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Background: Stroke is a leading cause of death and disability globally, with rising

prevalence driven by modern lifestyle factors. Despite the critical nature of stroke

as a time-sensitive condition requiring prompt diagnosis and intervention,

current pre-diagnostic practices are often limited by reliance on specific

patient symptoms, which can delay appropriate treatment, especially for large

vessel occlusions (LVO). This study introduces a novel approach utilizing

machine learning techniques to accurately identify stroke type and severity

using hemodynamic data. By enhancing the pre-hospital diagnosis process,

the research aims to optimize hospital selection and improve emergency

stroke care, ultimately ensuring timely treatment at specialized centers.

Methods: The methodology of this project consists on two phases. The first step

involves developing two specialized models to predict the type of stroke—

ischemic or hemorrhagic—along with a Bayesian rule to determine the final

classification. The second step, applied only in cases of ischemic stroke,

identifies whether the episode is a Large Vessel Occlusion (LVO) or not.

Results: The study developed a robust framework for detecting Large Vessel

Occlusions (LVO) during Emergency Medical Services (EMS) interventions. The

results for ischemic episodes showed that the LVO model achieved 91.67% recall

and 64.71% precision, outperforming the prehospital scale used as a reference in

all performance metrics except specificity. This model utilized only 20 out of the

271 original variables, with the most representative variables including blood

pressure, heart rate, oxygen saturation, and arm movement. The integration of

the LVO model for the complete sample with a Bayesian pipeline resulted in a

precision of 59% and a recall of 74%, while applying the LVO model to the entire

population yielded a precision of 60.60% and a recall of 80.19%.

Conclusion: The study concluded that the implementation of Machine Learning

(ML) techniques can significantly improve the diagnostic accuracy of stroke in the

context of Emergency Medical Services (EMS). The LVO model demonstrated

promising results, with an improvement in positive recall of approximately 10%–

13% compared to the baseline paradigm. The use of objective variables, such as

blood pressure and heart rate, was a key factor in this enhancement. The study

highlights the potential benefits of leveraging ML techniques in Emergency

Medicine, particularly in the diagnosis and management of stroke. The results

suggest that the LVO model can potentially augment the precision of stroke

diagnosis, facilitating more efficacious and timely interventions.
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1 Introduction

Stroke is one of the most prevalent and devastating medical

conditions worldwide, with one in four individuals expected to

experience a stroke during their lifetime (1). The prevalence of

stroke is increasing, fueled by modern lifestyle factors such as

sedentary behavior, unhealthy diets, and aging populations. This

growing public health concern underscores the urgent need for

advancements in diagnostic and treatment approaches. Stroke

remains the leading cause of death among women and a major

contributor to adult disability globally. Its consequences range

from significant physical and cognitive impairments to a

considerable reduction in quality of life or even death. Given its

profound impact, stroke is often regarded as a critical time-

sensitive medical emergency where prompt diagnosis and

treatment are paramount for ensuring favorable outcomes (2).

Early and accurate diagnosis of stroke plays a pivotal role in

determining the course of treatment and improving the patient’s

prognosis. Broadly, strokes are categorized into ischemic, caused

by the obstruction of blood flow to the brain due to clots, and

hemorrhagic, resulting from blood vessel rupture. Among

ischemic strokes, large vessel occlusions (LVO) are particularly

severe due to their potential to compromise larger areas of brain

function. Effective management of these conditions hinges on

specialized treatment pathways: hemorrhagic strokes often

require blood pressure control, minor ischemic strokes may

benefit from fibrinolytic therapy, and LVO cases typically

demand mechanical thrombectomy. However, not all healthcare

facilities are equipped to provide thrombectomy or advanced

neuroimaging capabilities, creating a pressing need for

prehospital tools that can triage and prioritize patients effectively.

In Spain, the implementation of the stroke code system

addresses these challenges by employing prehospital scales, such

as the Madrid Direct scale (3, 4), to assess the need for

thrombectomy during emergency response. However, these tools

rely heavily on observable clinical symptoms, which may lead to

under- or over-triage in cases of LVO (5), delaying timely

intervention and necessitating secondary transfers. Such

limitations highlight the potential of machine learning (ML) to

revolutionize prehospital stroke care.

The application of Machine Learning (ML) in stroke medicine

offers immense promise, with algorithms capable of analyzing

complex datasets—ranging from neuroimaging and clinical

parameters to wearable and hemodynamic data. ML has already

demonstrated its utility in stroke research (6), from improving

diagnostic precision to predicting outcomes and optimizing

treatment plans. Its ability to uncover latent patterns in large

datasets and make real-time predictions can enhance decision-

making and streamline workflows in emergency medical services

(EMS). Recent studies have explored the use of ML for stroke

diagnosis, including the analysis of biosignals such as ECG.

Ensemble models have shown strong performance in detecting

cardiac abnormalities from ECG data (7) LSTM networks have

been successfully combined with clinical parameters to predict

stroke-related conditions (8). Additionally, ML models using

hemodynamic data have shown potential for automatic stroke

classification in intensive care settings (9). However, most of

these studies are limited to in-hospital environments and are not

designed for real-time application in the field.

Recent efforts have explored the feasibility of ML-based stroke

diagnosis in prehospital settings. Kummer et al. (10) applied natural

language processing (NLP) to paramedic narratives to detect general

stroke presence during EMS encounters. While their model

improved recognition rates, it did not distinguish between stroke

subtypes or identify large vessel occlusion (LVO), a critical factor in

triage for thrombectomy. Ong et al. (11) combined ML and NLP to

analyze radiology reports, achieving good performance in classifying

ischemic stroke and determining lesion location. However, this

method is reliant on imaging reports and thus not applicable to the

EMS phase, where real-time, sensor-based data is essential.

Other studies have trained deep learning models on ECG

signals to detect stroke (12) and demonstrated the use of NLP

techniques to identify stroke patients from emergency

department triage notes (13). ML has also been used to predict

stroke-related outcomes, including the identification of key

prognostic factors from electronic health records (EHRs) (14)

and the estimation of stroke onset time from imaging data (15,

16). These studies illustrate the versatility of ML in stroke care,

yet most remain anchored in hospital workflows and lack direct

application to emergency transport contexts.

The application of ML in prehospital stroke care is promising, but

it also presents unique challenges such as limited access to data,

computational resources, and reliable network connections in

ambulances. Integrating ML into clinical workflows requires robust

preprocessing, real-time computation, and seamless integration with

existing protocols, while hemodynamic data collected during patient

transport introduces complexities like signal noise and variability.

Despite these challenges, ML can provide accurate and timely

diagnosis, reducing the time from stroke onset to treatment,

improving patient outcomes, and decreasing the economic burden on

healthcare systems. A ML-based framework combining clinical and

hemodynamic data can support automated triage and optimized

hospital routing, potentially revolutionizing prehospital stroke care.

This work leverages ML algorithms to classify stroke type

(ischemic vs. hemorrhagic) and identify severity (LVO vs. non-

LVO) using hemodynamic and clinical data gathered during

EMS transport. By integrating ML with genetic algorithms for

variable selection, the study aims to create a more objective and

accurate pre-diagnostic tool, enabling EMS professionals to make

informed transport and treatment decisions. The interdisciplinary

nature of this approach, blending clinical expertise with cutting-

edge ML techniques, underscores its potential to transform

stroke management and improve patient outcomes in resource-

constrained, prehospital settings.

2 Materials and methods

2.1 Study design and included datasets

For this observational study, we prospectively collected data on

patients who underwent prehospital stroke code activation by
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SUMMA112 in Madrid throughout 2022. All stroke codes activated

by EMS were included in this analysis.

The Madrid Stroke Code is activated for patients presenting

with suspected acute stroke symptoms. Additionally, patients

must exhibit a current neurological deficit at the time of

assessment, characterized by at least one of the following

symptoms: sudden numbness, weakness, or paralysis of the face,

arm, or leg on one side of the body; sudden confusion; difficulty

speaking or understanding speech; acute vision loss in one or

both eyes; severe, abrupt headache with no apparent cause, often

accompanied by nausea and vomiting not attributable to other

conditions; or impaired gait, loss of balance, or coordination.

Exclusion criteria for Stroke Code include the following: a time

lapse of more than 24 h since the onset of symptoms; a patient with

significant pre-existing dependency; a clinical situation

characterized by severe and irreversible illness that limits life

expectancy; and moderate to severe dementia.

Data collection followed a structured protocol in which each

patient was monitored using a Lifepack 15 monitor from Stryker,

pre-installed in EMS ambulances. Patients were connected to the

monitor for a continuous 10min period, during which key

physiological parameters were recorded. The monitoring data was

then automatically transferred from the monitor to a dedicated

EMS tablet. Alongside physiological data, EMS physicians

completed a comprehensive clinical profile for each patient,

detailing relevant clinical indicators and initial assessments.

Data transfer was conducted in batch mode, with all information

automatically uploaded to a centralized data repository where it was

securely stored. The raw physiological data, recorded in the

proprietary .pco format, was subsequently converted into multiple

XML files, each representing distinct aspects of the patient’s

monitored data. This conversion enabled a structured and

standardized format for later analysis and facilitated linking the

data with additional clinical information.

Once the prehospital data was compiled, follow-up information

was gathered from hospital clinical records post-treatment,

including details on stroke type, severity, treatment administered,

and mortality. Patient confidentiality was rigorously protected,

with all identifying information hashed to anonymize personal

identifiers in compliance with data protection standards.

The diagnosis and treatment of patients were determined

through a thorough review of their clinical histories, which were

accessed following hospital admission. This prospective analysis

involved examining detailed records of each patient’s symptoms,

diagnostic tests, treatments administered, and overall progression

of their conditions. Access to these clinical histories allowed for

an accurate assessment of each case, enabling the healthcare

team to identify patterns, evaluate the effectiveness of treatments,

and make informed decisions regarding patient care. In Figure 1

the complete process is described.

The study protocol received approval from the local research ethics

committee (22-07-21, acta CEIm 14/21, Registration number 4570).

2.1.1 Clinical data

The clinical dataset, referred to as Delfos, contains 256 variables

and encompasses 2,490 stroke code episodes. A comprehensive list of

FIGURE 1

Overview of data collection during stroke code activation. This diagram illustrates the workflow and sources of data acquisition initiated when a stroke

code is activated. Data collection begins with prehospital care, including vital signs and initial assessments captured by emergency medical services

(EMS). Upon hospital arrival, additional clinical variables, neurological evaluations, and electronic health record (EHR) data are integrated.
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these variables, along with their descriptions and characteristics, is

provided in Supplementary Table S1. To summarize, the dataset

includes both categorical and numerical variables, with varying

levels of completeness.

The Delfos dataset originates from EMS tablets, requiring

extensive preprocessing to ensure data quality and consistency.

Key steps in this process are outlined below:

1. Normalization of EMS descriptions. Fields such as medical

history, nursing notes, and treatment descriptions were

standardized by removing special characters and converting

text to uppercase. Using text extraction techniques, new

variables were created, replacing the original ones. Examples

include:

• Specific flags for the administration of drugs (e.g., urapidil,

atropine, labetalol, etc.).

• General flags for drug administration.

• Flags indicating atrial fibrillation, prior strokes, and

anticoagulant use.

2. Imputation of missing values. Variables representing clinical

scales (e.g., consciousness level, limb strength, and sensitivity)

were treated by imputing missing values with Not Evaluated.

3. Conversion to ordinal variables. Categorical variables with

hierarchical relationships were transformed into ordinal scales

to better capture their progression. Examples include:

• Levels of consciousness (Comatose to Conscious).

• Orientation metrics (Time, Person, Place).

• Symptom-related variables such as facial paralysis

and hemiparesis.

4. Duplicate handling. Event duplicates were resolved by

concatenating textual variables, retaining the most severe

diagnosis for ordinal variables, and selecting maximum values

for numerical entries. Patient ID duplicates were excluded if

identifiers were missing.

5. Variable filtering. Variables with high missingness,

redundancy, or irrelevance to modeling objectives

were removed.

6. Minimal missing data strategy. Variables with minor missing

values were left untreated to avoid bias introduction.

The dataset’s overall completeness varies, with notable gaps in

specific variables. For instance:

• The Madrid Direct scale features 608 missing values,

constituting approximately 24.4% of its entries.

• Incorrect entries account for 5.2% of the dataset.

These figures underscore the critical role of preprocessing.

2.1.2 Hemodynamic monitoring data

The hemodynamic monitoring data is structured in proprietary

PCO files, later transformed into XML format. The data spans

three primary sources:

• TrendData.xml: Continuous measurements recorded every 30 s,

including variables such as heart rate, oxygen saturation, blood

pressure, and ST-segment metrics.

• 12-Lead N_Waveform.xml: Ten-second waveforms for each of

the 12 ECG leads, stored separately.

• 12-Lead N.xml: Automatic interpretations and measurements

derived from ECG data.

The hemodynamic dataset includes thousands of observations per

patient, with vital signs captured at high frequency. However,

preprocessing steps were necessary to standardize file formats

and resolve inconsistencies. This continuous information has

been transformed into static data by obtaining statistical variables

such as mean, median, maximum and minimum values, or

variation rates.

To ensure analytical continuity, the clinical and hemodynamic

datasets were merged by patient IDs and timestamps. This process

facilitated the alignment of clinical symptoms with hemodynamic

responses, forming the basis for advanced modeling.

Detailed descriptions of the variables in the hemodynamic

monitoring data set are provided in Supplementary Table S2.

This table includes summaries of variable types, missingness

percentages, and examples of recorded values. For example,

systolic blood pressure readings range from 80 to 200 mmHg,

with a mean of 135 mmHg.

2.1.3 Clinical histories
The clinical histories dataset serves as a crucial component in

this study, providing detailed diagnostic and treatment

information for each patient. This dataset facilitates the creation

of predictive models by supplying labeled data for machine

learning algorithms. The dataset consists of 2,177 patient records,

each containing key medical details related to stroke diagnosis,

large vessel occlusion (LVO), and treatment interventions.The

collected variables and their descriptions are presented in

Supplementary Table S3.

• CIPA (Patient ID Hashed): A unique identifier for each patient,

ensuring anonymization and data protection. This variable is

stored as a salt hashed string and has no missing values.

• HOSPITAL (Hospital patient is transferred to): The name of

the hospital where the patient received treatment. This

categorical text field provides insights into hospital

distribution and potential variations in treatment protocols.

A small percentage (0.42%) of values are missing.

• DATE (Date of incident): The date on which the stroke event

occurred, recorded in a standardized date format. This is a

fundamental temporal variable for analyzing trends and time-

sensitive aspects of stroke care. No missing values are present.

• STROKE TYPE (Type of stroke): A polytomous categorical

variable that classifies the stroke as ischemic, hemorrhagic, or

other. This is a key variable for distinguishing between

different stroke mechanisms and their respective treatments.

Approximately 4.09% of values are missing.

• LVO (Large Vessel Occlusion): A dichotomous categorical

variable indicating whether the ischemic stroke involves a

large vessel occlusion (Yes/No). LVO is a critical factor in

determining eligibility for mechanical thrombectomy. Missing

values account for 4.27%.

• TROMBOLISIS (Thrombolysis treatment): A dichotomous

variable that indicates whether the patient received

thrombolysis (Yes/No). Thrombolysis is a first-line treatment
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for ischemic stroke within the therapeutic window. Missing

values account for 4.27%.

• THROMBECTOMY (Thrombectomy treatment):

A dichotomous variable specifying whether the patient

underwent mechanical thrombectomy (Yes/No). This

intervention is primarily used for LVO cases. Missing values

account for 4.27%.

• EXITUS (Death of patient): A dichotomous variable indicating

whether the patient died during hospitalization (Yes/No). This

variable provides an essential endpoint for outcome analysis.

The highest percentage of missing values (14.88%) is observed

in this variable.

This dataset includes information from 2,177 patients, comprising

320 cases of hemorrhagic stroke (14.70%), 1,347 cases of ischemic

stroke (61.87%), and 89 cases with missing stroke type data

(4.09%). Among ischemic stroke patients, 50.63% were classified

as having Large Vessel Occlusion (LVO), a critical parameter in

determining emergency treatment strategies.

The structured dataset enables model training and validation,

supporting the development of an efficient machine learning-

based stroke classification system. By integrating this dataset with

hemodynamic monitoring and clinical data, this study aims to

enhance early stroke detection and triage in prehospital settings.

2.2 Data strategy

After preprocessing the three previous datasets, all information

is merged into a master dataset. This dataset includes only stroke

episodes that are accurately labeled and contain at least one

variable from either clinical data or hemodynamic monitoring. In

Figure 2, a description of all three sources Final dataset obtained

consists of 271 variables and 2,036 observations. No further pre-

processing has been applied to the total dataset, meaning missing

values are present in the data.

The decision to retain missing values rather than imputing

them was made to avoid introducing bias into the results.

Imputation techniques, while commonly used, can potentially

distort the true distribution of variables, leading to unreliable

conclusions in machine learning models. Instead, this study

employs techniques that can manage missing values effectively

during the modeling phase.

To address missing data, two main strategies are considered:

• Handling missing data within models: Some machine learning

algorithms, such as decision trees and gradient boosting

methods, can handle missing values natively. Additionally,

ensemble techniques can incorporate missingness as an

informative feature.

• Eliminating incomplete instances: In cases where missing data

significantly impacts a variable’s integrity, affected observations

may be removed from the dataset. This is particularly relevant

when a large proportion of missing values exists for critical

variables, where imputation is not feasible without

bias introduction.

Maintaining missing values requires careful consideration during

model training and evaluation. The presence of incomplete data

may affect model generalization, necessitating robust validation

strategies. Future work may explore advanced techniques such as

multiple imputation, missing-indicator methods, or probabilistic

modeling to refine the approach to handling missing data in

stroke prediction models.

2.3 Modeling strategy

The primary objective of this study is to predict the type of

stroke and determine whether it involves a large vessel occlusion

(LVO). To achieve this goal, we developed a structured and

systematic workflow using custom Python scripts. These scripts

are designed to be adaptable, facilitating the creation and

refinement of each predictive model in an efficient and

reproducible manner. In Figure 3, this model strategy is described.

2.3.1 Workflow overview

The modeling process begins with the construction of a master

dataset, integrating preprocessed clinical and hemodynamic data.

The initial step involves selecting observations with complete

data. Given the extensive number of variables and the presence

of missing values, an iterative filtering process is applied. This

method generates multiple datasets, each containing different

levels of completeness, allowing for a flexible approach to data

inclusion. The process operates in a loop:

• The first iteration includes only cases where all variables are

fully available, ensuring high data quality but reducing the

number of observations.

• Subsequent iterations progressively relax completeness

constraints, allowing a higher number of observations at the

expense of additional missing values, down to a threshold of

5% completeness.

This iterative strategy balances the trade-off between data richness

and dataset size, ensuring that models are trained on informative

but sufficiently large samples.

2.3.2 Preprocessing pipeline

For each generated dataset, a preprocessing pipeline is

implemented to ensure consistency and enhance model

performance. The preprocessing steps include:

• Variable selection: Removal of identifiers (e.g., patient IDs,

timestamps) that do not contribute to model learning.

• Encoding categorical variables: Transformation of categorical

data into numerical formats suitable for machine

learning algorithms.

• Standardization of numerical variables: Normalization of

continuous features to ensure uniform scaling across input data.

Following preprocessing, the dataset is split into training and test

subsets, with 70% of the data allocated for model training and 30%

reserved for validation. To mitigate the risk of overfitting,

techniques such as stratified sampling and cross-validation

are employed.

Ríos Delgado et al. 10.3389/fcvm.2025.1629853

Frontiers in Cardiovascular Medicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1629853
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


2.3.3 Feature selection with genetic algorithms

Given the large number of variables (features) in the dataset

and the relatively small number of patient cases, we used a

feature selection process to reduce complexity and improve

model performance. This was done using an advanced method

called the Non-dominated Sorting Genetic Algorithm II

(NSGA-II), a type of evolutionary optimization that mimics

natural selection to find the best combinations of features.

NSGA-II helps us optimize two key goals at the same time:

• Minimize the number of selected features, while avoiding

duplication or overlap in the information they provide.

• Maximize the performance of the classification model, aiming

for high accuracy without overly increasing computational time.

The algorithm works by creating and evolving a “population” of

feature sets across multiple generations. It includes several

important steps:

• Non-dominated sorting: Groups different feature sets based on

their performance, identifying the best ones across multiple

objectives (accuracy and simplicity).

• Crowding distance: Maintains variety in the solutions,

preventing the model from focusing too narrowly on one type

of feature set.

• Tournament selection: Selects the most promising feature sets to

be “parents” for the next generation based on performance

and diversity.

• Genetic operations: Modifies and combines feature sets to create

new ones. These include:

FIGURE 2

Overview of main datasets and distribution characteristics. This figure summarizes the primary datasets used in the study, including key distributional

statistics such as the total number of patients, prevalence of ischemic and hemorrhagic stroke cases, and availability of features across datasets. The

visualization highlights differences in sample size, class imbalance, and completeness of variables relevant to predictive modeling.

FIGURE 3

Methodological workflow for feature selection and predictive modeling. The diagram outlines the methodological pipeline used to develop predictive

models for stroke subtype classification and severity.
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○ Mutation rate: Randomly alters a small number of

features to introduce new possibilities.
○ Elitism: Keeps the best-performing feature sets unchanged

for the next round to preserve progress.
○ Annihilation: Removes poorly performing sets to avoid

wasting resources on unhelpful solutions.
○ Elite replacement: Replaces underperforming feature sets

with stronger ones from earlier rounds.

2.3.4 Classification models and hyperparameter

tuning
To ensure robust performance, multiple supervised

classification algorithms are tested, including:

• Decision Trees

• Random Forests

• Gradient Boosting Machines (GBM)

• k-Nearest Neighbors (KNN)

• Logistic Regression

• Support Vector Machines (SVM)

Hyperparameter tuning is conducted via three-fold cross-

validation, employing either Bayesian optimization or random

search depending on model complexity.

In addition to conventional tuning, the models are further

optimized by modifying the objective score function to reflect the

clinical relevance of classification errors. Specifically, four score

functions—F1 and AUC for balanced datasets, and precision or

recall for highly unbalanced datasets—are selectively applied. These

functions are chosen based on the clinical importance of reducing

either false positives or false negatives. This cost-sensitive approach

ensures that the learning process aligns with the study’s clinical goals.

2.3.5 Model integration and validation
The approach followed is structured into three specialized

algorithms:

• First model for identifying ischemic stroke episodes.

• Second model for detecting hemorrhagic strokes.

• Third model for classifying large vessel occlusions (LVOs)

among ischemic cases.

Once individual models are trained, their performance is evaluated

on the test dataset by comparing predictions to the groundtruth.

However, to improve global classification accuracy, the first two

models (ischemic vs. hemorrhagic) are combined using a Naive

Bayes ensemble approach. If an ischemic stroke is detected, the

LVO classification model is subsequently applied to determine

whether the patient requires thrombectomy. This multi-step

approach enhances the reliability of prehospital stroke diagnosis

and facilitates efficient triage for specialized treatment.

By following this comprehensive modeling strategy, the study

ensures that predictive models are both accurate and generalizable,

ultimately contributing to improved stroke care and patient outcomes.

2.3.6 Ischemic and hemorrhagic classification

model
The classification models for ischemic and hemorrhagic strokes

were developed using the entire dataset, which presented a

significant class imbalance. Given the higher prevalence of

ischemic strokes compared to hemorrhagic strokes, the model

required techniques to counteract bias and improve generalizability.

To address this imbalance, the Synthetic Minority

Oversampling Technique (SMOTE) was applied. SMOTE

generates synthetic samples of the minority class (hemorrhagic

strokes) by interpolating existing data points, thereby increasing

the representation of this class without merely duplicating

observations. This process ensures a more balanced dataset,

leading to improved model training and reducing the risk of bias

toward the majority class.

For the development of two specialized models—one dedicated

to ischemic stroke classification and the other to hemorrhagic

stroke detection—both precision and recall were optimized to

ensure a well-balanced performance. The focus on these metrics

is crucial, as a model with high precision minimizes false

positives, whereas high recall ensures that critical cases are not

overlooked, particularly in a medical emergency setting where

early stroke identification is vital.

The validation phase involved a rigorous comparison of

predicted labels vs. actual labels to assess model performance.

The evaluation metrics included:

• Accuracy: Measures the overall correctness of predictions.

• Precision (positive predictive value): Determines the proportion

of correctly identified ischemic or hemorrhagic strokes out of all

predicted cases.

• Recall (sensitivity): Evaluates the model’s ability to correctly

identify all true ischemic and hemorrhagic cases.

• F1-score: Provides a harmonic mean between precision and

recall, ensuring a balanced evaluation metric.

By employing SMOTE and optimizing key performance metrics,

the developed models enhance the reliability of prehospital stroke

classification, improving decision-making for emergency medical

services (EMS) and facilitating timely intervention for

stroke patients.

2.3.7 LVO classification model
The large vessel occlusion (LVO) classification model was

developed exclusively using ischemic stroke cases. Unlike the

ischemic vs. hemorrhagic classification model, this dataset was

already balanced, eliminating the need for oversampling or

undersampling techniques. Instead, the focus was placed on

optimizing feature selection and model performance to enhance

predictive accuracy.

To assess model efficacy, the Receiver Operating

Characteristic (ROC) curve was selected as the primary

optimization metric. The ROC curve provides a comprehensive

measure of the model’s diagnostic ability, evaluating its

sensitivity and specificity across various classification thresholds.

By maximizing the area under the ROC curve (AUC-ROC), the

model ensures robust discrimination between LVO and non-

LVO cases.

Validation of the LVO model was conducted through a multi-

faceted approach. In addition to comparing predicted labels with

actual clinical diagnoses, the model’s performance was
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benchmarked against the Madrid Direct Scale, a widely used

prehospital assessment tool for determining thrombectomy

eligibility. However, since the Madrid Direct Scale was originally

designed to predict thrombectomy candidacy rather than LVO

presence, its direct applicability to this study was limited.

To address this limitation, a modified version of the Madrid

Direct Scale was developed specifically for LVO identification.

The primary modification involved the exclusion of the age

factor, which is typically included in the original scale to assess

thrombectomy eligibility. Since age serves as a determinant for

treatment eligibility rather than as a predictor of LVO itself, its

removal allows for a more precise assessment of vascular

occlusion status.

By refining the classification process and leveraging advanced

performance metrics, this model enhances prehospital triage

accuracy, ensuring that stroke patients with LVO receive timely

intervention at thrombectomy-capable centers.

2.3.8 Bayesian classification model
The Bayesian classification model is designed to enhance the

accuracy of stroke classification by integrating probabilistic

inference techniques. The LVO model is developed specifically

using ischemic stroke episodes, as its primary focus is the

identification of large vessel occlusions (LVOs). However, in

contrast, the datasets for ischemic and hemorrhagic classification

present a significant class imbalance due to the higher incidence

of ischemic strokes.

To mitigate this imbalance, two highly specialized models are

constructed:

• A model optimized for ischemic stroke prediction, trained to

distinguish ischemic strokes from hemorrhagic episodes with a

high degree of precision.

• A separate model optimized for hemorrhagic stroke detection,

ensuring accurate identification of these less frequent but

clinically significant cases.

These two models are then combined using a Naive Bayes

classification approach. Naive Bayes is a probabilistic algorithm

that assumes conditional independence between features, making

it particularly suitable for integrating multiple models with

distinct prediction targets. By applying this method, the system

effectively uses the outputs of both models, leveraging their

strengths to improve classification accuracy.

The probabilistic framework of Naive Bayes allows for dynamic

weighting of model outputs based on prior probabilities, reducing

the influence of misclassified instances and enhancing overall

robustness. This approach ensures that the classification system

remains adaptable, providing reliable prehospital stroke detection

and supporting emergency decision-making processes.

By integrating Bayesian inference into the classification

pipeline, this model enhances stroke subtype differentiation,

ultimately improving prehospital triage and optimizing patient

management strategies.

Bayesian model is trained with a sample defined by the features

needed for the previous models (ischemic, and hemorrhagic),

yielding a larger sample, that will be splitted to obtain two new

samples training and test sample to avoid overfitting.

3 Results

3.1 Data analysis

In the master dataset, sex and age are the only demographic

variables available; all other features are clinical in nature. As a

preliminary step before model development, these demographic

variables are analyzed to assess their distributions and their

potential associations with the primary outcome labels: stroke

type (ischemic vs. hemorrhagic) and large vessel occlusion (LVO)

status (yes vs. no).

The top-left panel of Figure 4 shows that ischemic strokes are

more prevalent in older patients, with a peak incidence between

ages 75–85. Hemorrhagic strokes occur less frequently and show

a slightly flatter distribution across age groups. To statistically

assess this difference in age distributions between stroke types,

Shapiro–Wilk test is used. Results indicated a violation of the

normality assumption in both stroke-type groups (all p , 0:05),

warranting the use of a non-parametric test. Therefore Mann–

Whitney U test (Wilcoxon rank-sum test) is applied, which

yielded a U statistic of 216,653.5 and a two-tailed p-value of

0.051. At the conventional 5% significance level, the difference in

age distributions between ischemic and hemorrhagic stroke

patients did not reach statistical significance. However, at the

10% significance level, this difference is considered statistically

significant, suggesting a borderline effect of age on stroke type.

The top-right panel of Figure 4 displays the sex distribution by

stroke type. Ischemic strokes are more common than hemorrhagic

strokes in both males and females. To further examine the

association between patient sex and stroke type, a x
2 test of

independence was implemented. The test produced a x
2 statistic

of 4.7748 and a p-value of 0.0289. As p , 0:05, we reject the null

hypothesis of independence and conclude that there is a

statistically significant, although small, association between sex

and type of stroke.

The bottom left panel of Figure 4 shows the age distribution

stratified by LVO status. Both LVO-positive and LVO-negative

cases exhibit a right-skewed age distribution, with slightly higher

frequencies of LVO-negative cases at older ages. Again, due to

non-normality (confirmed via Shapiro–Wilk test, p , 0:05),

Mann–Whitney U test is used to compare the groups. Results

indicated non-normal distributions (all p , 0:05). Therefore, a

Mann–Whitney U test was used to compare age distributions

between LVO-positive and LVO-negative patients. The resulting

U statistic was 325,088.5, with a two-tailed p-value of 0.1906.

This indicates no statistically significant difference in age

distributions between patients with and without LVO at the 5%

significance level.

Finally, the bottom right panel of Figure 4 illustrates the

distribution of the LVO status by sex. LVO-negative cases are

more common in both sexes, but notably, females have a higher

proportion of LVO-positive cases compared to males. The
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relationship between sex and LVO was assessed using a x2 test of

independence. The x
2 test resulted in a test statistic of 11.9786

and a p-value of 0.000538. Given that this p-value is well below

0.05, we reject the null hypothesis and conclude that there is a

statistically significant association between sex and LVO status.

3.2 Ischemic and hemorrhagic models
development

In order to develop the most effective predictive models

for ischemic and hemorrhagic stroke classification, the

methodological pipeline described in Section 2.3 was

implemented. This process involved generating multiple datasets

with varying characteristics to evaluate model performance under

different conditions. Specifically, three distinct datasets were

created, each differing in the number of variables and observations:

• A dataset consisting of 94 variables and 92 observations.

• A dataset with 46 variables and 632 observations.

• A dataset containing 27 variables and 1,341 observations.

For each of these datasets, a Genetic Algorithm (GA) was applied

to optimize both the selection of features and the performance of

the predictive models. The GA aimed to identify the most

relevant subset of features while maximizing the selected

performance metrics.

For the ischemic stroke classification model, the best results

were achieved using a Decision Tree classifier optimized for

recall, prioritizing the correct identification of actual positive

cases. The hyperparameters that produced the best performance

for the Decision Tree were:

• Criterion: Gini index

• Maximum depth: 2

• Minimum samples per leaf: 10

n contrast, the most effective model for hemorrhagic stroke

classification is a K-Nearest Neighbors (KNN) classifier,

optimized for precision—emphasizing the accuracy of positive

predictions by minimizing false positives. The model achieved its

best performance with the following configuration:

• Number of neighbors (k): 2

The predictive performance of the ischemic and hemorrhagic

models was assessed based on several key metrics, including

training best metric performance, area under the curve (AUC),

test accuracy, and test F1-score. The results are summarized in

Table 1, where it can be observed the comparison between the

metrics during training and with a external sample testing. The

ischemic stroke classification model, optimized for recall,

achieved a recall of 86.11%, with a cross-validation mean of

0.861, a standard deviation of 0.0393, and a 95% confidence

interval of [0.764, 0.959]. The hemorrhagic stroke classification

model, optimized for precision, achieved a precision of 79.63%,

with a cross-validation mean of 0.796, a standard deviation of

0.0729, and a 95% confidence interval of [0.615, 0.977].

FIGURE 4

Demographic distributions by stroke type and large vessel occlusion (LVO). (A) Age distribution stratified by stroke type, showing higher prevalence of

ischemic strokes in older individuals. (B) Sex distribution by stroke type, with a higher proportion of ischemic strokes in both males and females. (C)

Age distribution by LVO status, indicating a slightly younger peak in non-LVO cases. (D) Sex distribution by LVO status, with a higher proportion of non-

LVO cases in both sexes.
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Among the three datasets analyzed, the highest performance

for both ischemic and hemorrhagic models was achieved when

using the dataset containing 94 variables and 92 observations.

After applying feature selection using GA, the ischemic model

was optimized using only 18 variables, which accounted for

18.56% of the original dataset. The hemorrhagic model, on the

other hand, required just 7 variables, representing a mere 7.22%

of the total features initially available.

The most representative features for each model are presented

in Figure 5 calculated by the mean value of SHAP for each

observation. The hemorrhagic model (KNN) show that almost

all 7 variables have a representative impact. However, when

analyzing the decission tree results it can be observed a

diminished relevance of certain features, as quantified by their

mean SHAP values, This can be attributed to the model’s

inherent hierarchical partitioning strategy. Dominant predictors,

such as “Age” and “Systolic NIBP Delta Value,” effectively

reduce data impurity at higher decision nodes. This initial,

potent stratification significantly constrains the remaining

variance within subsequent sub-nodes, thereby limiting the

scope and impact of other features for further splits.

Consequently, while potentially contributing to overall model

performance within specific data partitions, the average

individual contribution of these less impactful features across

the entire dataset is attenuated, resulting in lower mean SHAP

values. In same figure also illustrates a SHAP analysis

conducted on an independent validation sample, which is larger

than the sample used for model training and testing. This

independent dataset was constructed by selecting the minimal

number of variables necessary, thereby increasing the number

of available observations.

To assess model robustness and generalization, we evaluated

performance on an independent test set using precision, recall,

and F1-score. To quantify variability, we applied a bootstrap

approach with 1,000 resamples to estimate confidence intervals

(CIs) for these metrics. Results, detailed in Table 1, show that

the ischemic model has strong positive predictive power, while

the hemorrhagic model achieves perfect precision but

lower sensitivity.

The results indicate that the Decision Tree model effectively

classifies ischemic strokes, while the KNN model is more suitable

for hemorrhagic stroke classification. The relatively high

specificity and sensitivity observed in the ischemic model suggest

a strong predictive ability, whereas the hemorrhagic model,

despite achieving perfect positive predictive value, exhibited

lower sensitivity.

Calibration curves were calculated to evaluate how well the

predicted probabilities from the ischemic and hemorrhagic stroke

models align with actual outcomes. Unlike metrics such as

accuracy or AUC, calibration assesses the reliability of probability

estimates, which is essential for clinical decision-making. Well-

calibrated models enable more trustworthy risk communication

and treatment planning. Results obtained are in Figure 6 showing

that both models demonstrate reasonable calibration across

probability bins, with slight overestimation observed at higher

predicted probabilities.

Beyond conventional performance metrics, calibration

assessments, and validation results, evaluating potential biases in

machine learning models is critical—particularly in clinical

contexts where predictions may influence medical decisions or

patient outcomes. In this analysis of the stroke subtype

classification models, the presence of bias with respect to input

variables was assessed. As shown in Figure 5, the hemorrhagic

stroke model only includes clinical features directly related to

symptoms or diagnostic indicators. Therefore, by design, it

cannot express bias toward any demographic group, as no

sensitive or demographic variables are part of the model’s

feature set.

In contrast, the ischemic stroke model incorporates age as one

of its predictive variables. Age is inherently linked to stroke

prevalence and may introduce bias into the model’s behavior.

This relationship was preliminarily examined in Section 3.1,

where statistical analysis suggested a borderline significant

difference in age distributions between ischemic and hemorrhagic

stroke populations, dependent on the threshold chosen for

significance. To further investigate this, age was discretize into 10

quantile-based bins and applied a chi-squared test to test for

independence between age group and stroke type. The results

(x2 ¼ 23:27, p ¼ 0:0056, df ¼ 9) showed that the null hypothesis

(p , 0:01) can be rejected, confirming that stroke type is

significantly associated with age bin in our dataset. To evaluate

model fairness across age groups, three key metrics are studied:

• Selection Rate: the proportion of individuals in a group who are

predicted as positive (i.e., classified as ischemic stroke).

TABLE 1 Comprehensive performance metrics of the ischemic and
hemorrhagic stroke models across both training and testing phases.

Metric Ischemic
model

Hemorrhagic
model

Training metrics

Train best metric 86.11% 79.63%

Train area under the curve (AUC) 91.29% 98.92%

Testing metrics

Test area under the curve (AUC) 66.67% 89.58%

(95% CI) (44.94%–61.19%) (45.18%–68.27%)

Test F1-score 91.67% 73.68%

(95% CI) (80.05%–89.40%) (77.17%–86.82%)

Test accuracy 85.71% 64.29%

(95% CI) (63.25%–87.69%) (64.74%–78.20%)

Negative predictive value (negative

precision)

50.00% 28.57%

(95% CI) (34.65%–46.90%) (13.63%–41.93%)

Positive predictive value (positive

precision)

91.67% 100.00%

(95% CI) (80.22%–89.26%) (79.64%–91.33%)

Specificity (negative recall) 50.00% 100.00%

(95% CI) (45.00%–72.05%) (79.64%–91.33%)

Sensitivity (positive recall) 91.67% 58.33%

(95% CI) (72.13%–88.76%) (20.00%–56.00%)

The table presents model performance during training (top section) and validation on the

testing sample (bottom section). Reported metrics include accuracy, AUC, sensitivity,

specificity, predictive values, and class-wise F1-scores. Where available, 95% confidence

intervals (CI) are included.
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FIGURE 5

SHAP analysis for ischemic and hemorrhagic stroke prediction models. (A) SHAP analysis for the K-Nearest Neighbors (KNN) model applied to

hemorrhagic stroke prediction. The left panel shows the global feature importance ranked by the mean absolute SHAP values. The right panel

presents a SHAP summary plot, illustrating the distribution of SHAP values for each feature across all observations. Color indicates feature value

(red = high, blue = low), and position on the x-axis indicates impact on model output. (B) SHAP analysis for the Decision Tree model used in

ischemic stroke prediction. The left panel displays global feature importance based on the mean absolute SHAP values, with Age and Systolic NIBP

Delta Value showing the highest contributions. The right panel shows the corresponding SHAP summary plot, visualizing the feature influence

distribution across individual predictions.

FIGURE 6

Calibration curves for stroke type models. (A) Calibration curve for ischemic model. (B) Calibration curve for hemorrhagic model. The x-axis represents

the mean predicted probability, and the y-axis represents the observed fraction of positives. The diagonal dashed line indicates perfect calibration.
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• True Positive Rate (TPR): the proportion of actual positives

correctly identified—measuring the model’s sensitivity within

each group.

• False Positive Rate (FPR): the proportion of actual negatives

incorrectly identified as positives—indicating the model’s error

rate per group.

These metrics are calculated across the 10 age bins, as shown in

Table 2. The Demographic Parity Difference, which measures the

disparity in selection rates across groups, is approximately 0.885.

This large gap is driven by nearly universal positive predictions

in bins 1–3 (100% selection rate) vs. much lower rates in older

bins. The Equalized Odds Difference, which evaluates differences

in both TPR and FPR across groups, is 1.0, reflecting extreme

variations between the youngest and oldest age bins (FPR =

100% for bin 1 and FPR = 0% for bin 10).

These results show that the model learned to consistently

predict positive for younger individuals (bins 1–3 and partially

bin 4), likely because those bins contained a higher proportion of

stroke cases—particularly hemorrhagic strokes—in the training

data. Conversely, bins 5–6 (middle-aged individuals) saw few

positive predictions and almost no false positives, suggesting

lower prevalence in this group and a more conservative model

behavior. In the older bins (7–10), the model’s behavior becomes

more stable, with selection rates and error rates falling within a

moderate and consistent range. This model bias reflects the

underlying population imbalance rather than intrinsic

algorithmic unfairness. The model’s decisions are consistent with

the observed distribution of stroke cases in the dataset. To reduce

this bias, a possible mitigation strategy is to apply reweighting

techniques to reduce overrepresentation of younger individuals

and increase the influence of underrepresented groups, such as

older adults. This may affect overall accuracy, as the model

currently reflects the prevalence patterns in the training data.

3.3 LVO model development

To construct the optimal model for Large Vessel Occlusion

(LVO) classification, the methodological pipeline outlined in

Section 2.3 was employed. Initially, four distinct datasets were

generated depending on the number of the percentage of

informed variables, each varying in the number of observations:

• 129 variables and 21 observations

• 94 variables and 94 observations

• 46 variables and 437 observations

• 27 variables and 1,350 observations

For each dataset, a Genetic Algorithm (GA) was utilized to

optimize both the feature selection process and the classification

model. The most effective model identified was a Gradient

Boosting classifier optimized for AUC with the following

hyperparameters:

• Number of estimators: 600

• Maximum depth: 4

• Learning rate: 0.1

The performance metrics of the selected model are summarized in

image Table 3, highlighting its training results. The Large Vessel

Occlusion (LVO) classification model, optimized for AUC,

achieved an AUC of 59.84%, with a cross-validation mean of

0.598, a standard deviation of 0.1411, and a 95% confidence

interval of [0.448, 0.949].

Among the four datasets evaluated, the dataset containing 94

variables yielded the highest model performance. Following

feature selection, 20 variables were retained, representing 20.83%

of the original feature set. The final set of selected features, along

with their respective importance scores, is presented in Figure 7.

TABLE 2 Fairness analysis across age bins for the ischemic stroke model
based on selection rate, sensitivity (true positive rate), and false
positive rate.

Age bin Selection rate TPR FPR

1 100.0% 100.0% 100.0%

2 100.0% 100.0% 100.0%

3 100.0% 100.0% 100.0%

4 81.5% 74.1% 86.8%

5 13.1% 29.4% 6.8%

6 11.5% 10.3% 13.0%

7 33.3% 48.4% 20.0%

8 17.7% 16.7% 19.2%

9 14.8% 18.8% 10.3%

10 16.0% 26.7% 0.0%

TABLE 3 Comprehensive performance metrics of the LVO model, Madrid
Direct standard approach, and its modified version, across both training
and testing phases.

Metric LVO model Madrid
direct

Madrid direct
modified

Training metrics

Train best metric 59.84% – –

Train area under the curve

(AUC)

100.00% – –

Testing metrics

Test area under the curve

(AUC)

74.31% – –

(95% CI) (70.83%–88.67%)

Test accuracy 70.83% – –

(95% CI) (66.25%–84.61%)

Test F1-score (positive

class)

75.86% 54.55% 58.33%

(95% CI) (66.67%–84.61%)

Negative predictive value

(negative precision)

85.71% 57.14% 58.33%

(95% CI) (68.57%–90.63%)

Positive predictive value

(Positive precision)

64.71% 60.00% 58.33%

(95% CI) (59.52%–82.60%)

Specificity (negative recall) 50.00% 60.67% 58.33%

(95% CI) (55.52%–80.00%)

Sensitivity (positive recall) 91.67% 50.00% 58.33%

(95% CI) (71.10%–92.10%)

The table presents training metrics (top section) for the LVO model and testing metrics

(bottom section) for all three approaches. Metrics include AUC, accuracy, predictive

values, sensitivity, specificity, and class-wise F1-scores, with 95% confidence intervals (CI)

shown when available.
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The same figure also illustrates a SHAP analysis conducted on an

independent validation sample, which is larger than the sample

used for model training and testing. This independent dataset

was constructed by selecting the minimal number of variables

necessary, thereby increasing the number of available

observations. A comparison of both analyses revealed that the

most influential variables included minimum systolic blood

pressure, heart rate, arm strength, and the median SpO2. To

further clarify feature contributions, SHAP values were computed

for each individual observation, providing insights into the

distribution and directional impact of each feature on the

model’s predictions.

The model’s predictive capability was further validated against

an independent test sample. To quantify variability, a bootstrap

approach was implemented with 1,000 resamples to estimate

confidence intervals (CIs) for these metrics. Table 3 compares

FIGURE 7

Feature importance and SHAP analysis for LVO model. (A) Feature importance derived from the Gradient Boosting model during the training phase,

quantified by the relative contribution of each feature to the model’s decision-making process. (B) SHAP analysis of the same model. The left panel

shows global feature importance ranked by the mean absolute SHAP values across all observations. The right panel presents the SHAP summary plot,

illustrating the distribution and direction of each feature’s impact on individual predictions. Color represents feature values (red ¼ high, blue ¼ low),

while horizontal position indicates the effect on model output.
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the LVO model’s performance against the Madrid Direct and

Madrid Direct Modified approaches, emphasizing key evaluation

metrics such as precision, recall, and F1-score. These results

indicate that the Gradient Boosting model provides a strong

predictive advantage over the comparative methods, particularly

in terms of sensitivity and negative predictive value.

Furthermore, the calibration curve is also calculated for the

LVO model to better understand how the predicted probabilities

align with actual outcomes. Results obtained are in Figure 8. The

model shows good reliability in high-confidence predictions,

where it tends to be accurate.

Finally, in addition to standard performance metrics, validation

results, and calibration curves, it is essential to assess the potential

biases present in the model. For the LVO detection model, sex is

the only demographic variable among the input features that

could introduce bias, as all other variables are related to clinical

symptoms or findings (variables in Figure 7). Accordingly, the

impact of sex on model performance was specifically evaluated.

The model shows a Demographic Parity Difference of 11.25%

and an Equalized Odds Difference of 8.13%, when stratified by sex.

Females are predicted to have a positive LVO outcome 59.2% of the

time, compared to 47.9% for males, indicating an 11.3 percentage

point gap. However, this difference mirrors the underlying data

distribution as the actual prevalence of LVO in females is 57%,

vs. 43% in males, which is a difference that is statistically

significant as reported in Section 3.1.

With respect to classification performance, the True Positive

Rate (TPR) is 83.1% for females and 75.0% for males, yielding an

8.1 percentage point difference, while the False Positive Rate

(FPR) is 37.4% for females and 34.7% for males, a 2.7 percentage

point difference. These differences are within acceptable

thresholds and indicate that the model maintains relatively

equitable performance across sexes. Therefore, while disparities

in prediction rates exist, they reflect the real-world distribution of

LVO cases in the population rather than any intrinsic bias

introduced by the model. As a conclusion, the model is not

biased with respect to sex, and the observed differences are

attributable to genuine demographic patterns in the dataset.

3.4 Final model

The final step in our modeling process involves implementing

the Naïve Bayes algorithm, which is particularly effective in

handling classification problems with imbalanced datasets. Since

class imbalance can lead to biased predictions that favor the

majority class, optimizing the prior probability is crucial to

ensuring that the model fairly represents both ischemic and

hemorrhagic cases. Additionally, proper optimization prevents

overfitting to the training data and enhances the overall

predictive performance. The final sample used to train the

Bayesian model consists of patients for whom the minimal set of

required variables to predict the probability of ischemic and

hemorrhagic stroke is available. This criterion allows us to

include a larger dataset, totaling 489 patients. From this sample,

70% (342 patients) is used for model training, while the

remaining 30% (147 patients) is reserved exclusively for

validation to assess model performance on unseen data.

To achieve the best possible classification accuracy, a grid

search approach was applied to identify the optimal prior

parameter. This technique systematically evaluates different prior

probability values and selects the one that yields the highest

predictive performance for the positive class. Figure 9 illustrates

FIGURE 8

Calibration curve for LVO model. The x-axis represents the mean predicted probability, and the y-axis represents the observed fraction of positives.

The diagonal dashed line indicates perfect calibration.
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the optimization process for the prior parameter in the Naïve

Bayes algorithm.

Through this optimization process, a prior of 0.6 was

determined to be the most effective for the positive class,

meaning that the model assigns a slightly higher probability to

ischemic cases. This adjustment improves sensitivity towards

ischemic predictions without excessively compromising

specificity. The performance metrics obtained from the optimized

Naïve Bayes model for the testing sample are summarized

in Table 4.

Results indicate a strong predictive ability for ischemic cases,

with an positive precision of 84.84% and a recall of 79.16%.

However, the hemorrhagic classification remains a challenge,

with a relatively lower precision and recall. This is expected given

the class imbalance in the dataset, where ischemic strokes are

more prevalent than hemorrhagic ones.

To comprehensively assess the model’s effectiveness, an

evaluation was conducted using three different patient samples.

These samples were carefully selected to analyze the

generalizability of the model across various clinical scenarios:

• Ischemic by bayes: Patients classified as ischemic using the

Naïve Bayes model based on their input features.

• Real ischemic: Patients with a confirmed ischemic stroke

diagnosis from medical records.

• Complete sample: A dataset containing both ischemic and

hemorrhagic patients to simulate a real-world clinical setting.

To ensure the reliability of the analysis, only patients with complete

and valid data for the LVO model were included. This criterion was

essential to maintain consistency in the evaluation process and to

avoid biases due to missing information.

To further examine the model’s predictive capabilities, we

evaluated the performance of the LVO model across these three

patient groups. The LVO model was applied separately to the

ischemic predictions made by the Naïve Bayes model, to real

ischemic cases, and to the complete dataset. This analysis allowed

us to compare how the LVO model behaves under different

input conditions and determine whether using the Naïve Bayes

model as a pre-filter impacts overall performance.

To further contextualize these results, the LVO model’s

performance was compared with a reference model. The

comparison highlights potential areas of improvement and helps

determine whether the Naïve Bayes-based filtering enhances

diagnostic accuracy. In Table 5, the analysis is conducted. The

first section defines the patient groups, with 198 patients

included in the first analysis, 266 in the second, and 320 in the

final analysis. The second section details the results of the LVO

model. The final section presents the results obtained by the

referenced model (Madrid Direct Modified). In this section, a

color-coded scheme is used to compare the performance of

FIGURE 9

Optimization of class prior for Bayesian classification model. Precision and recall curves for both hemorrhagic and ischemic stroke classes are plotted

against varying values of the class prior assigned to the positive class in a Bayesian model. The objective is to identify an optimal prior probability that

balances precision and recall for each class.

TABLE 4 Bayesian model performance metrics—precision and recall—for
positive class (ischemic) and negative class (hemorrhagic).

Metric Bayesian model

Negative predictive value (negative precision) 28.57%

Positive predictive value (positive precision) 84.84%

Specificity (negative recall) 37.03%

Sensitivity (positive recall) 79.16%

Metrics calculated in testing sample.
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the reference model with the LVO model: green indicates that the

reference model achieved significantly better results than the LVO

model (>5%), orange represents comparable performance (�5% to

5%), and red signifies that the reference model performed

significantly worse than the LVO model (, �5%).

4 Discussion

4.1 Principal findings

The primary objective of this study is to develop a robust

framework for detecting Large Vessel Occlusions (LVO) during

Emergency Medical Services (EMS) interventions to improve the

identification of thrombectomy candidates and avoid second

transfers that increase the time until the patient is treated. To

achieve this goal, three distinct models were designed, each

leveraging a subset of the most critical features from a

comprehensive set of demographic, clinical, and hemodynamic

characteristics. Table 6 provides a summary of all developed

models to facilitate a better understanding. Furthermore, the

utilization of evolutionary algorithms enabled the simultaneous

optimization of both model precision and the number of

variables employed.

The introduction of the Non-dominated Sorting Genetic

Algorithm II (NSGA-II) optimization technique played a pivotal

role in enhancing the performance of the Machine Learning (ML)

model. Leveraging the search capabilities of Genetic Algorithms

(GA), the model’s input features were fine-tuned, resulting in

improved classification accuracy. The GA’s exploration of a vast

solution space allowed for the identification of the optimal feature

set among the initial 271 variables. The implementation of NSGA-

II not only optimized the number of variables used but also

ensured the best possible model performance. This methodology

facilitated the creation of a comprehensive set of experiments,

wherein input variables, model selection, hyperparameters, and

NSGA-II parameters were optimized.

The ischemic model, which utilized a decision tree, achieved a

precision of 91.67% and a recall of 91.67%. However, the specificity

obtained was relatively low, at 50%. These results indicate that the

model exhibits a high capacity for identifying ischemic strokes,

with a high rate of false positives. This suggests that while the

model is effective in detecting true positives, it may also generate

a significant number of false positive.

In contrast, the hemorrhagic model demonstrated the lowest

quality in terms of precision results. This can be attributed to the

inherent imbalance present in the data, where only 10%–15% of

the sample consisted of hemorrhagic cases. The model achieved a

recall of 100% with a precision of 28.57%, indicating that it is

capable of identifying all hemorrhagic episodes, at the expense of

including a high number of false positives. This highlights the

challenges associated with developing models for rare events,

where the risk of false positives can be substantial.

These two models are the foundation to apply the final LVO

model. This model has shown promising results. The model

obtained a recall of 91.67% and a precision of 64.71%. To

contextualize these results, the Madrid Direct modified scale was

used as a baseline, which is a modification of the original scale

to predict LVO instead of thrombectomy. A comparison of the

model results revealed an increase in all performance metrics,

except for specificity, which was reduced by 8% as shown in

Table 3. However, sensitivity was improved by more than 30%.

From a clinical perspective, this enhancement means better

TABLE 5 Comparison of relevant metrics in three different populations.

Ischemic by
bayes

Real
ischemic

Complete
sample

Sample selected to conduct results comparison

Patients 323 523 523

Required variables 198 320 320

True ischemic N/A 266 N/A

LVO model results

Metrics No Yes No Yes No Yes

Precision 77.60% 59.00% 79.60% 74.00% 82.00% 60.60%

Recall 63.40% 74.00% 72.50% 80.95% 64.00% 80.19%

F1-score 69.00% 66.30% 75.92% 77.37% 72.02% 69.08%

Madrid direct modified

Metrics No Yes No Yes No Yes

Precision 73.10% 60.00% 70.00% 70.63% 75.00% 60.00%

Recall 68.00% 65.00% 72.59% 67.94% 69.00% 67.00%

F1-score 70.80% 62.00% 71.27% 69.26% 72.10% 64.00%

Ischemic episodes identified by Bayesian model, Real ischemic episode, and complete sample

including ischemic and hemorrhagic episodes. This table gathers the final results in an

independant sample and compares results to the Madrid Direct Modifies (Red—Significant

decrease in accuracy, Orange—Slight change in accuracy).

TABLE 6 Model card summary including intended use, best model and parameters, metric use to be optimized, test metrics, limitation and the number of
variables finally included.

Attribute Ischemic model Hemorrhagic model LVO model

Intended use Classification of stroke subtype focusing on

ischemic identification

Classification of stroke subtype focusing on

hemorrhagic identification

Classification of large vessel occlusion (LVO) in ischemic

episodes

Best model and

parameters

Decision tree

Gini criterion

max depth ¼ 2

min samples ¼ 10

K-Nearest Neighbors

k ¼ 2

Gradient Boosting

n estimators ¼ 600

max depth ¼ 4

learning rate ¼ 0:1

Optimization metric Recall Precision AUC

Test performance AUC: 66.67%

F1: 91.67%

AUC: 89.58%

F1: 73.68%

AUC: 74.31%

F1: 75.86%

Limitations Biased towards younger people Low NPV and sensitivity Needs improved calibration in middle probability ranges

Number of variables 18 7 20
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identification of actual LVO cases, which can reduce unnecessary

inter-hospital transfers and potentially shorten the time to

treatment. On the other hand, the slight decrease in specificity

may lead to an increased number of false positives, potentially

resulting in more patients being referred for further evaluation,

some of whom may not ultimately require specialized care.

In particular, the LVO model utilizes only 20 out of the 271

original variables. The most representative variables obtained include

blood pressure, heart rate, oxygen saturation, and arm movement.

Clinically, the inclusion of some of these variables aligns with those

used in widely adopted neurological scales such as the NIHSS (17),

while also incorporating novel hemodynamic variables that provide

additional insights. These variables facilitate stroke diagnosis, as

most of them are automatically obtained from monitors, rather than

relying on traditional clinical variables that can be subjective, such

as arm movement. The selection of these variables highlights the

importance of leveraging objective, quantifiable measures in the

development of predictive models for LVO.

The implementation of the models in isolation do not have the

expected value, being need the development of a pipeline to validate

all models. To achieve this, the ischemic and hemorrhagic models

were integrated with a Bayesian model to obtain the final decision.

The pipeline first determines whether a case is ischemic or not,

and subsequently, the LVO model is applied if an ischemic

episode is identified. This approach enables a more comprehensive

evaluation of the models’ performance.

To assess the final performance of the LVO model, three

distinct samples were defined: ischemic cases identified by the

Bayesian pipeline, actual ischemic cases, and a complete sample

comprising both ischemic and hemorrhagic cases. Results of this

evaluation, shown in Table 5 revealed that the complete pipeline

accumulated errors from multiple models, including the

hemorrhagic model, resulting in worse performance compared to

the LVO model applied to the entire sample. Specifically, the

complete pipeline achieved a precision of 59% and a recall of

74%, whereas the LVO model applied to the whole sample

yielded a precision of 60.60% and a recall of 80.19%.

However, the results obtained from the real ischemic sample

were slightly better than the results obtained when applied to the

whole sample. Positive precision is 74% vs. 60.60%, and negative

recall, is 72.50% vs. 64%. The positive recall obtained was similar,

with 80.95% vs. 80.19%. These findings suggest that the inclusion

of hemorrhagic episodes in the analysis led to a decrease in

performance, but the results were still superior to those obtained

by implementing the complete pipeline. This indicates that the

Bayesian pipeline, while useful for integrating the models, may

introduce additional errors that negatively impact the overall

performance of the LVO model. The main limitation of this

pipeline lies in the weakness of the hemorrhagic model, primarily

due to the limited number of episodes in the current sample. This

issue could be addressed by increasing both the overall dataset size

and the number of hemorrhagic cases.

The efficacy of the LVO model is underscored by a comparative

analysis with the Madrid Direct Modified, which serves as the

baseline paradigm in this study. An outstanding observation is that

the implementation of the LVO model yields an enhancement in

performance metrics across all three samples. Notably, a granular

examination of the entire pipeline reveals a significant improvement

in positive recall, with an increase of approximately 10% from a

baseline value of 65% obtained via the prehospital scale to a value

of 74% achieved by the LVO model. This improvement is further

accentuated when the LVO model is applied to the entirety of the

sample, resulting in a 13% increase in positive recall, from a

baseline value of 67% obtained by the scale to a value of 80%

obtained by the model. In addition, an increase in negative

precision was observed, with values going from 75% to 82%.

These findings collectively suggest that the integration of Machine

Learning (ML) techniques can precipitate a notable improvement in

the diagnostic accuracy of stroke in the context of Emergency

Medical Services (EMS), with the incorporation of objective

variables serving as a pivotal factor in this enhancement. The

utilization of ML models, such as the LVO model, can potentially

augment the precision of stroke diagnosis, thereby facilitating more

efficacious and timely interventions. Ultimately, the results of this

study underscore the potential benefits of leveraging ML techniques

in the realm of Emergency Medicine, with a particular emphasis on

the diagnosis and management of stroke.

However, to better understand the clinical relevance of this

study, it is essential to assess its impact from the patient’s

perspective. Under the current Madrid Stroke Code, Stroke Units

are geographically designated hospitals equipped to perform

thrombectomies and manage large vessel occlusion (LVO) strokes.

All other patients are transported to standard stroke-ready

hospitals, which treat both hemorrhagic strokes and non-LVO

ischemic strokes. However, when an LVO patient is initially sent

to a hospital without thrombectomy capabilities, a secondary

transfer is required—often introducing critical delays in care.

In the Madrid region, this secondary transfer process typically

takes around two hours, factoring in time for initial evaluation,

neuroimaging, and inter-hospital transport. Furthermore,

internationally, the median time from symptom onset to arrival

at the first hospital is between three and six hours (18), meaning

that these additional delays could push patients beyond the

recommended six-hour window for thrombectomy eligibility

(19). Avoiding secondary transfers can therefore play a crucial

role in ensuring timely treatment and improving patient outcomes.

While one theoretical strategy would be to route all suspected

stroke patients directly to Stroke Units, this would likely

overwhelm specialized resources, reducing availability for patients

who truly need advanced care. Instead, a more balanced and

efficient approach is to use predictive models for selective triage.

In our study, applying the LVO prediction model across the

entire population resulted in 80% of ischemic LVO patients

(Table 5) being correctly triaged and therefore could be correctly

transferred to Stroke Units, with only 20% requiring secondary

transfer. This represents a meaningful improvement over the

current Madrid Direct prehospital scale, which has a 33%

secondary transfer rate, implying a 13% relative reduction in

unnecessary inter-hospital transfers and a more streamlined patient

flow. Assuming that the 2,022 patient distribution is representative

Figure 2, and that all LVO patients are eligible for thrombectomy—

without considering exclusion criteria such as age or comorbidities
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—we estimate that approximately 86 patients per year in Madrid

could benefit from faster, more direct access to definitive treatment.

Although this analysis shows promising results, it is important to

acknowledge the trade-off of increased false positives. Our model

would result in 51% of extra patients being transported to Stroke

Units, compared to 44% under the current scale, indicating a 7%

increase in Stroke Unit patient load. Although this increase does

not directly lead to secondary transfers, it may place additional

pressure on limited specialized resources and potentially reduce the

availability of timely care for true LVO cases.

As a conclusion, this study shows the feasibility to develop and

evaluate a machine learning (ML)-based framework designed to

support prehospital stroke diagnosis. By leveraging data typically

available in prehospital settings, the proposed system aims to

enhance the accuracy of stroke identification, particularly in

differentiating large vessel occlusion (LVO) cases, without

disrupting established clinical protocols. This approach is designed

to complement existing triage scales, such as those currently used

in Madrid, which aim to identify patients who may benefit from

direct transfer to comprehensive stroke centers. Rather than

replacing the clinical judgment of emergency physicians, the

proposed framework serves as a decision-support tool, intended to

enhance diagnostic confidence and support more accurate patient

routing. To illustrate this integration, Figure 10 presents how the

current stroke code workflow could be augmented with ML model

outputs, following a structure similar to that of the existing

Madrid Stroke Code protocol (3). While this study successfully

proves that machine learning models can help on decision making,

still further work is required to obtain a practical software tool

that can be used in the clinical scenario.

4.2 Limitations

A key limitation of the proposed pipeline stems from the

reduced performance of the hemorrhagic model, which is largely

attributed to the limited number of hemorrhagic stroke episodes

in the dataset. Hemorrhagic strokes account for approximately

20% of all stroke cases, making them a minority class in this

context. This low prevalence results in an imbalanced dataset,

which significantly affects the model’s ability to generalize and

detect hemorrhagic cases effectively. While techniques such as

synthetic data generation might seem like a potential solution,

they can introduce biases or artifacts that risk corrupting the

model’s learning process—especially in critical applications where

high generalization capacity is essential.

Addressing this limitation requires increasing the number of

real hemorrhagic cases in the dataset. However, collecting a

sufficiently large and representative sample poses a considerable

challenge. It necessitates close coordination between emergency

medical services and hospital-based stroke care units, ensuring

consistent data capture across different stages of patient care.

This level of integration is logistically complex and resource-

intensive, but it is crucial to improve model performance and

ensure reliability in real-world clinical settings. A larger and

more balanced dataset would enable the development of more

robust models capable of accurately identifying both ischemic

and hemorrhagic strokes, ultimately contributing to faster and

more effective clinical decision-making.

4.3 Future work

Future efforts will prioritize expanding and enhancing the

dataset, with particular emphasis on increasing the number of

hemorrhagic stroke cases. A more balanced representation of

ischemic and hemorrhagic cases will improve the training

process and potentially reduce false positives—especially for rarer

stroke types. We are currently collecting data from 2023, which

will allow for an assessment of the models’ temporal robustness.

Given that the current models were trained on 2,022 data, it is

crucial to evaluate whether shifts in clinical or demographic

patterns—such as the preliminary observation of rising stroke

incidence and a trend toward younger patients—impact model

performance and generalizability. Moreover, adherence to a strict

data collection protocol has improved over time, suggesting that

the new dataset will not only be larger but also of higher quality.

Building on this improved dataset, future work will also explore

strategies to enhance model robustness and flexibility. This includes

integrating additional physiological signals and novel data sources

that may enrich the feature space. Advanced training techniques—

such as data augmentation, cost-sensitive learning, or synthetic

oversampling—will be investigated to better handle class

imbalances, ensuring reliable performance across stroke subtypes.

In parallel, efforts will continue toward real-world deployment,

with a focus on ensuring technical feasibility and clinical usability

in operational EMS settings. The models have been specifically

selected to run on Panasonic Toughbook CF-H2 tablets used by

SUMMA 112 personnel, operating on Windows 10 and integrated

with SITREM, the regional EMS case management and EHR

system. Each model remains computationally lightweight (14 KB

for k-NN, 17 KB for Decision Tree, and 750 KB for Gradient

Boosting), and a dedicated standalone application will be

developed to encapsulate the entire inference pipeline—from

variable transformation to prediction—functioning entirely offline

to ensure reliability in low-connectivity environments.

A user-centered visual interface will be developed to display

model predictions alongside confidence scores in an intuitive

dashboard. This interface will support, but not override, clinical

decision-making in the field. Its role is to enhance physician

judgment by providing timely, data-driven insights at the point

of care, with clear boundaries ensuring that final decisions

remain in the hands of attending medical personnel.

To evaluate real-world performance, the application will be

piloted in a single ambulance with oversight from one of the

study physicians, pending ethics committee approval. This pilot

deployment will allow for real-time validation of model

predictions based on continuously monitored physiological

parameters. Feedback from this phase will inform iterative

improvements in both model behavior and interface usability.

Depending on pilot outcomes, we aim to progressively scale

implementation across the SUMMA 112 fleet in Madrid.
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If clinical value is confirmed, updates to the Madrid Direct

protocol will be proposed and reviewed by the Foro Ictus of the

Comunidad de Madrid for potential official adoption.

Additionally, to promote model generalizability and ensure

adaptability across different EMS environments, we are pursuing

collaborations with emergency services in Portugal and Seville

(Spain). These partnerships aim to validate the models in diverse

operational contexts and guide the development of a monitor-

agnostic, scalable architecture informed by real-world data.

Lastly, future work will also explore ways to optimize interaction

among multiple models—such that the output of one algorithm

informs the next in a cohesive diagnostic chain. Careful coordination

FIGURE 10

Proposed integration of machine learning (ML) models into the prehospital stroke triageworkflow. The figure illustrates howML-based decision support can

be embedded within the existing Madrid Stroke Code protocol, similarly to how current clinical scales are used to guide hospital destination decisions.

(A) Diagram showing current stroke code protocol. (B) Machine Learning framework proposal to adapt current stroke code protocol.
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between models may reduce compounding errors and further enhance

overall diagnostic accuracy. This integrative approach brings us closer to

the practical implementation of machine learning–based stroke

detection and triage in routine emergency care.
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