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Pyroptosis is an inflammatory form of programmed cell death, distinct from
apoptosis, necroptosis, and ferroptosis, and is primarily mediated by
gasdermin proteins and inflammatory caspases. Recent advances highlight the
central role of pyroptosis in the pathogenesis and progression of a spectrum
of cardiovascular diseases, including myocardial infarction, myocarditis, heart
failure, atherosclerosis, hypertension, and cardiac arrhythmias. Activation of
inflammasomes and the subsequent cleavage of gasdermins drive cell
membrane pore formation, leading to the release of interleukin-1 (IL-1B),
interleukin-18 (IL-18), and other pro-inflammatory mediators, amplifying tissue
injury and sterile inflammation. Both experimental and clinical evidence reveal
that targeting key molecules in the pyroptotic pathway, such as NLRP3
inflammasome, caspase-1, and gasdermin D, can attenuate myocardial injury,
inhibit adverse cardiac remodeling, and stabilise atherosclerotic plaques. This
review systematically summarises the current understanding of the molecular
mechanisms of pyroptosis in cardiovascular pathology, details its disease-
specific roles, and discusses translational and therapeutic perspectives.
Modulating pyroptosis may provide new opportunities for the diagnosis, risk
stratification, and treatment of cardiovascular diseases.

KEYWORDS

pyroptosis, cardiovascular diseases, myocardial infarction, myocarditis, heart failure,
atherosclerosis, hypertension, arrhythmia

1 Introduction

Despite major advances in cardiovascular medicine, inflammation-driven cell death
remains a fundamental challenge in the pathogenesis and progression of cardiovascular
diseases (CVDs). While traditional forms of cell death such as apoptosis and necrosis
have been extensively studied, the discovery of pyroptosis has unveiled a new
dimension in inflammatory tissue injury. Pyroptosis is an inflammatory form of
regulated cell death distinguished by gasdermin-mediated plasma membrane pore
formation, cell swelling, and release of pro-inflammatory intracellular contents (1, 2). It
is typically triggered by the activation of cytosolic pattern-recognition receptors
(inflammasomes) in response to danger signals, leading to caspase-1 (canonical
pathway) or caspase-4/5/11 (non-canonical pathway) activation and cleavage of
gasdermin family effectors (3-6).

Pyroptosis has been shown to impact the development and progression of various
CVDs, including myocardial infarction (MI), myocarditis, heart failure (HF),
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atherosclerosis, hypertension, and arrhythmias (7, 8). However, key
questions persist regarding the triggers of pyroptosis in cardiac and
vascular tissues, the interplay between different inflammasome
pathways, and the clinical value of targeting pyroptosis as a
therapeutic strategy. Additionally, the molecular distinction
between pyroptosis and other cell death modalities in the
cardiovascular context is not fully resolved. Addressing these
gaps, this review summarises recent advances in our
understanding of the molecular mechanisms of pyroptosis in
cardiovascular pathology, highlighting key disease models and
potential clinical implications. Notably, this review offers several
novel insights beyond previous works. First, we integrate recent
findings on non-canonical pyroptosis mediated by gasdermin E
(GSDME), particularly in immune checkpoint inhibitor-induced
myocarditis—an emerging and clinically relevant form of
inflammatory cardiotoxicity. Second, we explore the contribution
of pyroptosis to atrial arrhythmogenesis, including its impact on
structural and electrical remodeling in atrial fibrillation, which
remains under-recognized. Third, we provide a mechanistic
overview of pyroptosis within broader inflammatory signaling
frameworks such as PANoptosis and the cGAS-STING pathway.
Finally, we discuss the clinical translation of pyroptosis-related
biomarkers and therapies, highlighting current limitations and
future opportunities. These elements collectively distinguish our
review as a forward-looking synthesis that bridges molecular

insights with potential clinical applications.

2 Myocardial infarction and ischaemic
injury

2.1 Pathophysiological evidence

MI triggers an intense inflammatory reaction in the
myocardium, and pyroptotic cell death has been strongly
implicated in this process (9). In experimental models of
injury,
pyroptosis is detected soon after reperfusion, contributing to

myocardial  ischaemia-reperfusion cardiomyocyte
infarct expansion and cardiac dysfunction (10). Genetic ablation
of key pyroptosis mediators confers cardioprotection: mice
lacking gasdermin D (GSDMD) have significantly reduced infarct
sizes, less cardiomyocyte death, and improved post-MI cardiac
function compared to wild-type mice (10-12). In a seminal
study, GSDMD knockout in mice attenuated myocardial injury
after coronary ligation, with fewer infiltrating neutrophils and
macrophages in the infarct and reduced release of IL-1f (11).
Correspondingly, pharmacological inhibition of caspase-1 with
specific inhibitors (e.g., VX-765) during reperfusion limits infarct

Abbreviations

AF, atrial fibrillation; CVB3, coxsackievirus B3; CVDs, cardiovascular diseases;
DAMPs, danger-associated molecular patterns; GSDMD, gasdermin D;
GSDME, gasdermin E; HF, heart failure; ICI, immune checkpoint inhibitor;
MI, myocardial infarction; PAMPs, pathogen-associated molecular patterns;
PVN, paraventricular nucleus; ROS, reactive oxygen species; TAC, transaortic
constriction; TXNIP, thioredoxin-interacting protein; VSMCs, vascular smooth
muscle cells.
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size and preserves left ventricular function in rodents (13). These
findings indicate that the inflammasome-caspase-1-GSDMD
pathway is activated by ischaemic injury and contributes to
cardiomyocyte loss beyond apoptosis or necrosis (7).
Mechanistically, I/R releases DAMPs including ATP, HMGBI,
reactive oxygen species (ROS) that activate inflammasomes
(especially NLRP3) in cardiomyocytes,
infiltrating neutrophils (14, 15). The resulting pyroptotic cell

macrophages, and

death amplifies inflammation, creating a feed-forward cycle of
injury. Clinically, patients with AMI have elevated circulating
markers of pyroptosis. A study reported that plasma GSDMD
levels are significantly higher in acute MI patients than in
controls, correlating with infarct biomarkers and inflammatory
cytokines (16). These human data support that pyroptosis is not
merely a laboratory phenomenon but is active in human
MI pathophysiology.

2.2 Molecular mechanisms

MI engages both canonical and non-canonical pyroptotic
pathways. The canonical pathway is driven by inflammasome
activation (chiefly NLRP3) and caspase-1 (17). In mouse models,
myocardial I/R rapidly activates NLRP3 and caspase-1 in the
heart, leading to IL-1B/IL-18 maturation and GSDMD cleavage
in cardiomyocytes and resident immune cells (10). GSDMD
N-terminal fragments form membrane pores, inducing osmotic
lysis of cells and spillage of pro-inflammatory contents.
Neutrophils have been shown to undergo pyroptosis in infarcted
hearts, which exacerbates tissue injury; interestingly, neutrophil-
derived proteases can also cleave GSDMD and contribute to
IL-1PB release (11). The non-canonical pathway involves caspase-
11 (in mice; caspase-4/5 in humans) sensing intracellular LPS,
which has relevance in sterile MI through gut microbial
translocation or endogenous oxidised lipids acting similarly to
activate caspase-11 (10, 18). Caspase-11 can induce pyroptosis by
directly cleaving GSDMD and indirectly via NLRP3 activation.
Indeed, one study showed that caspase-11 deficiency reduced
that
activation contributes to myocardial I/R injury (10). Upstream,

infarct size, suggesting non-canonical inflammasome
multiple inflammasome sensors may be involved: NLRP3 is the
most studied and responds to mitochondrial ROS, Ca** flux, and
ion imbalances during reperfusion (19, 20), but AIM2 (activated
by DNA from necrotic cells) may also drive caspase-1 in MI, as
suggested by elevated DNA-sensing pathway activation in infarct
tissue (19, 21). Downstream, IL-1B and IL-18 released from
pyroptotic cells act on surviving myocardium and infiltrating
cells to augment inflammation and apoptotic pathways. IL-18, in
particular, has been identified as a mediator of post-MI adverse
remodeling; high serum IL-18 in MI patients predicts worse
outcomes, linking pyroptosis to later HF (19). Thus, MI involves
a complex interplay: ischaemia triggers inflammasome assembly
(via NLRP3 and possibly others), caspase-1/-11 activation cleaves
GSDMD, and pyroptosis of cardiomyocytes, neutrophils, and

macrophages ensues, aggravating myocardial injury.
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2.3 Clinical and therapeutic insights

Recognising pyroptosis as a driver of myocardial damage has
spurred interest in anti-inflammatory therapies for MI. The IL-18
neutralising antibody canakinumab, tested in the CANTOS trial
in  post-MI  patients, significantly = reduced  recurrent
cardiovascular events, providing proof-of-concept that targeting
inflammasome outputs benefits patients (22, 23). Although
canakinumab’s mechanism is broad IL-1pB inhibition, its success
underscores the pathological role of IL-1B (largely produced
by inflammasome-pyroptosis  activity) in

inflammation (24). Similarly, low-dose colchicine, an unspecific

post-infarction

inflammasome inhibitor, lowered the risk of ischaemic events
after MI in the COLCOT trial (25), hinting that suppressing
(and Dby
pyroptosis) is cardioprotective. These clinical trials align with

inflammasome-driven  inflammation extension
animal studies where direct inhibition of inflammasome
components or GSDMD has been beneficial. Selective NLRP3
inhibitors (like MCC950) have shown efficacy in reducing infarct
size in preclinical MI models (porcine and murine) (26).
Caspase-1 inhibitors (e.g., VX-765) improved cardiac function
and reduced long-term remodeling when given at reperfusion in
rodents (27-30). Such agents are now being explored for clinical
these did not appear to
compromise host defense acutely in sterile MI, suggesting a

use. Importantly, interventions
therapeutic window where modulating pyroptosis is beneficial.
Beyond reducing acute injury, pyroptosis markers might serve as
diagnostic or prognostic biomarkers in MI. As noted, circulating
GSDMD or ASC specks have been proposed as indices of
(16),
stratification. Moving forward, ongoing research aims to refine

inflammasome  activation potentially  aiding risk
strategies to inhibit detrimental cardiac pyroptosis—for instance,
using small-molecule gasdermin inhibitors or interfering with
pyroptotic pore formation—to improve MI outcomes while
avoiding undue immunosuppression. In summary, pyroptosis is a
critical mediator of myocardial injury in infarction, and its

modulation holds promise as a novel cardioprotective strategy.

3 Myocarditis
3.1 Evidence of involvement

Myocarditis, an inflammatory disease of the heart muscle often
triggered by viral infection, has recently been linked to pyroptotic
cell death as part of its pathogenic immune response. In
Coxsackievirus B3 (CVB3)-induced viral myocarditis, myocardial
tissues show activation of the NLRP3
increased caspase-1 activity, suggesting pyroptosis in infected
cells (31, 32).
A landmark study demonstrated that cathepsin B released during

inflammasome and

cardiomyocytes and infiltrating immune
CVB3 infection can activate the NLRP3 inflammasome, leading
to caspase-1-dependent pyroptosis and worsening myocardial
injury. In mice, pharmacologic inhibition or genetic deletion of

cathepsin B markedly reduced caspase-1 activation and IL-1B
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release in the heart, thereby attenuating myocarditis severity
(31, 33). This indicates that Recent evidence implicates is a key
mechanism by which enteroviral infection causes cardiomyocyte
death and inflammation. Furthermore, IL-1B and IL-18 levels are
elevated in myocarditis, implicating inflammasome activation;
indeed, myocardial biopsies from myocarditis patients have
shown increased NLRP3 and IL-1B expression (32). Beyond
infectious causes, immune checkpoint inhibitor (ICI) therapy
used in cancer can induce fulminant autoimmune myocarditis
(34). Recent evidence implicates pyroptosis in ICI myocarditis: a
2024 study found that gasdermin E (GSDME) -mediated
pyroptosis (rather than GSDMD) is extensively activated in ICI-
related myocarditis, both in a mouse model and in patient heart
samples (35). Mice lacking GSDME were protected from ICI
myocarditis, with less immune cell infiltration and improved
survival, demonstrating a direct pathogenic role for pyroptosis in
this setting. Together, these findings across viral and immune-
mediated myocarditis establish that pyroptosis contributes to
cardiomyocyte loss and inflammatory amplification in the
myocarditic heart.

3.2 Molecular mechanisms

In viral myocarditis, the interplay between viral pathogen-
associated molecular patterns (PAMPs) and host sensors drives
pyroptosis (36). Enteroviruses like CVB3 cause cardiomyocyte
damage that releases cathepsin B from lysosomes; cathepsin B in
the cytosol can trigger NLRP3 inflammasome assembly, perhaps
by promoting mitochondrial dysfunction and reactive oxygen
species. NLRP3 then activates caspase-1, leading to GSDMD pore
formation and pyroptosis of infected cells. This not only kills
cardiomyocytes, exacerbating ventricular dysfunction but also
unleashes IL-1B/IL-18 which recruit and activate immune cells,
fueling a vicious cycle of myocardium-targeted inflammation.
Supporting this, interventions like IL-1 blockade or NLRP3
inhibition ameliorate experimental myocarditis (32). Another
mechanism involves alarmins from necrotic cells: e.g., DNA from
damaged cardiomyocytes can activate AIM2 inflammasomes in
macrophages, potentially contributing to pyroptosis and cytokine
ICI-induced
hyperactivated T cells produce excessive IFN-y, triggering

release  in  myocarditis. In myocarditis,
caspase-3 activation in cardiomyocytes, which cleaves GSDME to
execute pyroptosis via pore formation (37-39). GSDME-mediated
mitochondrial DNA release activates the cGAS-STING pathway,
amplifying IFN and inflammatory responses through a feed-
(35, 40, 41). This highlights non-canonical

pyroptosis pathways (caspase-3/GSDME) in disease pathogenesis.

forward loop

Elevated IL-1B drives myocardial inflammation, with IL-1
neutralization improving outcomes, while IL-18 contributes to
systemic symptoms (42). Pyroptosis coexists with apoptosis and
necroptosis, forming PANoptosis in fulminant myocarditis (31,
43). Inflammasome activation and gasdermin pore formation
remain central injury, their

to myocardial underscoring

therapeutic targeting potential.
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Recent studies have demonstrated that viral myocarditis
involves PANoptosis-dependent cell death pathways, wherein
pyroptosis, apoptosis, and necroptosis are activated in a
coordinated manner (43). Upon viral infection—particularly with
coxsackievirus B3 (CVB3)—cytosolic viral sensors such as
Z-DNA-binding protein 1 (ZBP1) and RIG-I are upregulated in
cardiomyocytes. These sensors promote the formation of the
PANoptosome complex, a multiprotein platform that orchestrates
the activation of caspase-1 (pyroptosis via GSDMD), caspase-3
(apoptosis), and RIPK3/MLKL (necroptosis) (44). Among these,
GSDMD-mediated pyroptosis plays a central role not only by
causing membrane rupture but also by facilitating the release of
mitochondrial DNA (mtDNA) into the cytosol (35). This
mtDNA activates the cGAS-STING pathway, leading to type
I interferon signaling and amplifying innate immune responses
(45). This mechanistic interplay between pyroptosis, other cell
death pathways, and cGAS-STING signaling forms a feed-
forward inflammatory loop that drives myocardial injury in viral

myocarditis (Figure 1).

3.3 Clinical implications

Understanding the role of pyroptosis in myocarditis opens
avenues for targeted therapy and better biomarkers. Clinically,
myocarditis ranges from mild to life-threatening, and current

10.3389/fcvm.2025.1629016

treatments are mainly supportive or immunosuppressive (for
giant-cell or immune myocarditis). The evidence that IL-1 plays
a causal role (via pyroptosis) has spurred trials of anakinra (an
IL-1 receptor antagonist) in acute myocarditis (46). Case reports
and small series have noted rapid improvement in severe
myocarditis with anakinra, aligning with pyroptosis’s pathogenic
role. Likewise, NLRP3 inhibitors or caspase-1 inhibitors might
attenuate myocardial inflammation—experimental IL-37 therapy
(a cytokine that broadly suppresses inflammasome activity)
dramatically reduced cardiac inflammation and improved
survival in CVB3 myocarditis mice, highlighting inflammasome
inhibition as a potential strategy (32, 47). For ICI-myocarditis,
that

inflammasome or gasdermin inhibitors to immunosuppressive

recognizing pyroptosis involvement suggests adding
regimens might better protect the heart while allowing some
anti-tumor immunity to continue (35). Indeed, in the preclinical
study, a small-molecule GSDME inhibitor reduced cardiac
damage without entirely abrogating the immune response. In
terms of diagnosis, endomyocardial biopsy showing active
caspase-1 or GSDMD pores could help confirm myocarditis and
distinguish it from ischaemic injury (35, 48). Additionally,
circulating IL-18 or even cardiac troponin combined with IL-1
could improve diagnostic specificity for myocarditis if validated.
An important translational insight is that therapies targeting
pyroptosis (e.g., NLRP3 inhibitors like dapansutrile) are already

in trials for other inflammatory diseases and could be repurposed

e N
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caspase-7 v
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FIGURE 1

Mechanistic interplay of pyroptosis with other cell death pathways and immune signaling in myocarditis. Upon viral infection such as coxsackievirus B3
(CVB3), intracellular viral sensors including ZBP1 and RIG-I are activated in cardiomyocytes. These sensors initiate the assembly of the PANoptosome,
which orchestrates the simultaneous activation of pyroptosis (via caspase-1 and GSDMD), apoptosis (via caspase-3), and necroptosis (via RIPK3 and
MLKL). Gasdermin D (GSDMD)-mediated membrane pore formation facilitates the release of mitochondrial DNA (mtDNA) into the cytosol, which

triggers the cGAS—-STING signaling pathway.
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for myocarditis. Overall, pyroptosis represents a novel therapeutic

target in myocarditiss by dampening the inflammasome-

gasdermin axis, one might quell the hyperinflammatory
myocardial milieu, reduce tissue destruction, and preserve cardiac

function in affected patients.

4 Heart failure and cardiac remodeling

4.1 Pyroptosis in heart failure
pathophysiology

HF, whether secondary to ischaemic injury or chronic
pressure/volume overload, is characterised by the progressive loss
fibrotic
inflammation (49, 50). Recent studies reveal that pyroptosis

of cardiomyocytes, remodeling, and ongoing
significantly contributes to cardiomyocyte loss and adverse
cardiac remodeling in HF (51-53). In non-ischaemic dilated
cardiomyopathy, myocardial tissues display increased NLRP3,
cleaved caspase-1, and GSDMD expression compared to controls,
consistent with persistent pyroptotic activity (52). Animal models
further confirm this: NLRP3 activation in cardiomyocytes drives
pyroptosis and promotes HF progression, while genetic silencing
of NLRP3 or pharmacologic inhibition of caspase-1 improves
ventricular function and reduces fibrosis (10). Pressure overload,
as seen in hypertension or aortic stenosis, is another key cause of
HF in which pyroptosis plays a pathogenic role. In mouse
(TAC), cardiomyocyte
membrane rupture and IL-1P release—a hallmark of pyroptosis—

models with transaortic constriction
have been observed. Inhibition of caspase-1 or knockout of
NLRP3 protects against hypertrophy and cardiac dysfunction,
whereas NLRP3 overexpression exacerbates hypertrophy under
stress (54). These findings underscore that chronic cardiac stress
leads to inflammasome activation and pyroptotic cardiomyocyte
death, thus advancing HF. Clinically, chronic HF patients,
particularly those with prior MI or diabetic cardiomyopathy,
exhibit elevated circulating IL-1f and IL-18. Myocardial biopsies
from end-stage HF have demonstrated active caspase-1 and
inflammasome components, supporting the notion of ongoing,
low-level pyroptosis that contributes to HF progression by
persistent cell death and sterile myocardial inflammation.

4.2 Mechanistic insights

Multiple triggers induce pyroptosis in chronic HF. In pressure
overload-induced HF, myocardial stretch and neurohormonal
activation (angiotensin II, catecholamines) promote oxidative
stress and mitochondrial dysfunction in cardiomyocytes—potent
activators of the NLRP3 inflammasome. Once activated, the
NLRP3/caspase-1 pathway induces release of IL-18 and IL-18,
both with critical effects in HF: IL-1B impairs contractility and
stimulates fibroblast activation, while IL-18 promotes myocyte
hypertrophy and amplifies inflammation. Elevated IL-18 levels
have been found in hypertrophic and failing hearts; mice lacking
IL-18 are less

susceptible to  pressure-overload-induced
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hypertrophy, implicating pyroptosis-derived IL-18 in pathological
hypertrophy (55). In metabolic or diabetic cardiomyopathy,
factors such as high glucose, free fatty acids, and ceramides can
also activate inflammasomes in cardiac cells (56, 57). For
example, hyperglycaemia-induced ROS activate NLRP3, leading
to cardiomyocyte pyroptosis and contractile

Moreover, non-myocyte cardiac cells—including macrophages

dysfunction.

and fibroblasts—can also undergo inflammasome activation,
contributing to adverse remodeling. Activated fibroblasts release

IL-1, further weakening myocardial tissue. Pyroptosis in
endothelial and smooth muscle «cells of the cardiac
microvasculature may worsen HF by compromising

microcirculation and inducing cytokine production, though this
is less well studied.

At the molecular level, a feed-forward loop often operates in
HF: initial cell death from infarction or stress releases DAMPs
(e.g, ATP, DNA), which in turn activate inflammasomes in
neighbouring cells, promoting further pyroptosis and DAMP
release (58). This perpetuates a chronic inflammatory state in the
Additionally, pyroptosis and apoptosis are
interconnected. Caspase-8, traditionally apoptotic, can promote
IL-1 production via NLRP3, while caspase-3 can cleave GSDME
to trigger secondary pyroptosis—especially relevant in advanced

failing heart.

HF with ischaemic episodes. Thus, once cell death pathways are
activated in HF, pyroptosis can become a major mechanism of
cell loss.

4.3 Therapeutic perspectives

The role of pyroptosis in HF highlights promising therapeutic
targets. Several interventions have been investigated in preclinical
and early clinical studies. Anti-IL-1 therapies have shown benefit:
in acute decompensated HF, anakinra improved exercise
tolerance and reduced inflammation, likely reflecting reduced
pyroptosis-driven cytokine production (59). Colchicine, a broad
anti-inflammatory agent, is being tested for its potential to limit
cardiac remodeling by inhibiting inflammasome activity (60).
Targeted drugs, such as dapansutrile (an NLRP3 inhibitor), have
demonstrated reduction in inflammatory markers and improved
diastolic function in HF with preserved ejection fraction (61).
Direct inhibition of GSDMD offers another avenue—selective
inhibitors can block pore formation, preventing pyroptosis
regardless of upstream triggers (62). Preclinical studies show that
GSDMD inhibition can reduce fibrosis and improve ejection
fraction in HF models without major immunosuppression.

Pyroptosis pathway components may also serve as biomarkers
in HF. Elevated IL-18 correlates with poor prognosis and
ventricular dysfunction and could help identify patients with
high inflammasome activity. ASC specks, oligomers derived from
inflammasomes, have been detected in the circulation in
inflammatory conditions and might indicate active cardiac
inflammasomes if found in HF patients (63). Importantly, some
inflammation is necessary for myocardial repair, so future
therapies must carefully target pathological, not adaptive,

pyroptosis. Research into cardioprotective factors such as irisin—
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a myokine upregulated by exercise—shows potential in inhibiting
cardiac NLRP3 inflammasomes and pyroptosis, suggesting that
metabolic interventions could also modulate pyroptosis.

In summary, pyroptosis is a significant driver of inflammation
and cell loss in HF. Targeting this pathway could slow HF
cardiac function, and inform both

progression, improve

prognosis and therapy in clinical practice.

5 Atherosclerosis

5.1 Role in atherosclerotic plaque
development

Atherosclerosis is fundamentally an inflammatory disease of
the arteries. Recent research has established pyroptosis as a
critical mechanism linking cholesterol-induced metabolic stress to
arterial inflammation and plaque development (64-67). During
early atherogenesis, cholesterol crystals and oxidised LDL within
the arterial wall serve as danger-associated molecular patterns
(DAMPs), activating the NLRP3 inflammasome in macrophages
(64, 68). This triggers caspase-1 activation and the release of
IL-1B and IL-18, key cytokines that amplify local inflammation
and recruit additional immune cells. Duewell et al. first showed
that cholesterol stimulate NLRP3-dependent IL-1f
release, (69).
macrophage death within plaques contributes to the formation of

crystals
directly promoting atherosclerosis Pyroptotic
necrotic cores—regions filled with debris and extracellular lipid—
which destabilise plaque structure. Studies have detected active
GSDMD and increased IL-1B secretion in atherosclerotic lesions,
supporting the presence of ongoing macrophage pyroptosis
within plaques (67, 70, 71). The significance of IL-1f from
pyroptosis is underscored by genetic studies: ApoE-deficient mice
lacking IL-1B
demonstrating the pivotal role of IL-18 in plaque growth (70).

show a marked reduction in lesion size,
Conversely, deficiency of the IL-1 receptor antagonist accelerates
atherosclerosis, emphasising that unchecked IL-1 signalling,
much of it stemming from pyroptosis, exacerbates disease (72).
IL-18, although its role is more nuanced, also appears to foster
plaque progression and instability. Thus, pyroptosis fuels a
vicious cycle within plaques: as macrophages ingest excess lipids
and become foam cells, sustained cholesterol overload activates
inflammasomes, leading to pyroptotic foam cell death and the
release of cellular contents (lipids, enzymes, cytokines) that

intensify inflammation and necrotic core expansion.

5.2 Mechanisms and cell types

Multiple cell types within atherosclerotic lesions can undergo
pyroptosis, with macrophages being the most prominent. Foam
with
clearance, resulting in cholesterol crystal accumulation and

cells—lipid-laden ~ macrophages—struggle cholesterol
persistent NLRP3 activation. The pyroptotic death of these
macrophages not only releases IL-1B, but also acts on endothelial

and vascular smooth muscle cells (VSMCs). In VSMCs, IL-1B
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and IL-18 induce adhesion molecules and chemokines, attracting
more monocytes into plaques (73). IL-1f can also suppress
collagen synthesis in VSMCs, potentially thinning the fibrous cap
and increasing the risk of plaque rupture. While IL-1B deficiency
reduces plaque burden, it is also associated with thicker fibrous
caps, hinting that IL-1B influences plaque composition and
stability (73). VSMCs themselves can activate inflammasomes
under oxidative or metabolic stress; VSMC pyroptosis has been
linked to vascular calcification in advanced plaques, partly
through the release of matrix vesicles. Endothelial cells are also
susceptible: exposure to disturbed flow or oxidised LDL can
IL-1B
promoting endothelial pyroptosis, dysfunction, and increased

trigger inflammasome activation and local release,
permeability to lipids (74). Notably, there is crosstalk between
apoptotic and pyroptotic pathways in plaques. Macrophages
initially undergoing apoptosis due to ER stress may progress to
pyroptosis if caspase-1 is activated—a process called apoptosis-
associated speck-like protein containing a CARD (ASC)-mediated
pyroptosis. This leads to abundant inflammasome activation in
cholesterol- and cell debris-rich lesions.

A hallmark of advanced plaques is the necrotic core,
comprising remnants of numerous pyroptotic macrophages. This
region is highly pro-thrombotic and destabilises plaques, making
them prone to rupture and clinical events. Pyroptosis is believed
to enlarge the necrotic core by causing rapid foam cell lysis and
the release of prothrombotic factors such as tissue factor.
Additionally, IL-18 from pyroptotic cells can induce apoptosis in
surrounding VSMCs, further weakening plaque structure. In
contrast, controlled, non-inflammatory apoptosis of macrophages
can benefit early plaque regression; however, pyroptosis shifts
this balance toward inflammation and instability. In essence,
pyroptosis transforms relatively stable lipid storage into highly

inflammatory, rupture-prone plaques.

5.3 Clinical and translational insights

Recognition of the inflammasome-pyroptosis-IL-1B axis has
shaped new therapeutic strategies. The CANTOS trial using
canakinumab, an IL-1B inhibitor, was the first to demonstrate
that blocking this cytokine can significantly reduce major
cardiovascular events in patients with prior MI and elevated
This
inflammasome-driven IL-1B—mainly from plaque macrophages

inflammation (22, 73). finding strongly implicates
—in atherogenesis and its complications. While canakinumab
targets IL-1B broadly and not specifically pyroptosis, its success
has spurred interest in upstream interventions. Colchicine, which
suppresses inflammasome assembly and activity, has also shown
efficacy in reducing cardiovascular events in patients with
chronic coronary disease and post-MI (75). Experimental NLRP3
inhibitors, such as MCC950, have shown promise in preclinical
models: in hyperlipidaemic mice, MCC950 reduces plaque size
and complexity, at least partly by preventing macrophage
pyroptosis and necrotic core formation (70). This suggests that
therapies targeting NLRP3 may stabilise plaques by preserving
death toward less

macrophage viability or shifting cell
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inflammatory mechanisms. Therapies that enhance cholesterol
efflux (e.g, HDL mimetics) may also reduce pyroptosis by
alleviating cholesterol crystal burden in foam cells.

Biomarker development is ongoing. Elevated IL-18 levels are
associated with higher cardiovascular risk and may help identify
patients likely to benefit from anti-IL-1 or anti-inflammatory
therapy (76). Measurement of GSDMD or caspase-1 activity in
blood cells might serve as indicators of systemic inflammasome
activation in atherosclerosis, though this remains investigational.
Importantly, not all inflammasome activity is harmful: some
studies suggest that complete NLRP3 deficiency does not always
decrease atherosclerosis, possibly due to compensation by
alternative inflammatory pathways. Thus, patient selection and
combination therapy may be necessary. Another relevant
consideration is the role of infectious agents. Pathogens such as
periodontal bacteria have been linked to NLRP3 activation in
arteries, implying that infection control may indirectly reduce
pyroptosis within plaques (77).

In conclusion, pyroptosis is a central process in the formation
and destabilisation of atherosclerotic lesions. Targeting the
inflammasome-pyroptosis pathway—via inhibition of upstream
(NLRP3, GSDMD), or
downstream cytokines (IL-1B, IL-18)—represents a promising

triggers, key proteins caspase-1,

strategy to prevent or treat atherosclerotic CVDs.

6 Hypertension

6.1 Inflammatory paradigm and pyroptosis
in hypertension

Hypertension is the most prevalent modifiable risk factor for
cardiovascular morbidity and mortality worldwide, classically
defined by a persistent elevation in systolic and/or diastolic blood
pressure (78). Accumulating evidence has established chronic low-
grade inflammation as a central contributor to the development
and maintenance of hypertension, with increased infiltration of
immune cells and elevated pro-inflammatory cytokines detectable
in both hypertensive patients and animal models (53, 79). Among
these, IL-18 and IL-18 are consistently elevated in essential
hypertension and act as key mediators of vascular inflammation
and end-organ damage (53). Recent studies have confirmed
overactivation of the inflammasome and pyroptotic pathways in
the cardiovascular and renal complications associated with
hypertension. For example, downregulation or pharmacological
inhibition of key inflammasome components (such as NLRP3 or
caspase-1) markedly attenuates blood pressure elevation in various
hypertensive animal models (80). Meanwhile, research with two
PH rat models and hypoxic human pulmonary arterial smooth
muscle cells (hPASMCs) indicates that pyroptosis contributes to
pulmonary vascular fibrosis in pulmonary hypertension, with
caspase-1 activation and STAT1-mediated PD-L1 upregulation in
smooth muscle cells playing key roles in disease progression (81).
Thus, role of pyroptosis
pathogenesis not only provides mechanistic insight but also offers

elucidating the in  hypertension

novel therapeutic opportunities.

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1629016

6.2 Molecular mechanisms linking
hypertensive stimuli to pyroptosis

Common hypertensive stimuli—including elevated angiotensin
II (Ang II) and high dietary salt—elicit excessive production of
ROS. ROS triggers dissociation of thioredoxin-interacting protein
(TXNIP), which subsequently binds and activates the NLRP3
inflammasome (82). Sustained activation of this Ang II/ROS/
TXNIP/NLRP3 axis in hypertensive states drives pyroptotic cell
death and robust local inflammation in target organs such as the
heart, vasculature, kidney, and brain (82). In vitro studies
demonstrate that Ang II exposure induces NLRP3 activation and
IL-1B production in tubular epithelial cells in a dose- and time-
dependent manner, which can be mitigated by ROS scavenging
or NLRP3 knockdown (83). These data collectively support the
concept that pyroptosis is a key intermediary between classic
hypertensive insults and subsequent target organ damage (82).

6.3 Pyroptosis in cardiovascular and renal
target organ damage

Renal involvement is a hallmark of hypertension-related end-
Ang II and high salt
mitochondrial dysfunction and excessive ROS production in

organ damage. exposure induce
renal tubular epithelial cells, activating NLRP3 and promoting
pyroptotic cell death (83). In murine models, NLRP3 knockout
protects against tubular injury and proteinuria during chronic
Ang 1I
inflammasome in hypertensive nephropathy (83). Salt-sensitive
hypertension models (such as 1 K/DOCA/salt mice and Dahl

salt-sensitive rats) display marked activation of renal NLRP3

infusion, confirming the pathogenic role of the

inflammasome and IL-1B production, which are attenuated by
genetic or pharmacological inhibition of NLRP3 (e.g., MCC950)
(80, 84). Notably, blockade of IL-1 signalling with anakinra in
such models significantly reduces blood pressure and renal
fibrosis, further substantiating the role of IL-13 as a mediator of
hypertensive renal injury (85).

6.4 Central nervous system inflammasome
activation

Emerging evidence indicates that the central nervous system,
particularly key regulatory nuclei within the hypothalamus, is
susceptible to inflammasome activation in hypertension. Rodent
studies show that high-salt diets induce activation of microglia
and NLRP3 inflammasome in the hypothalamic paraventricular
nucleus (PVN), promoting neuroinflammation and heightened
sympathetic outflow (86). Selective blockade of NLRP3 within
the PVN dampens local inflammatory responses, attenuates
sympathetic excitation, and delays blood pressure elevation (86).
While these findings are mainly limited to animal studies, they
provide mechanistic insight into the contribution of central
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neuro-inflammation to hypertension and suggest new potential
targets for intervention.

6.5 Translational and therapeutic
perspectives

Given the central role of pyroptosis in hypertensive target
organ damage, targeting the inflammasome-pyroptosis axis
represents a promising therapeutic avenue. Preclinical studies
have demonstrated that pharmacological inhibition of the NLRP3
inflammasome (e.g., MCC950) effectively reduces blood pressure
and attenuates cardiac and renal injury in a variety of
hypertensive models (80). Similarly, IL-1 receptor antagonists
such as anakinra confer blood pressure-lowering and organ-
protective effects (85). While broad-spectrum anti-inflammatory
agents like colchicine have shown efficacy in reducing
cardiovascular events in coronary artery disease, their ability to
inhibit inflammasome assembly provides a rationale for their
Notably,

monoclonal antibodies targeting IL-1f (such as canakinumab)

ongoing evaluation in hypertension (25, 87).
have reduced recurrent cardiovascular events in large clinical
trials, despite having little direct effect on blood pressure,
that

hypertension-related

suggesting inflammasome  inhibition may improve

outcomes even in the absence of
antihypertensive effects per se (22).

In summary, the evidence to date underscores pyroptosis as a
pivotal link between classical hypertensive stimuli and
downstream end-organ damage. Targeting this pathway holds
promise for the dual aims of blood pressure reduction and organ
protection, ushering in a potential paradigm shift towards
integrated “anti-hypertensive plus anti-inflammatory” therapy.
Future clinical trials will be essential to define the safety, efficacy,
and optimal patient populations for such strategies in the

management of hypertension.

7 Cardiac arrhythmias

Atrial fibrillation (AF), the sustained

arrhythmia, is increasingly recognised as a condition with a

most common
strong inflammatory component, where inflammasome-mediated
pyroptosis plays a pivotal role in both electrical and structural
atrial remodeling. Seminal work by Yao et al. demonstrated that
NLRP3 inflammasome activation in atrial cardiomyocytes directly
promotes AF by fostering ectopic firing, atrial fibrosis, and
creating a substrate for sustained arrhythmia (88). Consistently,
atrial biopsies from patients with chronic AF reveal increased
expression of the active caspase-1 p20 subunit and higher levels
of IL-1f and IL-18 in both tissue and serum compared to
individuals in sinus rhythm, correlating with AF burden and
persistence (9, 89). Mechanistic insights reveal that NLRP3
activation in atrial myocytes impairs calcium handling through
CaMKII signaling and disrupts connexin-mediated conduction,
thus promoting electrical remodeling and reentry circuits (90).
GSDMD-mediated pyroptosis has been directly linked to
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GSDMD
N-terminal fragment in murine atria increased AF susceptibility,

arrhythmogenesis: enforced expression of the
promoted IL-1B release, and triggered macrophage recruitment
(91).
especially in post-cardiac surgery patients, has been causally
implicated in triggering postoperative AF through promoting

Furthermore, epicardial adipose tissue-derived IL-18,

local inflammation and atrial fibrosis (92). Clinical studies
further confirm that AF patients typically present with elevated
inflammasome cytokines. Elevated IL-1B and IL-18 predict AF
persistence or recurrence after ablation, and inflammatory
markers such as CRP and IL-6 are associated with increased risk
of AF, especially following cardiac surgery (89, 93). Importantly,
factors such as oxidative stress, obesity, diabetes, aging, and gut
dysbiosis can all prime or activate the NLRP3 inflammasome in
atrial tissue, highlighting a convergence of metabolic and
inflammatory risk (94-97).

GSDMD plays a pivotal pathogenic role in the development of
atrial fibrillation (AF). On one hand, it forms membrane pores in
atrial cardiomyocytes, facilitating the release of interleukin-1f
(IL-1B), triggering  local
promoting atrial fibrosis, and recruiting macrophage infiltration
(93, 98). On the other hand, NT-GSDMD anchors to the

mitochondrial membrane, compromising its structural integrity

thereby inflammatory responses,

and leading to mitochondrial dysfunction with excessive release
of reactive oxygen species (ROS). Mitochondria-derived ROS
disrupt intracellular calcium homeostasis, enhance sarcoplasmic
reticulum calcium release, and increase the likelihood of ectopic
electrical activity (99, 100). In addition, ROS activate the NLRP3
inflammasome pathway, which upregulates potassium channels
(e.g, Kvl.5),
myocytes,
Moreover, mitochondrial damage results in the release of
mitochondrial DNA (mtDNA), which activates the cyclic GMP-
AMP synthase (cGAS)-stimulator of interferon genes (STING)
further amplifying (93).
Collectively, these events promote atrial fibrosis, immune cell

shortens action potential duration in atrial

and contributes to atrial electrical remodeling.

pathway, inflammatory responses

infiltration, and electrical instability, thereby providing a
pathological substrate for the initiation and maintenance of atrial

fibrillation (Figure 2).

7.1 Translational and therapeutic
perspective

These insights into inflammasome-pyroptosis pathways offer
promising therapeutic implications for arrhythmia management.
Pharmacological inhibition of NLRP3 with compounds such as
MCC950 has been shown to prevent electrical remodeling and
reduce AF inducibility in animal models (88, 101, 102). In the
clinical setting, anti-inflammatory agents like colchicine have
demonstrated efficacy in reducing the incidence and recurrence
of post-operative and post-ablation AF, as confirmed by meta-
analyses (103, 104). Other interventions, including IL-1B blockers
(e.g., canakinumab), statins, and RAAS inhibitors, have shown
variable but generally protective effects, likely mediated through
oxidative stress

attenuation of upstream inflammatory or
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FIGURE 2

Mechanistic pathways linking pyroptosis to the development of atrial fibrillation. Activated gasdermin D (GSDMD) promotes the development of AF
through both membrane pore formation and mitochondrial injury. Upon cleavage, the N-terminal fragment (NT-GSDMD) forms pores in the
plasma membrane of atrial cardiomyocytes, facilitating the release of interleukin-1p
infiltration, and atrial fibrosis. Simultaneously, NT-GSDMD translocates to the mitochondrial membrane, leading to mitochondrial dysfunction and
overproduction of reactive oxygen species (ROS). These ROS disrupt intracellular calcium homeostasis, enhance sarcoplasmic reticulum (SR)
calcium release, and increase the risk of ectopic electrical activity. ROS also activate the NLRP3 inflammasome, upregulating potassium channels
(e.g., Kvl.5), shortening action potential duration, and promoting atrial electrical remodeling. Additionally, mitochondrial damage causes the
release of mitochondrial DNA (mtDNA), which activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway,
further amplifying the inflammatory response. Together, these events drive structural remodeling, immune cell infiltration, and electrical instability,
creating a pro-arrhythmic substrate for the initiation and maintenance of AF.

(IL-1pB), which triggers local inflammation, macrophage

signaling (105-107). Notably, IL-1 blockade after AF cardioversion
may reduce recurrence, though larger trials are needed (108).
Lifestyle interventions such as weight loss, improved glycaemic
control, and exercise may also blunt atrial inflammasome
activation and thus reduce AF risk, supporting a holistic
management paradigm. In patients with HF or HFpEEF, targeting
inflammasome signaling can also lower AF vulnerability and
arrhythmic 109).
evidence indicates that inflammation, particularly via the
NLRP3-caspase-1-GSDMD/IL-1B/IL-18 axis, is a central driver

of both electrical and structural remodeling in AF. Targeting

remodeling (102, Collectively, mounting

these pathways—pharmacologically or through upstream risk
modification—represents a promising adjunct to conventional
rhythm and rate control strategies, particularly in patients with
high inflammatory burden or comorbid metabolic disease.

8 Conclusion

Multiple forms of cell death—including pyroptosis, apoptosis,
necroptosis, and ferroptosis—contribute to the pathogenesis of
cardiovascular diseases through distinct molecular mechanisms and
cellular processes (110-116), as summarized in Table 1. Pyroptosis
represents a pivotal inflammatory cell death pathway that bridges
innate immune activation with irreversible cardiac and vascular
injury. Increasing evidence highlights its substantial involvement in
the initiation and progression of diverse CVDs, including MI,
myocarditis, HF, atherosclerosis, hypertension, and arrhythmias. By
amplifying local and systemic inflammation through gasdermin-
mediated membrane rupture and cytokine release, pyroptosis drives
adverse tissue remodelling and clinical deterioration. Recent
experimental and early translational studies suggest that targeting
key components of the pyroptotic machinery—such as NLRP3,
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caspases,
improve outcomes in CVDs. This is summarized in the Schematic

and gasdermins—may attenuate organ damage and

Tlustration, which outlines the role and mechanism of pyroptosis in
cardiovascular diseases. Nonetheless, significant challenges remain,
including the need for precise biomarkers, improved understanding
of disease- and cell-specific roles, and the development of selective,
safe inhibitors suitable for clinical application. Further research into
the temporal and spatial regulation of pyroptosis and its interplay
with other death modalities will be essential for translating these
insights into effective therapies. Ultimately, modulating pyroptosis
holds promise as a novel avenue for CVDs intervention and
risk stratification.

Recent studies have highlighted pyroptosis-related molecules—
particularly gasdermin D (GSDMD), interleukin-1p (IL-1B), and
(IL-18)—
cardiovascular diseases (111). Circulating GSDMD levels are

interleukin-18 potential ~ biomarkers  for
elevated in patients with acute myocardial infarction and heart
failure, correlating with infarct size and inflammatory cytokine
profiles. Although ELISA kits for GSDMD, IL-1B, and IL-18 are
available with some achieving clinical-grade sensitivity, large-
scale, multicenter validation remains lacking (110). While IL-1f
and IL-18 are broadly elevated across various inflammatory
conditions, limiting their specificity for cardiovascular pathology,
GSDMD’s proximal role in the pyroptotic cascade may offer
(35).
standardization and reference range establishment are urgently
needed (34

biomarkers throughout disease onset, progression, and resolution

improved  diagnostic  precision However,  assay

). Moreover, the dynamic temporal patterns of these

are not yet fully characterized. Future prospective studies should
aim to elucidate their diagnostic and prognostic utility and assess
their integration with established cardiac biomarkers, such as
troponins natriuretic enhance

and B-type peptide, to

cardiovascular risk stratification.
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TABLE 1 Comparative characteristics of pyroptosis, apoptosis, necroptosis, and ferroptosis in cardiovascular diseases.

Key molecules Morphological Inflammatory Role in CVDs Therapeutic targets
features
Pyroptosis Caspase-1/4/5/11, Cell swelling, membrane pore Yes Myocarditis, Myocardial NLRP3 inhibitors (e.g., MCC950),
GSDMD, GSDME, formation, lysis infarction, Heart failure, caspase-1 inhibitors (e.g., VX-765),
NLRP3 Atherosclerosis, Arrhythmia GSDMD blockers
Apoptosis Caspase-3/7, Bcl-2 Bax | Cell shrinkage, chromatin No Ischemia-reperfusion injury, Caspase inhibitors
condensation, membrane Heart failure
blebbing
Necroptosis RIPK1/RIPK3, MLKL | Organelle swelling, membrane Yes Ischemia/reperfusion injury, RIPK1 inhibitors (e.g., Nec-1) MLKL
rupture Heart failure, Diabetic inhibitors
cardiomyopathy
Ferroptosis GPX4, ACSL4, lipid Iron-dependent lipid Yes Doxorubicin-induced Ferrostatins, iron chelators, GPX4
ROS Fe2* peroxidation, mitochondrial cardiomyopathy, Heart failure, activators
shrinkage Atherosclerosis
Cardiac Disease Involved cells Mechanism
S S IL-1B o % IL-18
Cardimyocyte
Mltochondna
® \Myocardial I/IR R IL 18
IL 1[‘3
..

® Myocarditis Neutrophil

[ L

® Heart Failure

® Atherosclerosis
Macrophage

® Hypertension

O

® Arrhythmias VSMC

Pro IL 18

Pro-IL-18 N- Gasdermln

ee#

Gasdermin

AIM2 NLRP3

SCHEMATIC ILLUSTRATION

activation, forming a feed-forward loop.

The role and mechanism of pyroptosis in cardiovascular diseases. (Left) Pyroptosis plays a pivotal role in various cardiovascular diseases. (Middle) It
occurs in multiple cardiac cell types. (Right) Activation of the NLRP3 or AIM2 inflammasomes leads to the cleavage and activation of caspase-1,
-4, -5, or -11. These activated caspases then process pro-inflammatory cytokines pro-IL-18 and pro-IL-18 into their mature forms, IL-1B and IL-
18. In addition, caspase-1/4/5/11 cleave gasdermin D (GSDMD), releasing its N-terminal fragment, which forms pores in the plasma membrane
and mitochondria. Pore formation on the plasma membrane allows IL-1B and IL-18 to be released into the extracellular space, leading to
pyroptotic cell death. Mitochondrial pore formation increases the release of reactive oxygen species (ROS), which further amplifies inflammasome

Although extensive preclinical studies have demonstrated the
pathogenic role of pyroptosis in cardiovascular diseases such as
myocarditis, heart failure, and atrial fibrillation, the clinical
translation of anti-pyroptotic therapies remains challenging. Key
pathway inhibitors—including MCC950 (targeting the NLRP3
inflammasome) and VX-765 (a caspase-1 inhibitor)—have shown
therapeutic potential in animal models but are limited by
suboptimal pharmacokinetics, poor tissue specificity, and risks of
immunosuppression and infection during long-term use. A study
shows that while these agents can improve cardiac function and
attenuate remodeling, their narrow therapeutic windows and
potential to impair host immunity constrain their clinical
applicability (117). Moreover, the degree of pyroptosis activation
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varies across patient populations and disease stages, underscoring
the need for reliable biomarkers to guide patient stratification
and individualized therapy. A recent review highlighted that
circulating or tissue levels of IL-1B, IL-18, and cleaved GSDMD
may serve as valuable diagnostic and prognostic indicators (44).
Notably, pyroptosis often acts in concert with apoptosis and
necroptosis via the PANoptosis pathway, indicating that single-
target therapies may be insufficient to halt inflammation-driven
tissue injury. Current strategies increasingly —emphasize
combination regimens that integrate anti-pyroptotic agents with
anti-fibrotic or immunomodulatory therapies to enhance efficacy
(44, 118). Importantly, the timing of intervention is critical—
early-phase blockade may effectively

reverse  pathological
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remodeling, whereas late-stage inhibition may be less beneficial or
even detrimental. Furthermore, obstacles such as limited access to
cardiac tissue, a lack of standardized clinical endpoints, and
insufficient mechanistic validation continue to impede the
clinical development of anti-pyroptosis therapies.
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