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Acute ischemic stroke (AIS) may trigger a spectrum of cardiac complications 

spanning arrhythmias, troponin elevation, Takotsubo cardiomyopathy, heart 

failure, and myocardial fibrosis and other acute or chronic cardiac lesions. 

These complications seriously affect the prognosis of patients. Existing 

studies have shown that the excessive excitation of the sympathetic neural 

network after cerebral ischemic injury leads to an increase in catecholamine 

levels, which may be a key factor triggering neurogenic cardiac damage after 

AIS. Therefore, evaluating the trigger areas of sympathetic nerve excitation 

and monitoring related cardiac damage indicators play a key role in patient 

management. Inhibiting excessive excitation of the sympathetic nerve, 

alleviating inflammatory responses and oxidative stress, is expected to 

become the core strategy for the prevention and treatment of neurogenic 

cardiac injury after AIS. Future research still needs to deeply explore the 

mechanism of cardiotoxicity mediated by the sympathetic neuro- 

catecholamine system after AIS, and at the same time promote clinical trials 

targeting the mechanism to verify treatment paradigms through translational 

models. This review aims to provide a useful reference direction for 

subsequent in-depth research.
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GRAPHICAL ABSTRACT

AIS activates the sympathetic nervous system (SNS), releasing a large amount of catecholamines, inducing myocardial inflammation, oxidative stress, Ca2 

+ overload, mitochondrial dysfunction and myocardial cell apoptosis, and ultimately causing myocardial damage. Curbing excessive excitement of SNS 

and reducing catecholamine toxicity can help alleviate myocardial injury. The figure was constructed with Figdraw (https://www.figdraw.com).

1 Introduction

Stroke is a neurological disease with high disability and 

mortality rates, and has risen to become the second leading 

cause of death worldwide (1). Acute ischemic stroke (AIS) is the 

most common type of stroke, and patients have often 

accompanied high risk for cardiac-related complications after 

the onset of stroke (2, 3). These cardiac complications are one 

of the common systemic complications after stroke and have 

second only to direct neurological impairment in terms of 

lethality (4, 5).Secondary cardiac injuries after AIS are 

manifested by acute or chronic cardiac arrhythmias, cardiac 

systolic dysfunction, elevated troponin (with or without 

myocardial ischemia), Takotsubo syndrome, sudden cardiac 

death, heart failure (HF), and myocardial fibrosis, among other 

acute or chronic cardiac pathologies (6–11). This cardiac 

damage has been shown to be associated with dysregulation of 

the autonomic nervous system (ANS) after stroke (4, 12–14), in 

particular hyperexcitability of the sympathetic nervous system 

(SNS) triggering catecholamine upregulation (15). Excessive 

catecholamines have adverse effects on the heart. For instance, 

norepinephrine (NE) and isoproterenol (ISO) have been 

observed to cause significant myocardial damage (16–18). This 

neurogenic cardiac damage may be due to the sustained 

activation of α1 adrenergic receptors (α1-AR) and β1 adrenergic 

receptors (β1-AR) by catecholamines, which leads to coronary 

artery constriction, accelerated heart rate, and hypertension, 

which in turn reduces myocardial perfusion (19, 20). Reduced 

myocardial perfusion triggers myocardial ischemia, which 

further induces elevated intracellular levels of calcium ions (Ca2 

+) and an increased level of reactive oxygen species (ROS), 

leading to myocardial injury and cardiomyocyte apoptosis (21). 

However, there is a lack of systematic summaries and updates 

on the mechanisms of cardiotoxicity caused by SNS 

overexcitation and catecholamine release after AIS. Therefore, 

further understanding of the potential mechanisms of 

cardiotoxicity by sympathetic nervous (SN) excitation as well as 

excess catecholamines is important for exploring the treatment 

of cardiac injury after AIS. In this review, we focus on the 

mechanisms of cardiotoxicity of catecholamine release triggered 

by SNS excitation after AIS, with the aim of providing new 

ideas and directions for clinical treatment.

2 Activation of the SNS after AIS

Some specific regions of the forebrain cortex, limbic lobe, and 

brainstem are collectively involved in central sympathetic nervous 

(CSN) regulation. However, the factors involved in SNS activation 

after stroke are complex and may involve mechanisms such as injury 
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to key brain regions, in6ammatory responses, and oxidative stress. 

Therefore, our study systematically summarizes the major factors and 

their potential mechanisms of SNS activation after AIS (Figure 1).

Figure 1 Schematic diagram of SNS activation and cardiac 

damage after AIS. Ischemic injury to MPFC, ACC, insular 

cortex, amygdala, hypothalamus, PAG, PBN, NTS, NA, and 

VLM is a key factor for SNS activation after AIS. After AIS, 

neuroin6ammation and oxidative stress interweave with each 

other, jointly act and continuously activate the SNS, thereby 

leading to a sharp increase in catecholamine levels. 

Ultimately, it causes a series of cardiac damages such as 

arrhythmia, elevated troponin, cardiac dysfunction and HF. 

MPFC, medial prefrontal cortex; ACC, anterior cingulate 

cortex; PAG, periaqueductal gray; PBN, parabrachial nucleus; 

NTS, nucleus tractus solitarius; NA, nucleus ambiguus (NA); 

VLM, ventral lateral medulla; TNF-α, tumor necrosis factor-α; 

IL-1β, interleukin-1β; IL-6, interleukin-6; NOX, NADPH 

oxidase; COX, cyclooxygenase; XO, Xanthine oxidase; NOS, 

nitric oxide synthase; ROS, reactive oxygen species; RNS, 

Reactive Nitrogen Species.

2.1 Conduction pathways of the cardiac 
SNS

The SN is part of the ANS, which exhibits an extremely fine 

and complex anatomical configuration and functional layout in 

the brain and spinal cord. This intricate system, with the help of 

multiple neural network pathways, has had an important 

in6uence on the normal functioning as well as abnormal 

conditions of the cardiovascular system (14). The central 

autonomic nervous (CAN) network is structurally complex and 

includes projection pathways between the cerebral cortex, limbic 

system, and brainstem (22, 23). The SNS can be divided into the 

CSN network and the peripheral sympathetic nerve (PSN) 

network. While the CSN consists mainly of pathways that 

project from the paraventricular nucleus (PVN) of the 

hypothalamus to the rostral ventral lateral medulla (RVLM) and 

NE-containing cell populations in the pons (24–26). Among 

them, the RVLM, as a key center for the control of 

cardiovascular activity, plays a role in regulating heart rate and 

blood pressure by producing SN activity upon activation (27). 

FIGURE 1 

Schematic diagram of SNS activation and cardiac damage after AIS. Ischemic injury to MPFC, ACC, insular cortex, amygdala, hypothalamus, PAG, PBN, 

NTS, NA, and VLM is a key factor for SNS activation after AIS. After AIS, neuroinflammation and oxidative stress interweave with each other, jointly act and 

continuously activate the SNS, thereby leading to a sharp increase in catecholamine levels. Ultimately, it causes a series of cardiac damages such as 

arrhythmia, elevated troponin, cardiac dysfunction and HF. MPFC, medial prefrontal cortex; ACC, anterior cingulate cortex; PAG, periaqueductal gray; 

PBN, parabrachial nucleus; NTS, nucleus tractus solitarius; NA, nucleus ambiguus (NA); VLM, ventral lateral medulla; TNF-α, tumor necrosis factor-α; 

IL-1β, interleukin-1β; IL-6, interleukin-6; NOX, NADPH oxidase; COX, cyclooxygenase; XO, Xanthine oxidase; NOS, nitric oxide synthase; ROS, 

reactive oxygen species; RNS, Reactive Nitrogen Species. The figure was constructed with Figdraw (https://www.figdraw.com).
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These structures ultimately project to lateral horn motoneurons in 

the thoracic segment of the spinal cord and are transmitted via 

preganglionic fibers via the anterior spinal nerve roots and white 

traffic branches to the stellate ganglia of the parasympathetic 

trunk of the spinal cord, which subsequently emit 

postganglionic fibers that regulate cardiac activity (28, 29). In 

addition, neurons in the dorsal, ventral and lateral regions of 

the PVN and the RVLM can directly affect SN excitation by 

projecting directly to the medial-lateral aspect of the thoracic 

spinal cord (28, 30). Indeed, overexcitation of the SN has been a 

major concern for cardiac injury after AIS, and a large number 

of studies have revealed that overactivation of the CSN triggers 

cardiac injury after stroke (31–34).

Earlier, researchers recognized that the hypothalamus, insula 

cortex had the function of regulating SN activity (24, 35). With 

the development of neuroanatomy as well as imaging 

techniques, the ventral medial prefrontal cortex (vMPFC), 

insula, anterior cingulate cortex (ACC), hypothalamus, 

amygdala, and brainstem were found to be involved in the 

regulation of the ANS (22, 29, 36). Under stress, hypoxia, 

hypovolemia, and hypoglycemia, the vMPFC, insula, and ACC 

could activate the SNS by activating RVLM glutamatergic 

neurons via downward conductance (29). In addition, RVLM 

glutamatergic neurons can also be directly activated by these 

factors to trigger SN excitation (29). However, there was no 

comprehensive and systematic summary study on how SNS to 

be activated after AIS. Therefore, the present study aims to 

systematically summarize the activation factors of the CSN after 

AIS, with the aim of providing a clear framework for an in- 

depth understanding of the activation mechanisms of the CSN 

network after stroke. Figure 2 illustrates the SNS that regulates 

cardiac activity.

Figure 2 The SNS governing cardiac activity. Cardiac activity 

is jointly regulated by CSN and PSN, with the RVLM serving as 

a critical hub for cardiovascular control. MPFC, medial 

prefrontal cortex; ACC, anterior cingulate cortex; RVLM, rostral 

ventral lateral medulla; PVN, paraventricular nucleus.

2.2 Impairment of the CAN network 
conductance pathway triggers increased 
SN tension

Ischemia in some key regions is more likely to trigger cardiac 

damage, which is closely related to brain regions associated with 

the ANS projection loop. Specifically, ischemic cerebral infarction 

FIGURE 2 

The SNS governing cardiac activity. Cardiac activity is jointly regulated by CSN and PSN, with the RVLM serving as a critical hub for cardiovascular 

control. MPFC, medial prefrontal cortex; ACC, anterior cingulate cortex; RVLM, rostral ventral lateral medulla; PVN, paraventricular nucleus. The 

figure was constructed with Microsoft PowerPoint.
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may activate the SNS in direct or indirect ways. For example, 

elevated SN tone in response to damage to key structures 

involved in parasympathetic (PN) projections may lead to 

hyperactivation of the SNS. This phenomenon suggests that 

lesions in specific regions of the brain have an important impact 

on the balance of the ANS.

2.2.1 Medial prefrontal cortex (MPFC)

Clinical researches have shown that frontal lobe strokes often 

cause arrhythmias like atrial fibrillation (AF), tachycardia, and 

ventricular arrhythmias (37, 38). Using functional magnetic 

resonance imaging to explore the relationship between heart rate 

and cortical activity found that increased heart rate or increased 

heart rate variability in healthy volunteers is associated with 

diminished MPFC activity (36, 39). Transcranial direct current 

stimulation of the MPFC induced post-exercise hypotension in 

subjects (40). These conditions suggest that the MPFC is involved 

in the regulation of the ANS (41). Animal experiments indicate 

that the vMPFC regulate acute restraint—induced tachycardia in 

rats. The infralimbic cortex promoted CoCl2-induced tachycardia, 

while the prelimbic cortex have the opposite effect (42). 

Additionally, electrically stimulating the rat MPFC significantly 

increased blood pressure (43). In humans, studies on patients 

with vMPFC lesions in different locations have showed that the 

left vMPFC is linked to PN activation, and the right vMPFC to 

SN inhibition (44). This lateralized regulation of the ANS may 

clarify why right MPFC damage activates the SN.

2.2.2 Insular cortex

The insular is often regarded as a key area for AIS—induced 

cardiac damage. Many clinical studies indicated that insular cortex 

involvement in ischemia often results in cardiac problems liked 

bundle branch block, arrhythmias, QT-interval prolongation, 

myocardial injury, and cardiac dysfunction (45–50). A study of 

384 infarcts in the middle cerebral artery region found that 

patients with insula damage showed elevated levels of NE and 

neutrophils (51). Further comparison of right and left insula 

damage revealed that patients with right insula damage exhibited 

reduced heart rate variability (51, 52). Also, right insular damage 

and arrhythmia due to SN activation became an adverse factor 

affecting 1-year prognosis (46). Many studies have shown right 

insular damage was more likely to cause cardiac lesions, especially 

arrhythmias (13, 53–58), while left damage would lead to elevated 

troponin and BNP (59). These results implied right insular damage 

activated the SNS. A plausible explanation was that after right insula 

infarction, reduced PN tension and pressure re6ex sensitivity allowed 

the SN to dominate autonomic nervous(AN) regulation (60). In a 

study by Oppenheimer SM and colleagues on patients undergoing 

epilepsy surgery, it had found that stimulation of the left insular 

cortex resulted in a slowing of the heart rate, while stimulation of 

the right insular cortex had the opposite effect (61). This indicated 

that the left insular was associated with the regulation of the PN 

system, and the right insular with the SNS. Animal of middle 

cerebral artery occlusion (MCAO) models also have confirmed 

that right insular damage led to increased plasma NE and QT- 

interval prolongation (62, 63). These experimental results support 

the existence of a lateralized effect of insula damage on cardiac 

regulation, which may be due to the dominant role of the right 

insula in controlling the PN downstream conduction pathway to 

the sinus node (64). Moreover, the insular cannot directly project 

to sympathetic preganglionic neurons; its regulation of the SNS 

likely requires integration through hypothalamic nuclei. For 

example, the glutamatergic relay in the dorsomedial hypothalamus 

(DMH) has been proven to be a pathway for its regulation of the 

SNS (34). Some studies have shown that the DMH exhibits 

asymmetry in the regulation of cardiac AN function, with the right 

DMH primarily responsible for regulating cardiac rhythm (65, 66). 

When the right insular is damaged, it may trigger dysregulation of 

the SNS via the DMH pathway, leading to arrhythmias. However, 

research on the mechanisms linking insular lesion location and 

hemispheric laterality to AN dysregulation and cardiac damage 

remains very limited. Further in-depth studies will help to better 

understand this area.

2.2.3 Limbic system and brainstem
Limbic systems such as ACC, amygdala and hypothalamus can 

modulate cardiac activity through direct or indirect or 

periaqueductal gray (PAG) relay projections to the medulla 

oblongata and lateral horn of the spinal cord (29). In addition, 

the nucleus tractus solitarius (NTS), ventral lateral medulla 

(VLM), nucleus ambiguus (NA) and parabrachial nucleus (PBN) 

in the brainstem are also involved in their network connections 

(60). The ACC is interconnected with the insula cortex. The 

ACC mainly modulates the SN and PN systems via its ventral 

and dorsal regions (67, 68), with the left side predominantly 

engaging in parasympathetic regulation (69).

During stress, excess NE heightens amygdala—induced 

excitatory regulation of the SNS, strengthening SN activity (70). 

The amygdala, with its extensive neural connections to the 

hypothalamus and brainstem, modulates sympathetic preganglionic 

neuron activity via these pathways, impacting sympathetic 

output. Thus, the amygdala is crucial for regulating SNS and 

neuroendocrine responses to stress (71, 72). The hypothalamus 

plays a central role in maintaining the stability of the body’s 

internal environment by regulating the ANS, and its anterior and 

posterior regions are representative of the PN and SN (73). And 

the paraventricular nucleus (PVN) of the hypothalamus can 

project directly or indirectly to the preganglionic neurons of 

the SN and play a role in the regulation of cardiac activity by 

afferent sensory signals from the heart via the NTS (74). The 

PAG, NTS, VLM, NA and PBN in the brainstem are key 

structures and relay stations in the ANS that connects the 

forebrain, limbic system and spinal cord (60, 75–77). These 

structures are involved in cardiovascular regulation, and their 

damage can cause severe SN activation (78–80). Numerous 

studies have shown that lesions to these structures lead to 

activation of the SNS, which can lead to a range of cardiac 

problems, especially arrhythmias (77, 81–88).

In summary, ischemic damage to central regions regulating 

the SN and PN networks may be excessive activation of SN, 

disrupting cardiac physiology and causing damage. Such patients 

should be closely monitored in clinical settings. Although a 
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large number of studies have reported the relationship between the 

lateralization of brain injury sites and cardiac damage, how this 

lateralization regulates the activation of the SNS still lacks in- 

depth discussion and needs to be explored and elucidated by 

more studies.

2.3 Neuroinflammation and oxidative stress 
promote the activation of SN after AIS

A large number of studies have observed that 

neuroin6ammation and oxidative stress are important factors 

causing or aggravating brain tissue injury after stroke (89–91). For 

example, pro-in6ammatory factors (e.g., tumor necrosis factor-α 
(TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), etc.) 

(92–95), in6ammatory mediators (e.g., prostaglandins (PGE2), 

nuclear kappa factor B (NF-κB), and cyclooxygenase-2 (COX-2), 

etc.) (96, 97), and oxidative stress-associated molecules (e.g., ROS, 

RNS, and MDA, etc.) are upregulated after stroke (98, 99).

Inhibiting these factors and oxidative stress levels can 

significantly improve brain injury. After AIS occurs, central 

in6ammatory cells such as astrocytes and microglia will be rapidly 

activated, releasing a large amount of in6ammatory factors (such 

as TNF-α, IL-1β and IL-6) and matrix metalloproteinases, causing 

damage to the blood-brain barrier (89). Meanwhile, these cells 

promote the infiltration of peripheral immune cells (such as 

neutrophils, macrophages and lymphocytes) into the ischemic area 

by up-regulating the expression of cell adhesion molecules (such as 

ICAM-1 and selectin), thereby exacerbating neuroin6ammation 

and oxidative stress injury (91). When blood 6ow is interrupted, 

the brain can’t get energy from glucose oxidative phosphorylation 

and instead uses fatty acids. This leads to lipid peroxidation, 

producing lots of ROS and reactive nitrogen species (RNS). They 

damage cell membranes and cause neuronal injury (100). 

Oxidative stress not only directly leads to cell damage, but also 

activates in6ammatory responses. For example, ROS and RNS can 

activate transcription factors (such as NF-κB), thereby promoting 

the production of pro-in6ammatory factors and further 

aggravating neuroin6ammation (89). The resulting brain injury 

may be an important factor for the activation of the SNS (101, 102).

Following AIS, the release of pro—in6ammatory cytokines 

activates the SNS, causing the adrenal medulla and sympathetic 

nerve terminals to release catecholamines (103). This can lead to 

coronary artery constriction and myocardial ischemia, as well as 

activate peripheral monocytes/macrophages and neutrophils, 

thereby exacerbating cardiac injury (6). Inhibiting microglial 

cell-mediated neuroin6ammation can improve ventricular 

arrhythmias in HF rats (104). In a canine MCAO model, 

ventricular tachycardia (VT) occurrence is linked to heightened 

left stellate ganglion activity, elevated NE levels, and activated 

M1-type microglia in the ventricle, along with increased TNF-α, 

NF-κB, and MCP-1 levels. These phenomena can be 

significantly diminished by ablating the left stellate ganglion 

(105). This may be related to the increase in SN activity caused 

by pro-in6ammatory factors such as IL1-β, TNF-α, and IL-6 

stimulating glutaminergic neurons to secrete glutamic acid (106, 

107). In addition, orexin A (OXA) in rat PVN can promote the 

expression of IL1-β, IL-6, and TNF-α through orexin 1 receptor 

(OX1R) and increase SN activity (108).

However, few studies have explored the relationship between 

oxidative stress and SNS activation after AIS. Several studies 

have illustrated from the side the connection between central 

oxidative stress and the SNS as well as cardiac injury. 

Inducing the overexpression of inducible nitric oxide synthase 

(iNOS) in RVLM caused SN excitation in rats and increased 

NE production (109). The use of long-acting calcium 

dihydropyridine channel blockers can inhibit SN activity and the 

oxidative stress level of RVLM and increase the ability to resist 

oxidative stress (110). When atropine is administered to inhibit 

PN system activity, MCAO mice exhibit more severe cardiac 

injury, characterized by reduced left ventricular ejection fraction, 

increased myocardial apoptosis, and fibrosis. Concurrently, the 

expression of the antioxidant factor endothelial nitric oxide 

synthase (eNOS) is decreased (9). Renal denervation can reduce 

the release of catecholamines and inhibit the expression of 

NADPH oxidase in the brain of rat models at high risk of 

stroke (111). These findings indicate that neuroin6ammation 

and oxidative stress enhance SN excitation after AIS and induce 

cardiac damage.

3 Cardiotoxicity triggered by 
catecholamines

After stroke, increased SN tension elevates circulating 

catecholamine levels, subsequently inducing cardiac dysfunction 

(112). These catecholamines primarily consist of epinephrine (E) 

and NE (11). NE is primarily synthesized by noradrenergic 

neurons in the central nervous system and postganglionic 

sympathetic neurons (113, 114), which serve as neurotransmitters 

in the regulation of intracranial signals and the control of 

peripheral target organs such as the heart and vasculature. In the 

adrenal medulla, tyrosine undergoes a series of enzymatic 

reactions to gradually convert into NE. Ultimately, under the 

catalysis of phenylethanolamine N-methyltransferase, a significant 

portion of NE is converted into E (115), which is released into 

the bloodstream in a hormonal form to participate in the 

regulation of physiological functions. However, the plasma NE 

primarily originates from the release of neurotransmitters from 

the terminals of postganglionic sympathetic neurons, not from 

the adrenal medulla. Therefore, NE functions both as a classical 

neurotransmitter in the synaptic cleft and as a hormone via the 

bloodstream, re6ecting its dual role in physiological regulation.

Many clinical investigations and animal studies have 

demonstrated catecholamine surges after stroke (6, 77, 81, 116). 

Excess catecholamines can induce coronary artery constriction, 

raise heart rate, and increase myocardial oxygen consumption. 

This can lead to myocardial in6ammation, oxidative stress, Ca2+ 

overload, mitochondrial dysfunction, and myocardial cell 

apoptosis. In conclusion, these processes are very complex. Our 

study has summarized the cardiotoxicity of catecholamines and 

its mechanism (Figure 2).
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Figure 3 The mechanism of catecholamine-triggered 

cardiotoxicity after AIS. After AIS, sympathetic nerve tension 

increases, and sustained overexcitation of the sympathetic nerve 

network leads to substantial catecholamine release. The activation 

of AR, in6ammatory response, oxidative stress, Ca2+ overload and 

mitochondrial dysfunction constitute the main network of 

catecholamine-induced cardiac injury. These pathological 

processes are interrelated. Centered on oxidative stress, they form 

a complex network through multiple signaling pathways, 

eventually leading to cardiomyocyte apoptosis, myocardial 

hypertrophy and cardiac fibrosis. The relevant signal pathways or 

key molecules are marked below each topic in the text box.

3.1 The molecular mechanisms of 
catecholamine-mediated cardiac injury

3.1.1 Cardiac inflammation and oxidative stress 

induced by catecholamines
In Takotsubo syndrome, AIS, and ISO-induced myocardial 

infarction animal models, a significant in6ammatory response 

was observed in the heart, as evidenced by infiltration of 

in6ammatory cells and upregulation of in6ammatory factor 

levels (117–120). A large number of clinical, animal and cellular 

experiments demonstrated that post-stroke cardiac injury was 

closely related to in6ammation, and that the main mechanism 

involved the up-regulation of pro-in6ammatory factors and 

mediators, as well as the infiltration of in6ammatory cells such 

as monocytes, macrophages, and lymphocytes (6, 19, 121–123). 

Researchers have long noted that stress-generated 

catecholamines may lead to cardiac damage and observed 

significant myocardial in6ammation (124), and a positive 

correlation between leukocyte levels and NE levels (125). With 

the development of magnetic resonance imaging (MRI) 

techniques, significant macrophage infiltration of the 

myocardium has been observed in patients with Takotsubo 

syndrome (121). Animal experiments often use a model of ISO- 

induced cardiac damage. ISO is a β-AR agonist and has a 

chemical structure similar to that of biogenic amines and is 

often used as a synthetic model to study catecholamine toxicity. 

Several studies have found that elevated catecholamine levels, 

left ventricular in6ammatory infiltration and myocardial fibrosis 

were observed in both ISO-induced and chronic stress-induced 

rat Takotsubo models (126). These results suggest that elevated 

catecholamines after AIS may be an important factor 

contributing to cardiac in6ammation.

FIGURE 3 

The mechanism of catecholamine-triggered cardiotoxicity after AIS. After AIS, sympathetic nerve tension increases, and sustained overexcitation of 

the sympathetic nerve network leads to substantial catecholamine release. The activation of AR, inflammatory response, oxidative stress, Ca2+ 

overload and mitochondrial dysfunction constitute the main network of catecholamine-induced cardiac injury. These pathological processes are 

interrelated. Centered on oxidative stress, they form a complex network through multiple signaling pathways, eventually leading to 

cardiomyocyte apoptosis, myocardial hypertrophy and cardiac fibrosis. The relevant signal pathways or key molecules are marked below each 

topic in the text box. The figure was constructed with Microsoft PowerPoint.
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Several studies have reported several mechanisms to mimic 

catecholamine-induced cardiac in6ammation with ISO: mainly 

Nod-like receptor protein 3 (NLRP3), TLR4/NF-κB pathway, 

JAK2/STAT3 pathway, and HMGB1-TLR4 signaling. SN 

excitability activates the NLRP3 vesicles in the heart and 

generates IL-1β to induce myocardial injury (127), and recent 

studies have also demonstrated that cardiac insufficiency 

occurring after MCAO in mice is associated with sustained pro- 

in6ammatory changes in monocytes/macrophages driven by IL- 

1β (122). In the ISO-induced male mouse model of stress 

cardiomyopathy, ISO triggers NLRP3 in6ammasome activation 

via NOX4-dependent mitochondrial ROS generation, up- 

regulates downstream in6ammatory cytokines including IL-6 

and TNF-α, and promotes recruitment of CD68+ CD11b+ 

macrophages into the myocardium (128). ISO also stimulates 

NLRP3 in6ammasome via NOX4-dependent mitochondrial ROS 

and activates downstream in6ammatory signals (e.g., IL6 and 

TNFα) while inducing infiltration of CD68 and CD11b- 

expressing macrophages into the myocardium of mice (129). In 

addition, MD2 is also activated by β1-AR-ROS signaling and 

induces macrophage polarization to generate in6ammation via 

the β2-AR-cAMP-PKA-ROS axis (130). HK1 has also been 

found to activate NLRP3 in the myocardium of ISO-treated 

mice (131). This suggests that HK1, MD2 may also be a 

pathway that induces cardiac in6ammation.

TLR4 has been shown to be extensively involved in stroke, 

myocardial infarction and in6ammation, where its binding to 

the bridging molecules MyD88 or MAPK activates NF-κB and 

triggers the up-regulation of IL-1β, IL-18 and TNF-α expression 

(132–134). On the one hand, ISO can upregulate Gal-3 

expression and induce myocardial in6ammation and fibrosis via 

the TLR4/ MyD88/NF-κB pathway, and the use of the Gal-3 

blocker MCP ameliorates this adverse outcome (135). On the 

other hand, myocardial in6ammation and apoptosis can also be 

induced through the AMPK/NF-κB pathway (136).

The JAK2/STAT3 signaling pathway is also involved in ISO- 

induced myocardial in6ammation and hypertrophy. Upon 

activation, it drives macrophages to polarize into a pro- 

in6ammatory phenotype and induces the release of pro- 

in6ammatory factors, and JAK2 inhibitors ameliorate myocardial 

in6ammation (137). High mobility group protein 1 (HMGB1) is 

also found to be upregulated in expression in ISO-treated rat 

hearts and trigger in6ammation through the HMGB1-TLR4 

pathway (138). Several other signaling pathways, such as Mst1/ 

Hippo, VEGF-B/AMPK/eNOS, AMPK/eNOS/AKT, and Nrf2/ 

HO-1, have recently been found to be involved in the regulation 

of cardiac in6ammation after ISO treatment (139–142).

The metabolism of NE has an important role in oxidative stress, 

such as ROS production (143). NE is eliminated mainly through 

presynaptic and extraneuronal reuptake as well as metabolism. 

First, oxidative deamination by monoamine oxidase (MAO) 

converts NE to dihydroxyphenylethanol. Then, it is converted to 

methoxyhydroxyphenylglycol (MHPG) catalyzed by catechol-O- 

methyltransferase (COMT). It is finally converted to 3-methoxy- 

4-hydroxymandelic acid (VMA) and 3-methoxynorepinephrine 

(NMN) in the liver and excreted via urine (144–146). 

Catecholamine-induced oxidative stress injury has been 

demonstrated in the heart (147). It can lead to increased lipid 

peroxidation, and several antioxidants can attenuate the damage 

caused by lipid peroxidation (148–150). For example, after ISO 

injection, the levels of antioxidant enzymes SOD and glutathione 

peroxidase (GSH-Px) in the myocardium of rats decreased 

significantly, while the contents of oxidative stress markers MDA 

and NO increased significantly. Inhibiting oxidative stress can 

effectively alleviate heart damage (120, 142). Cardiomyocytes 

treated with E produced hydroxyl radicals (⋅OH) and 

peroxynitrite (ONOO−) (151). The expression of antioxidants 

such as SOD, GSH-Px and catalase was also found to be 

decreased in H9c2 cardiomyocytes exposed to NE, while the 

expression of 4-hydroxynonenal was upregulated (152). These 

results suggest that catecholamine-induced oxidative stress is also 

an important cause of cardiac injury. In addition, when liver 

function is impaired, the activities of MAO and COMT decrease, 

and the ability to generate and clear catecholamine metabolites 

(such as VMA) declines, which may lead to the accumulation of 

these metabolites in the body (153–155). Similarly, when the 

kidneys are damaged, especially when the glomerular filtration 

rate (GFR) decreases, it can also lead to a reduction in the 

excretion of catecholamine metabolites, further intensifying the 

accumulation of these metabolites in the body (156). Therefore, 

when renal or hepatic dysfunction is present, the impaired 

clearance of these metabolites may act as a “second hit” to 

cardiac injury. However, current research on the association 

between the toxic byproducts of catecholamine metabolism and 

cardiac injury after stroke remains insufficient. Clarifying these 

relationships may be of significant importance for elucidating the 

mechanisms underlying neurogenic cardiac injury after stroke.

The conditions that trigger oxidative stress include multiple 

complex factors such as mitochondrial damage, in6ammation, 

apoptosis and oxidative damage to proteins, lipids and DNA (11). 

Among these factors, ROS production is the main driver of 

oxidative stress. The source of catecholamine-induced ROS is 

multifactorial in nature and consists of the following two main 

aspects: (1) Stimulation of the AR: for example, in cardiac 

myocytes NADPH oxidase is activated by α1-AR stimulation, 

which leads to the generation of superoxide anion radicals (O2−•) 

(157). (2) Enzymatic and non-enzymatic degradation of 

catecholamines: the MAO pathway induces oxidative deamination 

of NE to produce hydrogen peroxide (H2O2) which is further 

catalyzed to “⋅OH”; and degradation of NE by non-enzymatic 

pathways produces “aminochromes” toxic compounds (11, 158). 

This catecholamine-mediated oxidative stress causes aberrant cell 

signaling, intracellular Ca2+ overload, mitochondrial damage, 

in6ammatory responses, and disruption of the extracellular 

matrix and lysosomes, which in turn triggers apoptosis in 

cardiomyocytes (159–163). Also, these adverse outcomes directly 

or indirectly enhance oxidative stress, ultimately causing 

arrhythmias, cardiac hypertrophy, myocardial fibrosis, cardiac 

insufficiency, and HF. These results suggest that catecholamine- 

induced oxidative stress may be central to cardiac injury.

Recent study indicates that renal denervation decreases 

catecholamine secretion in hypertensive HF rat models, lowering 
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ROS and MDA levels and reducing myocardial hypertrophy and 

fibrosis. This may be related to the inhibition of BACH1 by the 

TGF-β1/SMADs/SP1 signaling pathway and the alleviation of 

mitochondrial oxidative stress by PACS-2 (164). However, there 

is currently a lack of more research to explain how renal 

denervation directly inhibits specific molecular pathways within 

the heart. This may be related to the fact that renal denervation 

reduces sympathetic nerve activity and catecholamine levels 

throughout the body, and it is precisely these systemic changes 

that ultimately affect the signal transduction pathways of the 

heart. In both ISO—treated mice and cardiomyocytes, p-JAK2, p- 

STAT3, MDA, NOX2, and NOX4 show increased expression, yet 

inhibitors can reverse this trend (137). Thus, JAK2/STAT3 

signaling plays a dual role in ISO-induced oxidative stress and 

in6ammation. In addition, the Mst1/Hippo, RAGE/NF-κB, ROS/ 

NF-κB, TLR4/MyD88/MAPKS/NF-κB, and SIRT1/FOXO3a/ 

MnSOD signaling pathways are also found to be involved in ISO- 

induced oxidative stress injury in the heart (139, 165–168). 

Activation of these signaling pathways may in part explain the 

mechanisms of catecholamine-induced cardiac in6ammation and 

oxidative stress. However, these processes remain complex and 

can in6uence each other, and more mechanistic studies are needed.

3.1.2 Ca2+ overload in cardiomyocytes
Ca2+ is a key regulatory ion in cardiac excitation-contraction 

coupling. Excessive release of catecholamines sustains activation of 

the β-AR, leading to a significant increase in myocardial 

excitability and contractility. β-AR overactivation may trigger 

intracellular Ca2+ overload, which leads to a series of 

cardiomyocyte injuries. Meanwhile, Ca2+ overload activates Ca2 

+-dependent ATPase, leading to mitochondrial dysfunction and 

increased oxidative stress, which in turn triggers cardiomyocyte 

injury (169).

A significant increase in the level of Ca2+ in myocardial cells is 

observed in the ISO-induced myocardial ischemia model (170). 

Further studies have shown that ISO promotes Ca2+ transients 

and increases Ca2+ load in the myocardial sarcoplasmic reticulum 

(SR) via β-AR (171). In addition, ISO can cause Ca2+ overload 

via L-type calcium channels (LCC) (172). In cardiomyocytes, NE 

activates β1-AR, which in turn promotes Ca2+ endocytosis via 

LCC and triggers Ca2+ release from the SR via the ryanodine 

receptors (RyR2) pathway (173). Continuous accumulation of Ca2 

+ may continuously activate calcium ion-dependent ATPase, 

thereby damaging mitochondrial oxidative phosphorylation 

function. This impairment would further exacerbate the 

disturbance of intracellular Ca2+ homeostasis, disrupt normal 

energy metabolism, promote ROS accumulation, and ultimately 

lead to myocardial excitation-contraction dysfunction (169, 174). 

Intracellular Ca2+ overload is closely associated with the 

development of arrhythmias and may also directly induce 

cardiomyocyte apoptosis (175). This may be due to the opening 

of the mitochondrial permeability transition pore after impaired 

mitochondrial function, which triggers apoptosis (176).

Furthermore, oxidative stress can also cause impaired 

mitochondrial function, resulting in insufficient ATP production, 

ATP-dependent Na+-Ca2+ exchange disorders, and promoting 

Ca2+ accumulation (177). When 5-AR is activated, calmodulin- 

dependent protein kinase II (CaMKII) regulates calcium channels 

and RyR2 via PKA-dependent phosphorylation, thereby driving 

Ca2+ accumulation (146). Recently study found that 

4-hydroxyketone, produced by NE metabolized by mitochondrial 

MAO-A, promotes Ca2+ accumulation through the voltage— 

dependent anion channel 1/inositol-1,4,5-trisphosphate receptor 1 

(IP3R) pathway (178). ROS generated by NE metabolism cause 

intracellular Ca2+ overload either by modulating calcium— 

handling proteins or inducing membrane lipid peroxidation 

(143). The resulting mitochondrial Ca2+ accumulation disrupts 

the mitochondrial membrane potential and damages the 

respiratory chain, further boosting ROS production (11). This 

vicious cycle may exacerbate cardiomyocyte injury.

3.1.3 Mitochondrial dysfunction

In numerous animal experiments, catecholamine-induced 

cardiomyocyte mitochondrial dysfunction has been observed. 

The ROS generated during catecholamine metabolism, such as 

O2
−• and H2O2, can directly attack the lipids, proteins, and 

DNA of mitochondria. Consequently, the structure and 

function of mitochondria become impaired, and their normal 

oxidative phosphorylation process is affected (179, 180). 

Another product of the metabolic process, dopaldehyde and 

3,4-dihydroxyphenylacetaldehyde, can also interfere with the 

normal physiological function of mitochondria, or even 

destroy the structure of mitochondria, leading to mitochondrial 

dysfunction (179). Moreover, catecholamine-induced mitochondrial 

Ca2+ overload inhibits mitochondrial respiration and ATP 

synthesis, and increases mitochondrial permeability (11). Ca2+ 

overload can cause mitochondrial dynamism abnormalities, 

which may be related to the acetylation of ATPase family AAA 

domain—containing protein 3A (181). ISO can reduce the 

expression of antioxidant enzymes such as SOD and CAT in 

mitochondria, thereby increasing mitochondrial oxidative stress 

levels (182).

Cardiomyocyte mitochondrial swelling and myofilament 

vacuolization were observed in rats after ISO treatment (183). 

Further analysis revealed that the respiratory control index 

re6ecting oxidative phosphorylation (184), the cardiac 

phosphocreatine/ATP ratio, and ATP content were all reduced, 

while MDA and eNOS expression increased (185, 186). This 

indicates that ISO induced energy production impairment in the 

myocardium. Some studies have shown that after ISO 

intervention, mitochondrial dysfunction in the heart is associated 

with reduced expression of certain enzymes, including 

mitochondrial respiratory enzymes [such as NADH 

dehydrogenase, succinate dehydrogenase (SDH), and cytochrome 

c oxidase (CcO)] (187), aldehyde dehydrogenase 2 (ALDH2), and 

the mitochondrial enzyme β-hydroxyacyl-CoA dehydrogenase 

(HADH) (188).

Mitochondrial respiratory enzymes are crucial for normal 

mitochondrial physiological functions (189). NADH 

dehydrogenase, the first enzyme complex in the mitochondrial 

electron transport chain, mainly transfers electrons from NADH 

to coenzyme Q (CoQ) while pumping protons from the 
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mitochondrial matrix into the intermembrane space to form a 

proton gradient for ATP synthesis. SDH, complex II of the 

respiratory chain, passes electrons from FADH2 to CoQ, linking 

the tricarboxylic acid cycle to the electron transport chain. As 

the terminal oxidase in the chain, CcO receives electrons from 

cytochrome C(Cyt-C) and transfers them to oxygen, completing 

the final step of electron transport and driving ATP synthesis. 

The reduction of NADH, SDH and CcO activities jointly 

weakens the oxidative phosphorylation efficiency of 

mitochondria, reduces ATP production, thereby leading to 

insufficient energy supply to cardiomyocytes and further 

affecting the contractile and diastolic functions of the 

myocardium (190). In addition, energy metabolism disorders 

can cause mitochondrial dysfunction, leading to an increase in 

ROS production and subsequently damaging the mitochondrial 

membrane and DNA. This kind of damage will further disrupt 

mitochondrial function and promote the release of Cyt-C, 

activate the caspase cascade reaction, and ultimately induce 

apoptosis of cardiomyocytes (190, 191).

ALDH2 is involved in metabolizing reactive aldehydes 

produced during oxidative stress and exerts cardioprotective 

effects by inhibiting oxidative stress and in6ammationALDH2 

(192). ALDH2-knockout mice show aggravated cardiac 

ischemia-reperfusion injury (193). HADH, which participates in 

fatty acid β-oxidation, causes abnormal energy production when 

reduced, as it impedes fatty acid oxidation (194). The study has 

found that SFRP4 is involved in ISO-induced cardiomyocyte 

mitochondrial damage, and using an SFRP4 inhibitor can 

alleviate mitochondrial dysfunction in the myocardium and HL- 

1 cells (195). In summary, cardiomyocytes have a high energy 

demand, and mitochondrial dysfunction may play a significant 

role in the development of neurogenic cardiomyopathy after 

AIS. Impaired mitochondrial function leads to disordered 

energy metabolism and reduced ATP production in 

cardiomyocytes. This exacerbates the imbalance of calcium ion 

homeostasis, ultimately causing cardiomyocyte apoptosis and 

necrosis and worsening myocardial injury (182, 183).

3.1.4 Apoptosis of cardiomyocytes

At physiological concentrations, the toxicity of catecholamines 

to cardiomyocytes is generally insignificant. However, excessive 

catecholamines may induce cardiomyocyte apoptosis. It should 

be noted that the longer the exposure time of cardiomyocytes 

to catecholamines, the more pronounced the potential 

damaging effects may become. In a large number of animal and 

cell experiments, it has been observed that NE and ISO can 

induce cardiomyocyte apoptosis (16, 152, 196). They achieve 

this by modulating the expression of Bcl-2 family proteins, for 

instance, enhancing Bax expression and suppressing Bcl-2 and 

Bcl-XL expression (197). In addition, NE and ISO can 

upregulate Cyt-C expression. By activating caspases (including 

caspase-2, caspase-3, caspase-6, and caspase-9) and death 

receptors [such as Fas and TNF receptor 1-associated death 

domain (TRADD)], and enhancing the activity of apoptotic 

protease activating factor-1 (Apaf-1), NE and ISO mediate 

cardiomyocyte apoptosis (197–200).

The Bcl-2 family plays a crucial regulatory role in apoptosis, 

involved in both mitochondrial and some extrinsic apoptotic 

pathways. It consists of two main subtypes: anti-apoptotic 

proteins like Bcl-2, Bcl-XL, and Bcl-w, and pro-apoptotic 

proteins, which include BAK, BAX, BOK, and BH3-only 

proteins (201). In rat H9C2 cardiomyocytes treated with NE, 

Hoechst 6uorescence staining showed increased apoptosis, with 

upregulated BAX and downregulated Bcl-2 expression (202). n 

ISO-induced HF models, rats exhibited increased Bax, Cyt-C, 

Caspase-3, and Caspase-9 expression, alongside decreased Bcl-2 

and Bcl-XL expression in the myocardium (203). BAX forms a 

heterodimer with Bcl-2, reducing its activity. This increases 

mitochondrial membrane permeability, releasing Cyt-C into the 

cytosol. Cyt-C binds to Apaf-1 to form an apoptosome, 

triggering the Caspase cascade, leading to cell destruction and 

apoptosis (201, 204). Conversely, Bcl-2 protects cells by 

inhibiting Cyt-C release (205). Overall, NE and ISO induce 

cardiomyocyte apoptosis via the mitochondrial apoptosis 

pathway mediated by the Bcl-2 family.

Following ISO treatment, rats exhibited remarkable 

myocardial injury, with upregulated cardiac expression of Fas 

and caspase-3/8/9, and TNF-α genes (120, 206, 207). Mice with 

TNF receptor 1 (TNFR1) knockout showed resistance to ISO- 

induced cardiac injury, marked by downregulated expression of 

IL-1 β, iNOS, NF-κB, and AP-1 (208). This implies the death 

receptor family participates in ISO-mediated cardiomyocyte 

apoptosis. After TNF α binds to TNFR1, its intracellular death 

domain recruits TRADD. This facilitates the assembly of 

signaling molecules like receptor-interacting protein kinase 1, 

Fas-associated death domain protein, and caspase-8, forming 

complex I. This process activates downstream genes (e.g., the 

caspase cascade) and promotes complex II formation, inducing 

apoptosis (199).

ISO also activates the TLR4/NF-κB and JAK2/STAT3 

signaling pathways, triggering in6ammatory responses that 

interact with apoptosis (135, 137). Additionally, other upstream 

signals participate in ISO-induced cardiomyocyte apoptosis. For 

example, TLR4/NOX4, p38 MAPK, and Jak1/Stat signaling are 

activated (209–211), affecting Cyt-C release, activating caspases, 

and mediating apoptosis via the mitochondrial apoptosis 

pathway. The β-AR-AC-cAMP-PKA pathway can activate 

transcription factors like CREB, promoting pro-apoptotic gene 

expression, and also induces cardiomyocyte apoptosis through 

the mitochondrial apoptosis pathway (212). ER stress and 

CaMKII-mPTP can cause Ca2+ overload and promote apoptosis 

in the same way (213, 214).

3.2 Catecholamine-induced structural 
cardiac injury

3.2.1 Myocardial hypertrophy
Many studies have confirmed that sustained activation of the 

SNS is closely related to cardiac hypertrophy (CH) (18, 215, 

216), and that renal denervation of the SN can improve CH 

(164). This may be closely related to the increased secretion of 
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catecholamines caused by SN hyperactivity (202, 217). Continuous 

pressure load can induce CH. This is an adaptive manifestation, 

but long-term pressure loads can lead to the generation of HF. 

CH is characterized by an increase in the heart weight—to— 

body weight ratio (HW/BW). Hematoxylin-eosin staining shows 

an increase in the cross-sectional area of cardiomyocytes, often 

accompanied by increased expression of CH-related genes such 

as BNP, β-MHC, and ANP (218). In animal HF models induced 

by NE and ISO, significant CH has been observed (219, 220). 

This may be related to the activation of signaling pathways such 

as MAPK, NF-κ B, Ca2+, JAK2/STAT3, G protein-coupled 

receptor kinases (GRKs), and Protein Kinase A (PKA).

When NE binds to cardiac α1-ARs, it activates p38 MAPK and 

ERK1/2, upregulating genes related to CH. NF-κB signaling 

activation induces myocardial in6ammation and promotes CH 

(221). In a mouse CH model induced by NE, significant 

increases in the phosphorylation levels of p38, MAPK, ERK1/2, 

AKT, and NF-κB proteins occur in myocardial tissue, with 

notable upregulation of CH-related genes like ANP, BNP, and 

β-MHC. Moreover, pharmacological inhibition of the p38 

MAPK/ERK1/2 and AKT/NF-κB pathways significantly 

attenuates CH in mice (218).

Ca2+ regulates CH through the calcineurin-NFAT and 

CaMKII-MEF2 pathways. When NFAT in the cell membrane is 

activated by calcineurin and translocated to the nucleus. It then 

interacts with nuclear transcription factors like GATA-4 and 

MEF2, upregulating the transcription of CH-related genes (222, 

223). Interestingly, Ca2+ can activate the CaMKIIδB/CREB 

pathway, increasing mitochondrial Ca2+ uniporter(MCU) 

expression to alleviate CH (224). But recent studies show that 

MCU3 overexpression promotes Ca2+ uptake and induces CH 

(225). Thus, MCU upregulation may be a compensatory 

mechanism where different MCU subunits interact to regulate 

Ca2+ homeostasis. Calcineurin can also activate the pathway 

involving dynamic-related protein-1, upregulating mitochondrial 

E3 ubiquitin ligase 1 expression. This promotes mitochondrial 

fission and dysfunction, leading to CH (226, 227).

Some studies have indicated that JAK2/STAT3 signaling 

activation upregulates genes tied to CH. Activated STAT3 

increases expression of ANP, BNP, and β-MHC, triggering CH. 

It also modulates AMPKα/mTOR signaling, in6uencing 

cardiomyocyte metabolism and autophagy, and thus CH 

regulation (202, 228). GRKs mainly impact cardiomyocyte signal 

transduction by regulating G protein-coupled receptor activity. 

Key GRKs like GRK2 and GRK5 play important roles. GRK2 

in6uences cardiomyocyte survival and hypertrophy by regulating 

PI3K/AKT signaling (229). GRK5 enhances NFAT transcriptional 

activity, upregulating CH-related gene expression (230). SN- 

induced catecholamine release, binding to β-AR, activates 

adenylate cyclase and raises Cyclic adenosine monophosphate 

(cAMP) levels. As a second messenger, cAMP can activate PKA 

(231). PKA, via phosphorylated transcription factors like CREB 

and NFAT, regulates transcription of CH-related genes. PKA 

regulates the transcription of CH-related genes through 

phosphorylated transcription factors such as cAMP response 

element-binding protein (CREB) and NFAT (231).

Recent studies have found that ISO upregulates the expression 

of cardiac epidermal growth factor (Ereg) and nerve growth factor 

receptor (Ngfr). Knocking down Ereg downregulates the 

expression of Natriuretic Peptide Precursor B (Nppb) and 

Fibronectin 1 (Fn1), reduces cardiomyocyte size, and lowers 

fibronectin expression (232). Ngfr may promote the proliferation 

of cardiac fibroblasts and the synthesis of collagen by activating 

downstream signals such as p38 MAPK, leading to myocardial 

fibrosis and exacerbating the degree of CH (233). 

Neuraminidase 1 has also been found to interact with GATA4 

to enhance Nppb expression, thereby promoting ISO-induced 

CH (234). It has been discovered that the activation of HDAC8/ 

MMP12 stimulates Nppb expression and increases extracellular 

matrix degradation, thereby worsening CH (235). Additionally, 

SarcoEndoplasmic Reticulum Ca2+-ATPase (SERCA2a) is 

regarded as an important marker of pathological hypertrophy 

(236, 237). In a mouse HF model continuously stimulated by 

ISO for two weeks, the expression of SERCA2a in the heart was 

significantly reduced (238); The same down-regulation was also 

observed in neonatal rat cardiomyocytes when NE was applied 

for 24 h (239). Conversely, transfection of ascending aortic tract 

HF rats with adenovirus carrying the SERCA2a gene could 

significantly increase survival rates and restore the 

phosphocreatine/ATP ratio (240). Phospholamban (PLB), an 

endogenous inhibitor of SERCA2a, has an elevated expression 

that reduces the affinity of the calcium pump for Ca2+ and 

impays cardiac diastolic function (241). In ISO-induced 

exhaustion mice, the level of PLB significantly increased (242), 

while myocardial contractility was significantly enhanced after 

PLB knockout (243, 244).

3.2.2 Cardiac fibrosis
Cardiac fibrosis (CF) is the excessive deposition of cardiac 

extracellular matrix (ECM) and fibrosis, causing structural and 

functional changes in the heart. It often occurs after myocardial 

injury or chronic in6ammation (245). Many studies have 

indicated that NE and ISO can both induce CF (128, 246). For 

instance, in the cardiomyocytes and fibroblasts of rats treated 

with ISO, the expressions of basic fibroblast growth factor 2 

(FGF2), collagen I and smooth muscle α-actin (α-SMA) 

significantly increased and promoted CF (247). However, CF 

development is extremely complex, involving various molecular 

mechanisms and signaling pathways, such as fibroblast 

activation and transformation, regulation by transforming 

growth factor β (TGF-β), in6ammatory responses, and immune 

cell infiltration (248, 249).

In a healthy heart, fibroblasts are quiescent, primarily 

maintaining ECM homoeostasis by synthesizing and secreting 

small amounts of ECM components like collagen and 

fibronectin. When the heart is injured, fibroblasts are activated 

by factors such as TGF-β, Platelet-derived growth factor, and 

angiotensin II. This activation triggers downstream pathways, 

including the Smad and MAPK pathways, prompting fibroblast 

activation and their differentiation into myofibroblasts (MFB) 

(248). MFB enhance cellular contractility, exerting tension on 

myocardial tissue and affecting heart structure and function. 
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They also overproduce and secrete ECM components, leading to 

excessive ECM deposition in the myocardial interstitial and 

gradual replacement of myocardial tissue with fibrosis (249). 

Other signal pathways, such as the Wnt/β-catenin and Notch 

pathways, are also involved in fibroblast activation and 

transformation (250, 251).

The SNS and the renin-angiotensin-aldosterone system 

(RAAS) form a tight “positive feedback” loop in heart diseases. 

The excitement of SNS can trigger the activation of RAAS, and 

the activation of RAAS in turn further intensifies SNS activities 

(244, 252). Central Angiotensin II enhances the excitability of 

preganglionic sympathetic neurons through the Angiotensin II 

Type 1 Receptor and increases the release of peripheral NE. The 

application of angiotensin-converting enzyme inhibitors (ACEI)/ 

angiotensin II receptor blockers (ARB) can block this effect and 

reduce central sympathetic output (253). Meanwhile, the NE 

released by the renal sympathetic efferent fibers directly acts on 

the β1 receptor of parapylebular cells, stimulating the massive 

secretion of renin through the Gsα/cAMP/PKA signaling 

cascade, thereby initiating and amplifying the RAAS effect 

(254). RAAS activation is a key driving force for myocardial 

fibrosis. Angiotensin II and aldosterone induce the activation of 

myocardial fibroblasts, promote the synthesis of collagen and 

ECM (255, 256), and accelerate ECM remodeling by regulating 

the imbalance of matrix metalloproteinases (MMPs) and their 

inhibitors (TIMPs) (257, 258). In addition, the in6ammatory 

response mediated by RAAS and the burst of reactive oxygen 

species (ROS) further aggravate CF and dysfunction. The above- 

mentioned mechanism reveals that the interactive dialogue 

between SNS and RAAS plays an important role in the process 

of CF (259, 260).

The persistent excessive activation of β-AR can cause cardiac 

pathological remodeling characterized by CF. For example, β-AR 

activation stimulates IL-18 secretion, promoting in6ammation, 

and induces galectin-3 expression in macrophages, driving 

fibroblast to MFB transformation and causing CF (261, 262). 

Galectin-3 can mediate myocardial in6ammation and promote 

CF through the TLR4/MyD88/NF- κB pathway (135). Blocking 

β-AR signaling will inhibit in6ammasomes and improve CF 

(263). Studies have found that the activation of the β-AR-camp- 

PKA pathway triggers CF, which may be caused by promoting 

the expression of ROS, cardiomyocyte connective tissue growth 

factor, vascular endothelial growth factor, and TGF-β1 to trigger 

fibroblast proliferation (130, 264). Activating the NE-AR-PKC 

pathway upregulates BNIP3l expression, promoting cardiac 

fibroblast proliferation and ECM expression (265). Transient 

receptor potential (TRP) channels have also been found to 

regulate the proliferation, migration and differentiation of 

cardiac fibroblasts, as well as the synthesis and secretion of ECM 

(266). For instance, TGF- β1 activates TRPM7 channels to 

promote cardiac fibroblast proliferation, and TRPM7-mediated 

Ca2+ signaling enhances the fibrotic effects of TGF-β1 (267). 

Activation of TRPV4 can promote the proliferation and 

migration of fibroblasts (268). Recent studies have shown that 

methyltransferase-like 3, Insulin-like Growth Factor Binding 

Protein 3, and Set7 Methyltransferase are also involved in CF. 

Silencing METTL3 can down-regulate the expression of IGFBP3 

and alleviate ISO-induced CF (269). Silencing Set7 also shows 

inhibition of CF (270).

4 Therapeutic strategy

Given the elevated risk of cardiac complications following AIS, 

active cardiovascular monitoring is imperative. Particular 

attention should be paid to patients with insular and right 

hemispheric ischemia, as these lesions may predispose to 

excessive activation of the SNS. AIS patients exhibit a high 

prevalence of electrocardiographic abnormalities, with study 

reporting incidence rates exceeding 90%, primarily manifesting 

as ST-segment elevation/depression, QTc prolongation, and AF 

(271). Meta-analyses have demonstrated significant elevations in 

BNP and NT-proBNP levels among AIS patients (272). Elevated 

NT-proBNP levels show strong correlations with ST-T segment 

alterations (273), and electrocardiographic evaluation may 

predict clinical outcomes in stroke patients (274). Furthermore, 

increased cardiac troponin levels are strongly associated with 

mortality risk in AIS (275), with elevated high-sensitivity cardiac 

troponin T (hs-cTnT) and troponin I serving as potential 

biomarkers of myocardial injury post-AIS (276, 277). These 

markers are also recognized as indicators of coronary artery 

disease risk (278). Notably, the National Institutes of Health 

Stroke Scale (NIHSS) score correlates with myocardial injury, as 

patients with NIHSS >10 demonstrate significantly higher 

troponin levels (279). In AIS patients with elevated hs-cTnT, 

focal fibrosis of the heart, left ventricular hypertrophy and left 

atrial dilation were observed using MRI (280). Subsequent 

echocardiographic evaluation is essential for assessing post-AIS 

cardiac dysfunction (281, 282), particularly reduced ejection 

fraction associated with systolic impairment (279). Therefore, 

systematic monitoring of electrocardiographic parameters 

(including ambulatory ECG), NIHSS scores, and cardiac 

biomarkers facilitates early identification of high-risk patients 

for cardiac sequelae, especially in those with SN-activating 

lesions such as insular or right hemispheric infarcts. When 

electrocardiographic abnormalities or biomarker elevations are 

detected, comprehensive cardiac functional assessment through 

echocardiography is strongly recommended. This multimodal 

approach enables timely intervention and improved 

management of stroke-associated cardiac complications.

Given that SNS overactivation and elevated catecholamine 

secretion may serve as key pathogenic drivers of neurogenic 

cardiac injury following AIS, targeting SNS hyperactivity and 

mitigating catecholamine toxicity may represent critical 

therapeutic strategies. Here, we focus on exploring the 

therapeutic potential of several pharmacological and 

technological interventions capable of suppressing SNS 

overactivation and reducing catecholamine toxicity in AIS- 

associated neurogenic cardiac injury. These include beta-blocker 

(BB), sodium-glucose cotransporter 2 inhibitors (SGLT2i), 

angiotensin receptor-neprilysin inhibitor (ARNI), and 

neuromodulatory techniques designed to attenuate SN tension.
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BB can inhibit the binding of catecholamines (such as NE) to 

β-AR and reduce their cardiotoxic effects. Meanwhile, it also has 

multiple effects such as inhibiting SN excitation, improving 

ventricular remodeling and cardiac function (283, 284). 

A clinical study involving 5,212 ischemic stroke (IS) patients 

revealed that post-stroke BB administration was associated with 

reduced mortality and lower incidence of pneumonia (285). 

Recent post-hoc analysis of 5,049 AIS patients with baseline 

heart rates ≥100 bpm demonstrated significant long-term 

benefits of sustained BB therapy. Over a 10-year follow-up, 

discontinuation correlated with increased early mortality risk, 

whereas continuous BB use substantially decreased both all- 

cause mortality and stroke recurrence rates (286). Subgroup 

analysis identified enhanced therapeutic benefits in patients with 

elevated mean heart rates, concomitant atrial fibrillation (AF), or 

pre-existing coronary artery disease (286). These findings 

suggest that BB exert pronounced cardioprotection in 

tachycardic patients through dual mechanisms: heart rate 

reduction and suppression of pathological SN overactivation, 

collectively mitigating neurocardiac injury cascades.

A study found that for patients with AIS combined with high 

heart rate at admission, for every 10 beats per minute increase in 

heart rate, the relative risk of in-hospital death increased by 40% 

(287). Failure to receive BB treatment significantly increased the 

readmitted rate and mortality risk within 3 months and 1 year 

after discharge in elderly patients with HF combined with IS. 

Similarly, patients with a high heart rate also had a significantly 

increased related risk at 3 months or 1 year after discharge 

(288). Animal experiments found that metoprolol inhibits SNS 

excitation in MCAO mice, slowed down cardiac remodeling, 

and improved chronic cardiac dysfunction induced by SNS 

excitation (289). However, Eizenberg Y found that the use of 

beta-blockers before stroke was not associated with adverse 

functional outcomes or mortality 3 months after stroke (290), 

and Balla HZ also supported this conclusion through a meta- 

analysis (291). A clinical study involving 3,915 patients with IS 

also showed that BB treatment was not related to the functional 

prognosis and mortality of patients with IS complicated with 

hypertension (292). Although these studies have shown that the 

benefits of using BB treatment after AIS are not definite. 

However, they did not separately include patients with cardiac 

injuries such as high heart rate, AF or coronary heart disease 

after AIS in the analysis. This confounding might mask the 

actual efficacy of BB in specific populations. Regarding the 

impact of using BB when arrhythmia and cardiac complications 

(such as high heart rate, AF, HF, and coronary heart disease) 

occur after AIS, more high-quality studies are still needed for 

exploration at present.

SGLT2i have also been found to have an inhibitory effect on 

SN hyperactivity (293). Chiba et al. found that SGLT2 was 

expressed in both human and rat brains (294). SGLT2 was 

found to be distributed in the regions from the telencephalon, 

diencephalon to the brainstem (295). Interestingly, SGLT2 

activation in the RVLM was associated with SN excitation 

(296, 297), and inhibition of SGLT reduced RVLM neuronal 

activity and suppresses SN output (298). Dapagli6ozin was 

found to reduce the incidence of AF in patients with type 2 

diabetes (299). Further meta-analysis revealed that SGLT2i 

reduced the risks of AF, atrial 6utter and VT (300), but its 

protective effect on the posterior brain of AIS remains 

controversial (301). In addition, SGLT2i can improve HF by 

improving ventricular remodeling, modulating cardiac energy 

metabolism and ion exchange (302). Studies have found that 

SGLT2i can reduce sympathetic nerve activity through multiple 

mechanisms, among which regulating the feedback mechanism 

of the renal tubule-bulle apparatus is one of the key factors 

(303). SGLT2i reduces sodium reabsorption and increases 

sodium content in the distal convoluted tubules by inhibiting 

SGLT2 in the proximal convoluted tubules of the kidney (304). 

This activates the feedback mechanism of the renal tubule- 

parbulbar organ, causing the entry arterioles to contract and 

reducing the intraventricular pressure of the glomerulus. This 

mechanism not only improves the hemodynamics of the 

kidneys, but also indirectly reduces the activity of the 

sympathetic nervous system by decreasing renin secretion and 

lowering the activity of the renin-angiotensin system. By 

reducing sympathetic nerve activity, SGLT2i can decrease 

sympathetic nerve overload in the heart, alleviate myocardial 

injury and in6ammatory responses. This mechanism is 

independent of its hypoglycemic effect and is effective for both 

diabetic and non-diabetic patients with HF (305). Therefore, 

SGLT2i is expected to become an effective drug for treating 

cardiac injury caused by excessive excitement of SNS after stroke.

The mechanism of action of ARNI is achieved by binding 

angiotensin II receptor antagonists (such as valsartan) and 

enkephalinase inhibitors (such as sacubitril). This combination 

drug can simultaneously inhibit the RAAS and enhance the 

activity of the natriuretic peptide system. The protective effect of 

sacubitril-valsartan, the representative drug of ARNI, in HF has 

been widely recognized (306). Meta-analysis shows that 

sacubitril-valsartan demonstrates superior efficacy in the 

treatment of heart failure patients after myocardial infarction 

compared with traditional ACEI and ARB. Specifically, it is 

manifested as a higher left ventricular ejection fraction, a lower 

left ventricular end-diastolic diameter and NT-proBNP level 

(307). In addition, for heart failure patients with reduced 

ejection fraction, sacubitril/valsartan also shows a lower all-cause 

mortality rate (308). This drug can also reduce the relative risks 

of cardiovascular death and HF hospitalization (309). This is 

related to the effects of RAAS inhibition, natriuretic peptide 

system activation, anti-in6ammatory and antioxidant stress 

(310–312). Furthermore, sacubitril-valsartan has the effects of 

inhibiting the excitation of the SNS, reducing NE release and 

lowering arrhythmia. The mechanism is related to its regulation 

of the RAAS and natriuretic peptide systems (313). On the one 

hand, Sacubitril-valsartan reduces the excitability of the SNS and 

decreases the release of norepinephrine by decreasing renin 

secretion and inhibiting the activity of the RASS (314). On the 

other hand, it not only inhibits the SNS by inhibiting the 

degradation of natriuretic peptides (such as ANP and BNP), but 

also enhances the diuretic, diuretic and vasodilatory effects of 

natriuretic peptides, thereby reducing the burden on the heart 
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(315). A study found that sacubitril-valsartan alleviated ISO- 

induced myocardial in6ammation and fibrosis in rats and 

improved cardiac insufficiency (316). And therapeutic effect 

was related to the regulation of the TLR4/NF-κB and TGF- 

β1/Smad signaling pathways. The above results show that 

SGLT2i and sacubitril-valsartan can play a potential role in 

resisting the toxicity of catecholamines to the heart and 

inhibiting the excitation of the SNS, which provides possible 

therapeutic value for them in the treatment of neurogenic 

cardiac injury after AIS.

Several SN tension inhibition techniques, such as stellate 

ganglion block (SGB) and vagus nerve stimulation (VNS), hold 

promise as potential treatments for arrhythmias after AIS. SGB 

reduces SN excitability in the myocardium by blocking SN 

efferent fibers in the stellate ganglion, which in turn reduces 

cardiomyocyte autoregulation, triggered activity, and folding, 

leading to arrhythmia prevention and treatment (317). SGB has 

shown high therapeutic benefits and safety in the treatment of 

refractory angina and ventricular arrhythmias (318–320). 

Although SGB has many advantages, it still lacks high-quality 

clinical evidence to support it and has certain operational risks, 

difficulties in efficacy evaluation, large individual differences, and 

toxicity of local anesthetics. In the future, it is necessary to 

further optimize the operation techniques, improve the accuracy 

of the evaluation of the blocking effect, and carry out more high- 

quality randomized controlled trials. In recent years, VNS has 

received increasing attention in the field of arrhythmia treatment. 

Its mechanism of action lies in the fact that by stimulating the 

vagus nerve, it enhances the activity of the PN while inhibiting 

the overexcitation of the SN, which in turn improves the 

regulatory imbalance state of the cardiac AN and helps to restore 

normal cardiac rhythms and function (321). VNS reduces the 

infarct size, ventricular arrhythmia, and AF after myocardial 

ischemia/reperfusion and has the ability to improve the 

contractile function of the heart and ventricular remodeling (322). 

This may be related to the fact that VNS attenuated in6ammation 

(323). Furthermore, the PN advantage induced by VNS is related 

to regulating the ANS in different regions of the cerebral cortex 

(324), which is of great significance for improving the 

dysregulation of AN after AIS. However, VNS surgery has a 

relatively high risk of long-term complications, such as 

arrhythmia, laryngeal hematoma, vocal cord injury, and breathing 

difficulties. In addition, it still faces problems such as inconsistent 

therapeutic effects and difficulty in standardizing stimulation 

parameters. In the future, it is necessary to optimize the stimulus 

parameters, reduce adverse reactions, and conduct more clinical 

trials to evaluate its safety and efficacy.

In conclusion, actively monitoring the indicators re6ecting 

cardiac damage and focusing on patients with ischemic injury 

involving the right ANS may be of great value for the early 

identification of neurogenic cardiac damage after AIS. 

Suppressing SNS hyperactivity and mitigating catecholamine- 

mediated cardiotoxicity demonstrate therapeutic potential in 

ameliorating cardiac damage. These strategies should therefore 

be prioritized in clinical management to optimize 

neurocardiac outcomes.

5 Conclusion

While substantial advances have been made in understanding 

neurogenic cardiac injury after AIS, the regulatory mechanisms of 

the sympathetic-catecholaminergic axis within the brain-heart 

network under pathological conditions remain incompletely 

elucidated. Further investigation into how post-stroke 

sympathetic hyperactivity triggers myocardial injury–particularly 

through region-specific brain lesions and downstream 

catecholamine-mediated signaling pathways–remains a critical 

research priority with profound clinical implications for 

precision prevention and targeted therapies.

For the management of neurogenic heart disease caused by 

AIS, active monitoring of indicators re6ecting cardiac damage 

should be carried out, with a focus on patients whose ischemic 

injury involves the right SNS. Regulating excessive excitation of 

ANS, reducing in6ammation and oxidative stress may be the 

focus of preventing and treating myocardial injury after AIS. 

Future research should delve deeper into the mechanisms of 

toxicity of the sympathetic-catecholamine system on the heart 

after AIS. Efforts must be made to translate these theoretical 

insights into clinical practice and propel the development of 

clinical applications.
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