptotic pathways. IL-18, in

particular, has been identified as a mediator of post-MI adverse

remodeling; high serum IL-18 in MI patients predicts worse

outcomes, linking pyroptosis to later HF (19). Thus, MI involves

a complex interplay: ischaemia triggers inflammasome assembly

(via NLRP3 and possibly others), caspase-1/-11 activation cleaves

GSDMD, and pyroptosis of cardiomyocytes, neutrophils, and

macrophages ensues, aggravating myocardial injury.

Abbreviations

AF, atrial fibrillation; CVB3, coxsackievirus B3; CVDs, cardiovascular diseases;

DAMPs, danger-associated molecular patterns; GSDMD, gasdermin D;

GSDME, gasdermin E; HF, heart failure; ICI, immune checkpoint inhibitor;

MI, myocardial infarction; PAMPs, pathogen-associated molecular patterns;

PVN, paraventricular nucleus; ROS, reactive oxygen species; TAC, transaortic

constriction; TXNIP, thioredoxin-interacting protein; VSMCs, vascular smooth

muscle cells.

Niu et al. 10.3389/fcvm.2025.1629016

Frontiers in Cardiovascular Medicine 02 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1629016
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


2.3 Clinical and therapeutic insights

Recognising pyroptosis as a driver of myocardial damage has

spurred interest in anti-inflammatory therapies for MI. The IL-1β

neutralising antibody canakinumab, tested in the CANTOS trial

in post-MI patients, significantly reduced recurrent

cardiovascular events, providing proof-of-concept that targeting

inflammasome outputs benefits patients (22, 23). Although

canakinumab’s mechanism is broad IL-1β inhibition, its success

underscores the pathological role of IL-1β (largely produced

by inflammasome-pyroptosis activity) in post-infarction

inflammation (24). Similarly, low-dose colchicine, an unspecific

inflammasome inhibitor, lowered the risk of ischaemic events

after MI in the COLCOT trial (25), hinting that suppressing

inflammasome-driven inflammation (and by extension

pyroptosis) is cardioprotective. These clinical trials align with

animal studies where direct inhibition of inflammasome

components or GSDMD has been beneficial. Selective NLRP3

inhibitors (like MCC950) have shown efficacy in reducing infarct

size in preclinical MI models (porcine and murine) (26).

Caspase-1 inhibitors (e.g., VX-765) improved cardiac function

and reduced long-term remodeling when given at reperfusion in

rodents (27–30). Such agents are now being explored for clinical

use. Importantly, these interventions did not appear to

compromise host defense acutely in sterile MI, suggesting a

therapeutic window where modulating pyroptosis is beneficial.

Beyond reducing acute injury, pyroptosis markers might serve as

diagnostic or prognostic biomarkers in MI. As noted, circulating

GSDMD or ASC specks have been proposed as indices of

inflammasome activation (16), potentially aiding risk

stratification. Moving forward, ongoing research aims to refine

strategies to inhibit detrimental cardiac pyroptosis—for instance,

using small-molecule gasdermin inhibitors or interfering with

pyroptotic pore formation—to improve MI outcomes while

avoiding undue immunosuppression. In summary, pyroptosis is a

critical mediator of myocardial injury in infarction, and its

modulation holds promise as a novel cardioprotective strategy.

3 Myocarditis

3.1 Evidence of involvement

Myocarditis, an inflammatory disease of the heart muscle often

triggered by viral infection, has recently been linked to pyroptotic

cell death as part of its pathogenic immune response. In

Coxsackievirus B3 (CVB3)–induced viral myocarditis, myocardial

tissues show activation of the NLRP3 inflammasome and

increased caspase-1 activity, suggesting pyroptosis in infected

cardiomyocytes and infiltrating immune cells (31, 32).

A landmark study demonstrated that cathepsin B released during

CVB3 infection can activate the NLRP3 inflammasome, leading

to caspase-1–dependent pyroptosis and worsening myocardial

injury. In mice, pharmacologic inhibition or genetic deletion of

cathepsin B markedly reduced caspase-1 activation and IL-1β

release in the heart, thereby attenuating myocarditis severity

(31, 33). This indicates that Recent evidence implicates is a key

mechanism by which enteroviral infection causes cardiomyocyte

death and inflammation. Furthermore, IL-1β and IL-18 levels are

elevated in myocarditis, implicating inflammasome activation;

indeed, myocardial biopsies from myocarditis patients have

shown increased NLRP3 and IL-1β expression (32). Beyond

infectious causes, immune checkpoint inhibitor (ICI) therapy

used in cancer can induce fulminant autoimmune myocarditis

(34). Recent evidence implicates pyroptosis in ICI myocarditis: a

2024 study found that gasdermin E (GSDME) –mediated

pyroptosis (rather than GSDMD) is extensively activated in ICI-

related myocarditis, both in a mouse model and in patient heart

samples (35). Mice lacking GSDME were protected from ICI

myocarditis, with less immune cell infiltration and improved

survival, demonstrating a direct pathogenic role for pyroptosis in

this setting. Together, these findings across viral and immune-

mediated myocarditis establish that pyroptosis contributes to

cardiomyocyte loss and inflammatory amplification in the

myocarditic heart.

3.2 Molecular mechanisms

In viral myocarditis, the interplay between viral pathogen-

associated molecular patterns (PAMPs) and host sensors drives

pyroptosis (36). Enteroviruses like CVB3 cause cardiomyocyte

damage that releases cathepsin B from lysosomes; cathepsin B in

the cytosol can trigger NLRP3 inflammasome assembly, perhaps

by promoting mitochondrial dysfunction and reactive oxygen

species. NLRP3 then activates caspase-1, leading to GSDMD pore

formation and pyroptosis of infected cells. This not only kills

cardiomyocytes, exacerbating ventricular dysfunction but also

unleashes IL-1β/IL-18 which recruit and activate immune cells,

fueling a vicious cycle of myocardium-targeted inflammation.

Supporting this, interventions like IL-1 blockade or NLRP3

inhibition ameliorate experimental myocarditis (32). Another

mechanism involves alarmins from necrotic cells: e.g., DNA from

damaged cardiomyocytes can activate AIM2 inflammasomes in

macrophages, potentially contributing to pyroptosis and cytokine

release in myocarditis. In ICI-induced myocarditis,

hyperactivated T cells produce excessive IFN-γ, triggering

caspase-3 activation in cardiomyocytes, which cleaves GSDME to

execute pyroptosis via pore formation (37–39). GSDME-mediated

mitochondrial DNA release activates the cGAS-STING pathway,

amplifying IFN and inflammatory responses through a feed-

forward loop (35, 40, 41). This highlights non-canonical

pyroptosis pathways (caspase-3/GSDME) in disease pathogenesis.

Elevated IL-1β drives myocardial inflammation, with IL-1

neutralization improving outcomes, while IL-18 contributes to

systemic symptoms (42). Pyroptosis coexists with apoptosis and

necroptosis, forming PANoptosis in fulminant myocarditis (31,

43). Inflammasome activation and gasdermin pore formation

remain central to myocardial injury, underscoring their

therapeutic targeting potential.
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Recent studies have demonstrated that viral myocarditis

involves PANoptosis-dependent cell death pathways, wherein

pyroptosis, apoptosis, and necroptosis are activated in a

coordinated manner (43). Upon viral infection—particularly with

coxsackievirus B3 (CVB3)—cytosolic viral sensors such as

Z-DNA-binding protein 1 (ZBP1) and RIG-I are upregulated in

cardiomyocytes. These sensors promote the formation of the

PANoptosome complex, a multiprotein platform that orchestrates

the activation of caspase-1 (pyroptosis via GSDMD), caspase-3

(apoptosis), and RIPK3/MLKL (necroptosis) (44). Among these,

GSDMD-mediated pyroptosis plays a central role not only by

causing membrane rupture but also by facilitating the release of

mitochondrial DNA (mtDNA) into the cytosol (35). This

mtDNA activates the cGAS–STING pathway, leading to type

I interferon signaling and amplifying innate immune responses

(45). This mechanistic interplay between pyroptosis, other cell

death pathways, and cGAS–STING signaling forms a feed-

forward inflammatory loop that drives myocardial injury in viral

myocarditis (Figure 1).

3.3 Clinical implications

Understanding the role of pyroptosis in myocarditis opens

avenues for targeted therapy and better biomarkers. Clinically,

myocarditis ranges from mild to life-threatening, and current

treatments are mainly supportive or immunosuppressive (for

giant-cell or immune myocarditis). The evidence that IL-1 plays

a causal role (via pyroptosis) has spurred trials of anakinra (an

IL-1 receptor antagonist) in acute myocarditis (46). Case reports

and small series have noted rapid improvement in severe

myocarditis with anakinra, aligning with pyroptosis’s pathogenic

role. Likewise, NLRP3 inhibitors or caspase-1 inhibitors might

attenuate myocardial inflammation—experimental IL-37 therapy

(a cytokine that broadly suppresses inflammasome activity)

dramatically reduced cardiac inflammation and improved

survival in CVB3 myocarditis mice, highlighting inflammasome

inhibition as a potential strategy (32, 47). For ICI-myocarditis,

recognizing pyroptosis involvement suggests that adding

inflammasome or gasdermin inhibitors to immunosuppressive

regimens might better protect the heart while allowing some

anti-tumor immunity to continue (35). Indeed, in the preclinical

study, a small-molecule GSDME inhibitor reduced cardiac

damage without entirely abrogating the immune response. In

terms of diagnosis, endomyocardial biopsy showing active

caspase-1 or GSDMD pores could help confirm myocarditis and

distinguish it from ischaemic injury (35, 48). Additionally,

circulating IL-18 or even cardiac troponin combined with IL-1

could improve diagnostic specificity for myocarditis if validated.

An important translational insight is that therapies targeting

pyroptosis (e.g., NLRP3 inhibitors like dapansutrile) are already

in trials for other inflammatory diseases and could be repurposed

FIGURE 1

Mechanistic interplay of pyroptosis with other cell death pathways and immune signaling in myocarditis. Upon viral infection such as coxsackievirus B3

(CVB3), intracellular viral sensors including ZBP1 and RIG-I are activated in cardiomyocytes. These sensors initiate the assembly of the PANoptosome,

which orchestrates the simultaneous activation of pyroptosis (via caspase-1 and GSDMD), apoptosis (via caspase-3), and necroptosis (via RIPK3 and

MLKL). Gasdermin D (GSDMD)-mediated membrane pore formation facilitates the release of mitochondrial DNA (mtDNA) into the cytosol, which

triggers the cGAS–STING signaling pathway.
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for myocarditis. Overall, pyroptosis represents a novel therapeutic

target in myocarditis: by dampening the inflammasome-

gasdermin axis, one might quell the hyperinflammatory

myocardial milieu, reduce tissue destruction, and preserve cardiac

function in affected patients.

4 Heart failure and cardiac remodeling

4.1 Pyroptosis in heart failure
pathophysiology

HF, whether secondary to ischaemic injury or chronic

pressure/volume overload, is characterised by the progressive loss

of cardiomyocytes, fibrotic remodeling, and ongoing

inflammation (49, 50). Recent studies reveal that pyroptosis

significantly contributes to cardiomyocyte loss and adverse

cardiac remodeling in HF (51–53). In non-ischaemic dilated

cardiomyopathy, myocardial tissues display increased NLRP3,

cleaved caspase-1, and GSDMD expression compared to controls,

consistent with persistent pyroptotic activity (52). Animal models

further confirm this: NLRP3 activation in cardiomyocytes drives

pyroptosis and promotes HF progression, while genetic silencing

of NLRP3 or pharmacologic inhibition of caspase-1 improves

ventricular function and reduces fibrosis (10). Pressure overload,

as seen in hypertension or aortic stenosis, is another key cause of

HF in which pyroptosis plays a pathogenic role. In mouse

models with transaortic constriction (TAC), cardiomyocyte

membrane rupture and IL-1β release—a hallmark of pyroptosis—

have been observed. Inhibition of caspase-1 or knockout of

NLRP3 protects against hypertrophy and cardiac dysfunction,

whereas NLRP3 overexpression exacerbates hypertrophy under

stress (54). These findings underscore that chronic cardiac stress

leads to inflammasome activation and pyroptotic cardiomyocyte

death, thus advancing HF. Clinically, chronic HF patients,

particularly those with prior MI or diabetic cardiomyopathy,

exhibit elevated circulating IL-1β and IL-18. Myocardial biopsies

from end-stage HF have demonstrated active caspase-1 and

inflammasome components, supporting the notion of ongoing,

low-level pyroptosis that contributes to HF progression by

persistent cell death and sterile myocardial inflammation.

4.2 Mechanistic insights

Multiple triggers induce pyroptosis in chronic HF. In pressure

overload-induced HF, myocardial stretch and neurohormonal

activation (angiotensin II, catecholamines) promote oxidative

stress and mitochondrial dysfunction in cardiomyocytes—potent

activators of the NLRP3 inflammasome. Once activated, the

NLRP3/caspase-1 pathway induces release of IL-1β and IL-18,

both with critical effects in HF: IL-1β impairs contractility and

stimulates fibroblast activation, while IL-18 promotes myocyte

hypertrophy and amplifies inflammation. Elevated IL-18 levels

have been found in hypertrophic and failing hearts; mice lacking

IL-18 are less susceptible to pressure-overload-induced

hypertrophy, implicating pyroptosis-derived IL-18 in pathological

hypertrophy (55). In metabolic or diabetic cardiomyopathy,

factors such as high glucose, free fatty acids, and ceramides can

also activate inflammasomes in cardiac cells (56, 57). For

example, hyperglycaemia-induced ROS activate NLRP3, leading

to cardiomyocyte pyroptosis and contractile dysfunction.

Moreover, non-myocyte cardiac cells—including macrophages

and fibroblasts—can also undergo inflammasome activation,

contributing to adverse remodeling. Activated fibroblasts release

IL-1, further weakening myocardial tissue. Pyroptosis in

endothelial and smooth muscle cells of the cardiac

microvasculature may worsen HF by compromising

microcirculation and inducing cytokine production, though this

is less well studied.

At the molecular level, a feed-forward loop often operates in

HF: initial cell death from infarction or stress releases DAMPs

(e.g., ATP, DNA), which in turn activate inflammasomes in

neighbouring cells, promoting further pyroptosis and DAMP

release (58). This perpetuates a chronic inflammatory state in the

failing heart. Additionally, pyroptosis and apoptosis are

interconnected. Caspase-8, traditionally apoptotic, can promote

IL-1 production via NLRP3, while caspase-3 can cleave GSDME

to trigger secondary pyroptosis—especially relevant in advanced

HF with ischaemic episodes. Thus, once cell death pathways are

activated in HF, pyroptosis can become a major mechanism of

cell loss.

4.3 Therapeutic perspectives

The role of pyroptosis in HF highlights promising therapeutic

targets. Several interventions have been investigated in preclinical

and early clinical studies. Anti-IL-1 therapies have shown benefit:

in acute decompensated HF, anakinra improved exercise

tolerance and reduced inflammation, likely reflecting reduced

pyroptosis-driven cytokine production (59). Colchicine, a broad

anti-inflammatory agent, is being tested for its potential to limit

cardiac remodeling by inhibiting inflammasome activity (60).

Targeted drugs, such as dapansutrile (an NLRP3 inhibitor), have

demonstrated reduction in inflammatory markers and improved

diastolic function in HF with preserved ejection fraction (61).

Direct inhibition of GSDMD offers another avenue—selective

inhibitors can block pore formation, preventing pyroptosis

regardless of upstream triggers (62). Preclinical studies show that

GSDMD inhibition can reduce fibrosis and improve ejection

fraction in HF models without major immunosuppression.

Pyroptosis pathway components may also serve as biomarkers

in HF. Elevated IL-18 correlates with poor prognosis and

ventricular dysfunction and could help identify patients with

high inflammasome activity. ASC specks, oligomers derived from

inflammasomes, have been detected in the circulation in

inflammatory conditions and might indicate active cardiac

inflammasomes if found in HF patients (63). Importantly, some

inflammation is necessary for myocardial repair, so future

therapies must carefully target pathological, not adaptive,

pyroptosis. Research into cardioprotective factors such as irisin—
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a myokine upregulated by exercise—shows potential in inhibiting

cardiac NLRP3 inflammasomes and pyroptosis, suggesting that

metabolic interventions could also modulate pyroptosis.

In summary, pyroptosis is a significant driver of inflammation

and cell loss in HF. Targeting this pathway could slow HF

progression, improve cardiac function, and inform both

prognosis and therapy in clinical practice.

5 Atherosclerosis

5.1 Role in atherosclerotic plaque
development

Atherosclerosis is fundamentally an inflammatory disease of

the arteries. Recent research has established pyroptosis as a

critical mechanism linking cholesterol-induced metabolic stress to

arterial inflammation and plaque development (64–67). During

early atherogenesis, cholesterol crystals and oxidised LDL within

the arterial wall serve as danger-associated molecular patterns

(DAMPs), activating the NLRP3 inflammasome in macrophages

(64, 68). This triggers caspase-1 activation and the release of

IL-1β and IL-18, key cytokines that amplify local inflammation

and recruit additional immune cells. Duewell et al. first showed

that cholesterol crystals stimulate NLRP3-dependent IL-1β

release, directly promoting atherosclerosis (69). Pyroptotic

macrophage death within plaques contributes to the formation of

necrotic cores—regions filled with debris and extracellular lipid—

which destabilise plaque structure. Studies have detected active

GSDMD and increased IL-1β secretion in atherosclerotic lesions,

supporting the presence of ongoing macrophage pyroptosis

within plaques (67, 70, 71). The significance of IL-1β from

pyroptosis is underscored by genetic studies: ApoE-deficient mice

lacking IL-1β show a marked reduction in lesion size,

demonstrating the pivotal role of IL-1β in plaque growth (70).

Conversely, deficiency of the IL-1 receptor antagonist accelerates

atherosclerosis, emphasising that unchecked IL-1 signalling,

much of it stemming from pyroptosis, exacerbates disease (72).

IL-18, although its role is more nuanced, also appears to foster

plaque progression and instability. Thus, pyroptosis fuels a

vicious cycle within plaques: as macrophages ingest excess lipids

and become foam cells, sustained cholesterol overload activates

inflammasomes, leading to pyroptotic foam cell death and the

release of cellular contents (lipids, enzymes, cytokines) that

intensify inflammation and necrotic core expansion.

5.2 Mechanisms and cell types

Multiple cell types within atherosclerotic lesions can undergo

pyroptosis, with macrophages being the most prominent. Foam

cells—lipid-laden macrophages—struggle with cholesterol

clearance, resulting in cholesterol crystal accumulation and

persistent NLRP3 activation. The pyroptotic death of these

macrophages not only releases IL-1β, but also acts on endothelial

and vascular smooth muscle cells (VSMCs). In VSMCs, IL-1β

and IL-18 induce adhesion molecules and chemokines, attracting

more monocytes into plaques (73). IL-1β can also suppress

collagen synthesis in VSMCs, potentially thinning the fibrous cap

and increasing the risk of plaque rupture. While IL-1β deficiency

reduces plaque burden, it is also associated with thicker fibrous

caps, hinting that IL-1β influences plaque composition and

stability (73). VSMCs themselves can activate inflammasomes

under oxidative or metabolic stress; VSMC pyroptosis has been

linked to vascular calcification in advanced plaques, partly

through the release of matrix vesicles. Endothelial cells are also

susceptible: exposure to disturbed flow or oxidised LDL can

trigger inflammasome activation and local IL-1β release,

promoting endothelial pyroptosis, dysfunction, and increased

permeability to lipids (74). Notably, there is crosstalk between

apoptotic and pyroptotic pathways in plaques. Macrophages

initially undergoing apoptosis due to ER stress may progress to

pyroptosis if caspase-1 is activated—a process called apoptosis-

associated speck-like protein containing a CARD (ASC)-mediated

pyroptosis. This leads to abundant inflammasome activation in

cholesterol- and cell debris-rich lesions.

A hallmark of advanced plaques is the necrotic core,

comprising remnants of numerous pyroptotic macrophages. This

region is highly pro-thrombotic and destabilises plaques, making

them prone to rupture and clinical events. Pyroptosis is believed

to enlarge the necrotic core by causing rapid foam cell lysis and

the release of prothrombotic factors such as tissue factor.

Additionally, IL-18 from pyroptotic cells can induce apoptosis in

surrounding VSMCs, further weakening plaque structure. In

contrast, controlled, non-inflammatory apoptosis of macrophages

can benefit early plaque regression; however, pyroptosis shifts

this balance toward inflammation and instability. In essence,

pyroptosis transforms relatively stable lipid storage into highly

inflammatory, rupture-prone plaques.

5.3 Clinical and translational insights

Recognition of the inflammasome–pyroptosis–IL-1β axis has

shaped new therapeutic strategies. The CANTOS trial using

canakinumab, an IL-1β inhibitor, was the first to demonstrate

that blocking this cytokine can significantly reduce major

cardiovascular events in patients with prior MI and elevated

inflammation (22, 73). This finding strongly implicates

inflammasome-driven IL-1β—mainly from plaque macrophages

—in atherogenesis and its complications. While canakinumab

targets IL-1β broadly and not specifically pyroptosis, its success

has spurred interest in upstream interventions. Colchicine, which

suppresses inflammasome assembly and activity, has also shown

efficacy in reducing cardiovascular events in patients with

chronic coronary disease and post-MI (75). Experimental NLRP3

inhibitors, such as MCC950, have shown promise in preclinical

models: in hyperlipidaemic mice, MCC950 reduces plaque size

and complexity, at least partly by preventing macrophage

pyroptosis and necrotic core formation (70). This suggests that

therapies targeting NLRP3 may stabilise plaques by preserving

macrophage viability or shifting cell death toward less
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inflammatory mechanisms. Therapies that enhance cholesterol

efflux (e.g., HDL mimetics) may also reduce pyroptosis by

alleviating cholesterol crystal burden in foam cells.

Biomarker development is ongoing. Elevated IL-18 levels are

associated with higher cardiovascular risk and may help identify

patients likely to benefit from anti-IL-1 or anti-inflammatory

therapy (76). Measurement of GSDMD or caspase-1 activity in

blood cells might serve as indicators of systemic inflammasome

activation in atherosclerosis, though this remains investigational.

Importantly, not all inflammasome activity is harmful: some

studies suggest that complete NLRP3 deficiency does not always

decrease atherosclerosis, possibly due to compensation by

alternative inflammatory pathways. Thus, patient selection and

combination therapy may be necessary. Another relevant

consideration is the role of infectious agents. Pathogens such as

periodontal bacteria have been linked to NLRP3 activation in

arteries, implying that infection control may indirectly reduce

pyroptosis within plaques (77).

In conclusion, pyroptosis is a central process in the formation

and destabilisation of atherosclerotic lesions. Targeting the

inflammasome–pyroptosis pathway—via inhibition of upstream

triggers, key proteins (NLRP3, caspase-1, GSDMD), or

downstream cytokines (IL-1β, IL-18)—represents a promising

strategy to prevent or treat atherosclerotic CVDs.

6 Hypertension

6.1 Inflammatory paradigm and pyroptosis
in hypertension

Hypertension is the most prevalent modifiable risk factor for

cardiovascular morbidity and mortality worldwide, classically

defined by a persistent elevation in systolic and/or diastolic blood

pressure (78). Accumulating evidence has established chronic low-

grade inflammation as a central contributor to the development

and maintenance of hypertension, with increased infiltration of

immune cells and elevated pro-inflammatory cytokines detectable

in both hypertensive patients and animal models (53, 79). Among

these, IL-1β and IL-18 are consistently elevated in essential

hypertension and act as key mediators of vascular inflammation

and end-organ damage (53). Recent studies have confirmed

overactivation of the inflammasome and pyroptotic pathways in

the cardiovascular and renal complications associated with

hypertension. For example, downregulation or pharmacological

inhibition of key inflammasome components (such as NLRP3 or

caspase-1) markedly attenuates blood pressure elevation in various

hypertensive animal models (80). Meanwhile, research with two

PH rat models and hypoxic human pulmonary arterial smooth

muscle cells (hPASMCs) indicates that pyroptosis contributes to

pulmonary vascular fibrosis in pulmonary hypertension, with

caspase-1 activation and STAT1-mediated PD-L1 upregulation in

smooth muscle cells playing key roles in disease progression (81).

Thus, elucidating the role of pyroptosis in hypertension

pathogenesis not only provides mechanistic insight but also offers

novel therapeutic opportunities.

6.2 Molecular mechanisms linking
hypertensive stimuli to pyroptosis

Common hypertensive stimuli—including elevated angiotensin

II (Ang II) and high dietary salt—elicit excessive production of

ROS. ROS triggers dissociation of thioredoxin-interacting protein

(TXNIP), which subsequently binds and activates the NLRP3

inflammasome (82). Sustained activation of this Ang II/ROS/

TXNIP/NLRP3 axis in hypertensive states drives pyroptotic cell

death and robust local inflammation in target organs such as the

heart, vasculature, kidney, and brain (82). In vitro studies

demonstrate that Ang II exposure induces NLRP3 activation and

IL-1β production in tubular epithelial cells in a dose- and time-

dependent manner, which can be mitigated by ROS scavenging

or NLRP3 knockdown (83). These data collectively support the

concept that pyroptosis is a key intermediary between classic

hypertensive insults and subsequent target organ damage (82).

6.3 Pyroptosis in cardiovascular and renal
target organ damage

Renal involvement is a hallmark of hypertension-related end-

organ damage. Ang II and high salt exposure induce

mitochondrial dysfunction and excessive ROS production in

renal tubular epithelial cells, activating NLRP3 and promoting

pyroptotic cell death (83). In murine models, NLRP3 knockout

protects against tubular injury and proteinuria during chronic

Ang II infusion, confirming the pathogenic role of the

inflammasome in hypertensive nephropathy (83). Salt-sensitive

hypertension models (such as 1 K/DOCA/salt mice and Dahl

salt-sensitive rats) display marked activation of renal NLRP3

inflammasome and IL-1β production, which are attenuated by

genetic or pharmacological inhibition of NLRP3 (e.g., MCC950)

(80, 84). Notably, blockade of IL-1 signalling with anakinra in

such models significantly reduces blood pressure and renal

fibrosis, further substantiating the role of IL-1β as a mediator of

hypertensive renal injury (85).

6.4 Central nervous system inflammasome
activation

Emerging evidence indicates that the central nervous system,

particularly key regulatory nuclei within the hypothalamus, is

susceptible to inflammasome activation in hypertension. Rodent

studies show that high-salt diets induce activation of microglia

and NLRP3 inflammasome in the hypothalamic paraventricular

nucleus (PVN), promoting neuroinflammation and heightened

sympathetic outflow (86). Selective blockade of NLRP3 within

the PVN dampens local inflammatory responses, attenuates

sympathetic excitation, and delays blood pressure elevation (86).

While these findings are mainly limited to animal studies, they

provide mechanistic insight into the contribution of central
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neuro-inflammation to hypertension and suggest new potential

targets for intervention.

6.5 Translational and therapeutic
perspectives

Given the central role of pyroptosis in hypertensive target

organ damage, targeting the inflammasome–pyroptosis axis

represents a promising therapeutic avenue. Preclinical studies

have demonstrated that pharmacological inhibition of the NLRP3

inflammasome (e.g., MCC950) effectively reduces blood pressure

and attenuates cardiac and renal injury in a variety of

hypertensive models (80). Similarly, IL-1 receptor antagonists

such as anakinra confer blood pressure-lowering and organ-

protective effects (85). While broad-spectrum anti-inflammatory

agents like colchicine have shown efficacy in reducing

cardiovascular events in coronary artery disease, their ability to

inhibit inflammasome assembly provides a rationale for their

ongoing evaluation in hypertension (25, 87). Notably,

monoclonal antibodies targeting IL-1β (such as canakinumab)

have reduced recurrent cardiovascular events in large clinical

trials, despite having little direct effect on blood pressure,

suggesting that inflammasome inhibition may improve

hypertension-related outcomes even in the absence of

antihypertensive effects per se (22).

In summary, the evidence to date underscores pyroptosis as a

pivotal link between classical hypertensive stimuli and

downstream end-organ damage. Targeting this pathway holds

promise for the dual aims of blood pressure reduction and organ

protection, ushering in a potential paradigm shift towards

integrated “anti-hypertensive plus anti-inflammatory” therapy.

Future clinical trials will be essential to define the safety, efficacy,

and optimal patient populations for such strategies in the

management of hypertension.

7 Cardiac arrhythmias

Atrial fibrillation (AF), the most common sustained

arrhythmia, is increasingly recognised as a condition with a

strong inflammatory component, where inflammasome-mediated

pyroptosis plays a pivotal role in both electrical and structural

atrial remodeling. Seminal work by Yao et al. demonstrated that

NLRP3 inflammasome activation in atrial cardiomyocytes directly

promotes AF by fostering ectopic firing, atrial fibrosis, and

creating a substrate for sustained arrhythmia (88). Consistently,

atrial biopsies from patients with chronic AF reveal increased

expression of the active caspase-1 p20 subunit and higher levels

of IL-1β and IL-18 in both tissue and serum compared to

individuals in sinus rhythm, correlating with AF burden and

persistence (9, 89). Mechanistic insights reveal that NLRP3

activation in atrial myocytes impairs calcium handling through

CaMKII signaling and disrupts connexin-mediated conduction,

thus promoting electrical remodeling and reentry circuits (90).

GSDMD–mediated pyroptosis has been directly linked to

arrhythmogenesis: enforced expression of the GSDMD

N-terminal fragment in murine atria increased AF susceptibility,

promoted IL-1β release, and triggered macrophage recruitment

(91). Furthermore, epicardial adipose tissue-derived IL-1β,

especially in post-cardiac surgery patients, has been causally

implicated in triggering postoperative AF through promoting

local inflammation and atrial fibrosis (92). Clinical studies

further confirm that AF patients typically present with elevated

inflammasome cytokines. Elevated IL-1β and IL-18 predict AF

persistence or recurrence after ablation, and inflammatory

markers such as CRP and IL-6 are associated with increased risk

of AF, especially following cardiac surgery (89, 93). Importantly,

factors such as oxidative stress, obesity, diabetes, aging, and gut

dysbiosis can all prime or activate the NLRP3 inflammasome in

atrial tissue, highlighting a convergence of metabolic and

inflammatory risk (94–97).

GSDMD plays a pivotal pathogenic role in the development of

atrial fibrillation (AF). On one hand, it forms membrane pores in

atrial cardiomyocytes, facilitating the release of interleukin-1β

(IL-1β), thereby triggering local inflammatory responses,

promoting atrial fibrosis, and recruiting macrophage infiltration

(93, 98). On the other hand, NT-GSDMD anchors to the

mitochondrial membrane, compromising its structural integrity

and leading to mitochondrial dysfunction with excessive release

of reactive oxygen species (ROS). Mitochondria-derived ROS

disrupt intracellular calcium homeostasis, enhance sarcoplasmic

reticulum calcium release, and increase the likelihood of ectopic

electrical activity (99, 100). In addition, ROS activate the NLRP3

inflammasome pathway, which upregulates potassium channels

(e.g., Kv1.5), shortens action potential duration in atrial

myocytes, and contributes to atrial electrical remodeling.

Moreover, mitochondrial damage results in the release of

mitochondrial DNA (mtDNA), which activates the cyclic GMP-

AMP synthase (cGAS)-stimulator of interferon genes (STING)

pathway, further amplifying inflammatory responses (93).

Collectively, these events promote atrial fibrosis, immune cell

infiltration, and electrical instability, thereby providing a

pathological substrate for the initiation and maintenance of atrial

fibrillation (Figure 2).

7.1 Translational and therapeutic
perspective

These insights into inflammasome–pyroptosis pathways offer

promising therapeutic implications for arrhythmia management.

Pharmacological inhibition of NLRP3 with compounds such as

MCC950 has been shown to prevent electrical remodeling and

reduce AF inducibility in animal models (88, 101, 102). In the

clinical setting, anti-inflammatory agents like colchicine have

demonstrated efficacy in reducing the incidence and recurrence

of post-operative and post-ablation AF, as confirmed by meta-

analyses (103, 104). Other interventions, including IL-1β blockers

(e.g., canakinumab), statins, and RAAS inhibitors, have shown

variable but generally protective effects, likely mediated through

attenuation of upstream inflammatory or oxidative stress
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signaling (105–107). Notably, IL-1 blockade after AF cardioversion

may reduce recurrence, though larger trials are needed (108).

Lifestyle interventions such as weight loss, improved glycaemic

control, and exercise may also blunt atrial inflammasome

activation and thus reduce AF risk, supporting a holistic

management paradigm. In patients with HF or HFpEF, targeting

inflammasome signaling can also lower AF vulnerability and

arrhythmic remodeling (102, 109). Collectively, mounting

evidence indicates that inflammation, particularly via the

NLRP3–caspase-1–GSDMD/IL-1β/IL-18 axis, is a central driver

of both electrical and structural remodeling in AF. Targeting

these pathways—pharmacologically or through upstream risk

modification—represents a promising adjunct to conventional

rhythm and rate control strategies, particularly in patients with

high inflammatory burden or comorbid metabolic disease.

8 Conclusion

Multiple forms of cell death—including pyroptosis, apoptosis,

necroptosis, and ferroptosis—contribute to the pathogenesis of

cardiovascular diseases through distinct molecular mechanisms and

cellular processes (110–116), as summarized in Table 1. Pyroptosis

represents a pivotal inflammatory cell death pathway that bridges

innate immune activation with irreversible cardiac and vascular

injury. Increasing evidence highlights its substantial involvement in

the initiation and progression of diverse CVDs, including MI,

myocarditis, HF, atherosclerosis, hypertension, and arrhythmias. By

amplifying local and systemic inflammation through gasdermin-

mediated membrane rupture and cytokine release, pyroptosis drives

adverse tissue remodelling and clinical deterioration. Recent

experimental and early translational studies suggest that targeting

key components of the pyroptotic machinery—such as NLRP3,

caspases, and gasdermins—may attenuate organ damage and

improve outcomes in CVDs. This is summarized in the Schematic

Illustration, which outlines the role and mechanism of pyroptosis in

cardiovascular diseases. Nonetheless, significant challenges remain,

including the need for precise biomarkers, improved understanding

of disease- and cell-specific roles, and the development of selective,

safe inhibitors suitable for clinical application. Further research into

the temporal and spatial regulation of pyroptosis and its interplay

with other death modalities will be essential for translating these

insights into effective therapies. Ultimately, modulating pyroptosis

holds promise as a novel avenue for CVDs intervention and

risk stratification.

Recent studies have highlighted pyroptosis-related molecules—

particularly gasdermin D (GSDMD), interleukin-1β (IL-1β), and

interleukin-18 (IL-18)—as potential biomarkers for

cardiovascular diseases (111). Circulating GSDMD levels are

elevated in patients with acute myocardial infarction and heart

failure, correlating with infarct size and inflammatory cytokine

profiles. Although ELISA kits for GSDMD, IL-1β, and IL-18 are

available with some achieving clinical-grade sensitivity, large-

scale, multicenter validation remains lacking (110). While IL-1β

and IL-18 are broadly elevated across various inflammatory

conditions, limiting their specificity for cardiovascular pathology,

GSDMD’s proximal role in the pyroptotic cascade may offer

improved diagnostic precision (35). However, assay

standardization and reference range establishment are urgently

needed (34). Moreover, the dynamic temporal patterns of these

biomarkers throughout disease onset, progression, and resolution

are not yet fully characterized. Future prospective studies should

aim to elucidate their diagnostic and prognostic utility and assess

their integration with established cardiac biomarkers, such as

troponins and B-type natriuretic peptide, to enhance

cardiovascular risk stratification.

FIGURE 2

Mechanistic pathways linking pyroptosis to the development of atrial fibrillation. Activated gasdermin D (GSDMD) promotes the development of AF

through both membrane pore formation and mitochondrial injury. Upon cleavage, the N-terminal fragment (NT-GSDMD) forms pores in the

plasma membrane of atrial cardiomyocytes, facilitating the release of interleukin-1β (IL-1β), which triggers local inflammation, macrophage

infiltration, and atrial fibrosis. Simultaneously, NT-GSDMD translocates to the mitochondrial membrane, leading to mitochondrial dysfunction and

overproduction of reactive oxygen species (ROS). These ROS disrupt intracellular calcium homeostasis, enhance sarcoplasmic reticulum (SR)

calcium release, and increase the risk of ectopic electrical activity. ROS also activate the NLRP3 inflammasome, upregulating potassium channels

(e.g., Kv1.5), shortening action potential duration, and promoting atrial electrical remodeling. Additionally, mitochondrial damage causes the

release of mitochondrial DNA (mtDNA), which activates the cyclic GMP-AMP synthase (cGAS)–stimulator of interferon genes (STING) pathway,

further amplifying the inflammatory response. Together, these events drive structural remodeling, immune cell infiltration, and electrical instability,

creating a pro-arrhythmic substrate for the initiation and maintenance of AF.
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Although extensive preclinical studies have demonstrated the

pathogenic role of pyroptosis in cardiovascular diseases such as

myocarditis, heart failure, and atrial fibrillation, the clinical

translation of anti-pyroptotic therapies remains challenging. Key

pathway inhibitors—including MCC950 (targeting the NLRP3

inflammasome) and VX-765 (a caspase-1 inhibitor)—have shown

therapeutic potential in animal models but are limited by

suboptimal pharmacokinetics, poor tissue specificity, and risks of

immunosuppression and infection during long-term use. A study

shows that while these agents can improve cardiac function and

attenuate remodeling, their narrow therapeutic windows and

potential to impair host immunity constrain their clinical

applicability (117). Moreover, the degree of pyroptosis activation

varies across patient populations and disease stages, underscoring

the need for reliable biomarkers to guide patient stratification

and individualized therapy. A recent review highlighted that

circulating or tissue levels of IL-1β, IL-18, and cleaved GSDMD

may serve as valuable diagnostic and prognostic indicators (44).

Notably, pyroptosis often acts in concert with apoptosis and

necroptosis via the PANoptosis pathway, indicating that single-

target therapies may be insufficient to halt inflammation-driven

tissue injury. Current strategies increasingly emphasize

combination regimens that integrate anti-pyroptotic agents with

anti-fibrotic or immunomodulatory therapies to enhance efficacy

(44, 118). Importantly, the timing of intervention is critical—

early-phase blockade may effectively reverse pathological

SCHEMATIC ILLUSTRATION

The role and mechanism of pyroptosis in cardiovascular diseases. (Left) Pyroptosis plays a pivotal role in various cardiovascular diseases. (Middle) It

occurs in multiple cardiac cell types. (Right) Activation of the NLRP3 or AIM2 inflammasomes leads to the cleavage and activation of caspase-1,

-4, -5, or -11. These activated caspases then process pro-inflammatory cytokines pro-IL-1β and pro-IL-18 into their mature forms, IL-1β and IL-

18. In addition, caspase-1/4/5/11 cleave gasdermin D (GSDMD), releasing its N-terminal fragment, which forms pores in the plasma membrane

and mitochondria. Pore formation on the plasma membrane allows IL-1β and IL-18 to be released into the extracellular space, leading to

pyroptotic cell death. Mitochondrial pore formation increases the release of reactive oxygen species (ROS), which further amplifies inflammasome

activation, forming a feed-forward loop.

TABLE 1 Comparative characteristics of pyroptosis, apoptosis, necroptosis, and ferroptosis in cardiovascular diseases.

Cell
death
type

Key molecules Morphological
features

Inflammatory Role in CVDs Therapeutic targets

Pyroptosis Caspase-1/4/5/11,

GSDMD, GSDME,

NLRP3

Cell swelling, membrane pore

formation, lysis

Yes Myocarditis, Myocardial

infarction, Heart failure,

Atherosclerosis, Arrhythmia

NLRP3 inhibitors (e.g., MCC950),

caspase-1 inhibitors (e.g., VX-765),

GSDMD blockers

Apoptosis Caspase-3/7, Bcl-2 Bax Cell shrinkage, chromatin

condensation, membrane

blebbing

No Ischemia-reperfusion injury,

Heart failure

Caspase inhibitors

Necroptosis RIPK1/RIPK3, MLKL Organelle swelling, membrane

rupture

Yes Ischemia/reperfusion injury,

Heart failure, Diabetic

cardiomyopathy

RIPK1 inhibitors (e.g., Nec-1) MLKL

inhibitors

Ferroptosis GPX4, ACSL4, lipid

ROS Fe2+
Iron-dependent lipid

peroxidation, mitochondrial

shrinkage

Yes Doxorubicin-induced

cardiomyopathy, Heart failure,

Atherosclerosis

Ferrostatins, iron chelators, GPX4

activators
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remodeling, whereas late-stage inhibition may be less beneficial or

even detrimental. Furthermore, obstacles such as limited access to

cardiac tissue, a lack of standardized clinical endpoints, and

insufficient mechanistic validation continue to impede the

clinical development of anti-pyroptosis therapies.
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