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Sympathetic overactivation and
catecholamine toxicity:
mechanisms and therapeutic
strategies for neurogenic heart
injury following acute

iIschemic stroke

Wang Guo", Hong-yu Li*, Hong-xin Li', Qi-wen Nie',
Zhi-hao Wang', Jian-hui Li* and Qiang Tang™*

'Heilongjiang University of Chinese Medicine, Harbin, China, °The Second Affiliated Hospital of
Heilongjiang University of Chinese Medicine, Harbin, China

Acute ischemic stroke (AIS) may trigger a spectrum of cardiac complications
spanning arrhythmias, troponin elevation, Takotsubo cardiomyopathy, heart
failure, and myocardial fibrosis and other acute or chronic cardiac lesions.
These complications seriously affect the prognosis of patients. Existing
studies have shown that the excessive excitation of the sympathetic neural
network after cerebral ischemic injury leads to an increase in catecholamine
levels, which may be a key factor triggering neurogenic cardiac damage after
AIS. Therefore, evaluating the trigger areas of sympathetic nerve excitation
and monitoring related cardiac damage indicators play a key role in patient
management. Inhibiting excessive excitation of the sympathetic nerve,
alleviating inflammatory responses and oxidative stress, is expected to
become the core strategy for the prevention and treatment of neurogenic
cardiac injury after AIS. Future research still needs to deeply explore the
mechanism of cardiotoxicity mediated by the sympathetic neuro-
catecholamine system after AIS, and at the same time promote clinical trials
targeting the mechanism to verify treatment paradigms through translational
models. This review aims to provide a useful reference direction for
subsequent in-depth research.
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GRAPHICAL ABSTRACT

AlS activates the sympathetic nervous system (SNS), releasing a large amount of catecholamines, inducing myocardial inflammation, oxidative stress, Ca?
* overload, mitochondrial dysfunction and myocardial cell apoptosis, and ultimately causing myocardial damage. Curbing excessive excitement of SNS
and reducing catecholamine toxicity can help alleviate myocardial injury. The figure was constructed with Figdraw (https://www.figdraw.com).

1 Introduction

Stroke is a neurological disease with high disability and
mortality rates, and has risen to become the second leading
cause of death worldwide (1). Acute ischemic stroke (AIS) is the
most common type of stroke, and patients have often
accompanied high risk for cardiac-related complications after
the onset of stroke (2, 3). These cardiac complications are one
of the common systemic complications after stroke and have
second only to direct neurological impairment in terms of
lethality (4, 5).Secondary cardiac after AIS are

manifested by acute or chronic cardiac arrhythmias, cardiac

injuries

systolic dysfunction, elevated troponin (with or without
myocardial ischemia), Takotsubo syndrome, sudden -cardiac
death, heart failure (HF), and myocardial fibrosis, among other
acute or chronic cardiac pathologies (6-11). This cardiac
damage has been shown to be associated with dysregulation of
the autonomic nervous system (ANS) after stroke (4, 12-14), in
particular hyperexcitability of the sympathetic nervous system
(SNS) triggering catecholamine upregulation (15). Excessive
catecholamines have adverse effects on the heart. For instance,
(ISO) have been

observed to cause significant myocardial damage (16-18). This

norepinephrine (NE) and isoproterenol

neurogenic cardiac damage may be due to the sustained
activation of al adrenergic receptors (al-AR) and B1 adrenergic
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receptors (B1-AR) by catecholamines, which leads to coronary
artery constriction, accelerated heart rate, and hypertension,
which in turn reduces myocardial perfusion (19, 20). Reduced
which
further induces elevated intracellular levels of calcium ions (Ca?

myocardial perfusion triggers myocardial ischemia,
™) and an increased level of reactive oxygen species (ROS),
leading to myocardial injury and cardiomyocyte apoptosis (21).
However, there is a lack of systematic summaries and updates
caused by SNS
overexcitation and catecholamine release after AIS. Therefore,
further
cardiotoxicity by sympathetic nervous (SN) excitation as well as

on the mechanisms of cardiotoxicity

understanding of the potential mechanisms of
excess catecholamines is important for exploring the treatment
of cardiac injury after AIS. In this review, we focus on the
mechanisms of cardiotoxicity of catecholamine release triggered
by SNS excitation after AIS, with the aim of providing new

ideas and directions for clinical treatment.

2 Activation of the SNS after AlS

Some specific regions of the forebrain cortex, limbic lobe, and
brainstem are collectively involved in central sympathetic nervous
(CSN) regulation. However, the factors involved in SNS activation
after stroke are complex and may involve mechanisms such as injury
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to key brain regions, inflammatory responses, and oxidative stress.
Therefore, our study systematically summarizes the major factors and
their potential mechanisms of SNS activation after AIS (Figure 1).
Figure 1 Schematic diagram of SNS activation and cardiac
damage after AIS. Ischemic injury to MPFC, ACC, insular
cortex, amygdala, hypothalamus, PAG, PBN, NTS, NA, and
VLM is a key factor for SNS activation after AIS. After AIS,
neuroinflammation and oxidative stress interweave with each
other, jointly act and continuously activate the SNS, thereby
leading to a sharp increase in catecholamine levels.
Ultimately, it causes a series of cardiac damages such as
arrhythmia, elevated troponin, cardiac dysfunction and HF.
MPFC, medial prefrontal cortex; ACC,

cortex; PAG, periaqueductal gray; PBN, parabrachial nucleus;

anterior cingulate

NTS, nucleus tractus solitarius; NA, nucleus ambiguus (NA);
VLM, ventral lateral medulla; TNF-a, tumor necrosis factor-ao;
IL-1B, IL-6, interleukin-6; NOX, NADPH
oxidase; COX, cyclooxygenase; XO, Xanthine oxidase; NOS,

interleukin-1f;

nitric oxide synthase; ROS, reactive oxygen species; RNS,

Reactive Nitrogen Species.

10.3389/fcvm.2025.1632704

2.1 Conduction pathways of the cardiac
SNS

The SN is part of the ANS, which exhibits an extremely fine
and complex anatomical configuration and functional layout in
the brain and spinal cord. This intricate system, with the help of
multiple neural network pathways, has had an important
influence on the normal functioning as well as abnormal
conditions of the cardiovascular system (14). The central
autonomic nervous (CAN) network is structurally complex and
includes projection pathways between the cerebral cortex, limbic
system, and brainstem (22, 23). The SNS can be divided into the
CSN network and the peripheral sympathetic nerve (PSN)
network. While the CSN consists mainly of pathways that
(PVN) of the
hypothalamus to the rostral ventral lateral medulla (RVLM) and

project from the paraventricular nucleus
NE-containing cell populations in the pons (24-26). Among
the RVLM,

cardiovascular activity, plays a role in regulating heart rate and

them, as a key center for the control of

blood pressure by producing SN activity upon activation (27).
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FIGURE 1

IL-1B, interleukin-1p;

Schematic diagram of SNS activation and cardiac damage after AIS. Ischemic injury to MPFC, ACC, insular cortex, amygdala, hypothalamus, PAG, PBN,
NTS, NA, and VLM is a key factor for SNS activation after AIS. After AlS, neuroinflammation and oxidative stress interweave with each other, jointly act and
continuously activate the SNS, thereby leading to a sharp increase in catecholamine levels. Ultimately, it causes a series of cardiac damages such as
arrhythmia, elevated troponin, cardiac dysfunction and HF. MPFC, medial prefrontal cortex; ACC, anterior cingulate cortex; PAG, periaqueductal gray;
PBN, parabrachial nucleus; NTS, nucleus tractus solitarius; NA, nucleus ambiguus (NA); VLM, ventral lateral medulla; TNF-a, tumor necrosis factor-a;
IL-6, interleukin-6; NOX, NADPH oxidase; COX, cyclooxygenase; XO, Xanthine oxidase; NOS, nitric oxide synthase; ROS,
reactive oxygen species; RNS, Reactive Nitrogen Species. The figure was constructed with Figdraw (https://www.figdraw.com).
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These structures ultimately project to lateral horn motoneurons in ~ glutamatergic neurons can also be directly activated by these

the thoracic segment of the spinal cord and are transmitted via  factors to trigger SN excitation (29). However, there was no

preganglionic fibers via the anterior spinal nerve roots and white ~ comprehensive and systematic summary study on how SNS to

traffic branches to the stellate ganglia of the parasympathetic =~ be activated after AIS. Therefore, the present study aims to

trunk of the spinal cord, which subsequently emit systematically summarize the activation factors of the CSN after

postganglionic fibers that regulate cardiac activity (28, 29). In  AIS, with the aim of providing a clear framework for an in-

addition, neurons in the dorsal, ventral and lateral regions of  depth understanding of the activation mechanisms of the CSN

the PVN and the RVLM can directly affect SN excitation by  network after stroke. Figure 2 illustrates the SNS that regulates

projecting directly to the medial-lateral aspect of the thoracic  cardiac activity.

spinal cord (28, 30). Indeed, overexcitation of the SN has been a Figure 2 The SNS governing cardiac activity. Cardiac activity

major concern for cardiac injury after AIS, and a large number  is jointly regulated by CSN and PSN, with the RVLM serving as

of studies have revealed that overactivation of the CSN triggers a critical hub for cardiovascular control. MPFC, medial

cardiac injury after stroke (31-34). prefrontal cortex; ACC, anterior cingulate cortex; RVLM, rostral
Earlier, researchers recognized that the hypothalamus, insula  ventral lateral medulla; PVN, paraventricular nucleus.

cortex had the function of regulating SN activity (24, 35). With

the development of neuroanatomy as well as imaging

techniques, the ventral medial prefrontal cortex (vMPFC), 2.2 Impairment of the CAN network

insula, anterior cingulate cortex (ACC), hypothalamus, CoOnductance pathway triggers increased

amygdala, and brainstem were found to be involved in the SN tension

regulation of the ANS (22, 29, 36). Under stress, hypoxia,

hypovolemia, and hypoglycemia, the vMPFC, insula, and ACC Ischemia in some key regions is more likely to trigger cardiac

could activate the SNS by activating RVLM glutamatergic =~ damage, which is closely related to brain regions associated with

neurons via downward conductance (29). In addition, RVLM  the ANS projection loop. Specifically, ischemic cerebral infarction
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FIGURE 2

The SNS governing cardiac activity. Cardiac activity is jointly regulated by CSN and PSN, with the RVLM serving as a critical hub for cardiovascular
control. MPFC, medial prefrontal cortex; ACC, anterior cingulate cortex; RVLM, rostral ventral lateral medulla; PVN, paraventricular nucleus. The
figure was constructed with Microsoft PowerPoint.
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may activate the SNS in direct or indirect ways. For example,
elevated SN tone in response to damage to key structures
involved in parasympathetic (PN) projections may lead to
hyperactivation of the SNS. This phenomenon suggests that
lesions in specific regions of the brain have an important impact
on the balance of the ANS.

2.2.1 Medial prefrontal cortex (MPFC)

Clinical researches have shown that frontal lobe strokes often
cause arrhythmias like atrial fibrillation (AF), tachycardia, and
ventricular arrhythmias (37, 38). Using functional magnetic
resonance imaging to explore the relationship between heart rate
and cortical activity found that increased heart rate or increased
heart rate variability in healthy volunteers is associated with
diminished MPFC activity (36, 39). Transcranial direct current
stimulation of the MPFC induced post-exercise hypotension in
subjects (40). These conditions suggest that the MPFC is involved
in the regulation of the ANS (41). Animal experiments indicate
that the VMPFC regulate acute restraint—induced tachycardia in
rats. The infralimbic cortex promoted CoCl,-induced tachycardia,
while the prelimbic cortex have the opposite effect (42).
Additionally, electrically stimulating the rat MPFC significantly
increased blood pressure (43). In humans, studies on patients
with vYMPEFC lesions in different locations have showed that the
left vMPFC is linked to PN activation, and the right vMPFC to
SN inhibition (44). This lateralized regulation of the ANS may
clarify why right MPFC damage activates the SN.

2.2.2 Insular cortex

The insular is often regarded as a key area for AIS—induced
cardiac damage. Many clinical studies indicated that insular cortex
involvement in ischemia often results in cardiac problems liked
bundle branch block, arrhythmias, QT-interval prolongation,
myocardial injury, and cardiac dysfunction (45-50). A study of
384 infarcts in the middle cerebral artery region found that
patients with insula damage showed elevated levels of NE and
neutrophils (51).
damage revealed that patients with right insula damage exhibited

Further comparison of right and left insula

reduced heart rate variability (51, 52). Also, right insular damage
and arrhythmia due to SN activation became an adverse factor
affecting 1-year prognosis (46). Many studies have shown right
insular damage was more likely to cause cardiac lesions, especially
arrhythmias (13, 53-58), while left damage would lead to elevated
troponin and BNP (59). These results implied right insular damage
activated the SNS. A plausible explanation was that after right insula
infarction, reduced PN tension and pressure reflex sensitivity allowed
the SN to dominate autonomic nervous(AN) regulation (60). In a
study by Oppenheimer SM and colleagues on patients undergoing
epilepsy surgery, it had found that stimulation of the left insular
cortex resulted in a slowing of the heart rate, while stimulation of
the right insular cortex had the opposite effect (61). This indicated
that the left insular was associated with the regulation of the PN
system, and the right insular with the SNS. Animal of middle
cerebral artery occlusion (MCAO) models also have confirmed
that right insular damage led to increased plasma NE and QT-
interval prolongation (62, 63). These experimental results support
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the existence of a lateralized effect of insula damage on cardiac
regulation, which may be due to the dominant role of the right
insula in controlling the PN downstream conduction pathway to
the sinus node (64). Moreover, the insular cannot directly project
to sympathetic preganglionic neurons; its regulation of the SNS
likely requires integration through hypothalamic nuclei. For
example, the glutamatergic relay in the dorsomedial hypothalamus
(DMH) has been proven to be a pathway for its regulation of the
SNS (34). Some studies have shown that the DMH exhibits
asymmetry in the regulation of cardiac AN function, with the right
DMH primarily responsible for regulating cardiac rhythm (65, 66).
When the right insular is damaged, it may trigger dysregulation of
the SNS via the DMH pathway, leading to arrhythmias. However,
research on the mechanisms linking insular lesion location and
hemispheric laterality to AN dysregulation and cardiac damage
remains very limited. Further in-depth studies will help to better
understand this area.

2.2.3 Limbic system and brainstem

Limbic systems such as ACC, amygdala and hypothalamus can
modulate cardiac activity through direct or indirect or
periaqueductal gray (PAG) relay projections to the medulla
oblongata and lateral horn of the spinal cord (29). In addition,
the nucleus tractus solitarius (NTS), ventral lateral medulla
(VLM), nucleus ambiguus (NA) and parabrachial nucleus (PBN)
in the brainstem are also involved in their network connections
(60). The ACC is interconnected with the insula cortex. The
ACC mainly modulates the SN and PN systems via its ventral
and dorsal regions (67, 68), with the left side predominantly
engaging in parasympathetic regulation (69).
NE heightens
excitatory regulation of the SNS, strengthening SN activity (70).
The amygdala, with its extensive neural connections to the

During stress, excess amygdala—induced

hypothalamus and brainstem, modulates sympathetic preganglionic

neuron activity via these pathways, impacting sympathetic
output. Thus, the amygdala is crucial for regulating SNS and
neuroendocrine responses to stress (71, 72). The hypothalamus
plays a central role in maintaining the stability of the body’s
internal environment by regulating the ANS, and its anterior and
posterior regions are representative of the PN and SN (73). And
the paraventricular nucleus (PVN) of the hypothalamus can
project directly or indirectly to the preganglionic neurons of
the SN and play a role in the regulation of cardiac activity by
afferent sensory signals from the heart via the NTS (74). The
PAG, NTS, VLM, NA and PBN in the brainstem are key
structures and relay stations in the ANS that connects the
forebrain, limbic system and spinal cord (60, 75-77). These
structures are involved in cardiovascular regulation, and their
damage can cause severe SN activation (78-80). Numerous
studies have shown that lesions to these structures lead to
activation of the SNS, which can lead to a range of cardiac
problems, especially arrhythmias (77, 81-88).

In summary, ischemic damage to central regions regulating
the SN and PN networks may be excessive activation of SN,
disrupting cardiac physiology and causing damage. Such patients

should be closely monitored in clinical settings. Although a
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large number of studies have reported the relationship between the
lateralization of brain injury sites and cardiac damage, how this
lateralization regulates the activation of the SNS still lacks in-
depth discussion and needs to be explored and elucidated by
more studies.

2.3 Neuroinflammation and oxidative stress
promote the activation of SN after AIS

observed  that
neuroinflammation and oxidative stress are important factors

A large number of studies have
causing or aggravating brain tissue injury after stroke (89-91). For
example, pro-inflammatory factors (e.g., tumor necrosis factor-o
(TNF-a), interleukin-1f (IL-1B), and interleukin-6 (IL-6), etc.)
(92-95), inflammatory mediators (e.g., prostaglandins (PGE2),
nuclear kappa factor B (NF-«B), and cyclooxygenase-2 (COX-2),
etc.) (96, 97), and oxidative stress-associated molecules (e.g., ROS,
RNS, and MDA, etc.) are upregulated after stroke (98, 99).
Inhibiting these factors and oxidative stress levels can
significantly improve brain injury. After AIS occurs, central
inflammatory cells such as astrocytes and microglia will be rapidly
activated, releasing a large amount of inflammatory factors (such
as TNF-q, IL-1B and IL-6) and matrix metalloproteinases, causing
damage to the blood-brain barrier (89). Meanwhile, these cells
promote the infiltration of peripheral immune cells (such as
neutrophils, macrophages and lymphocytes) into the ischemic area
by up-regulating the expression of cell adhesion molecules (such as
ICAM-1 and selectin), thereby exacerbating neuroinflammation
and oxidative stress injury (91). When blood flow is interrupted,
the brain can’t get energy from glucose oxidative phosphorylation
and instead uses fatty acids. This leads to lipid peroxidation,
producing lots of ROS and reactive nitrogen species (RNS). They
damage cell membranes and cause neuronal injury (100).
Oxidative stress not only directly leads to cell damage, but also
activates inflammatory responses. For example, ROS and RNS can
activate transcription factors (such as NF-kB), thereby promoting
and further

aggravating neuroinflammation (89). The resulting brain injury

the production of pro-inflammatory factors
may be an important factor for the activation of the SNS (101, 102).

Following AIS, the release of pro—inflammatory cytokines
activates the SNS, causing the adrenal medulla and sympathetic
nerve terminals to release catecholamines (103). This can lead to
coronary artery constriction and myocardial ischemia, as well as
activate peripheral monocytes/macrophages and neutrophils,
thereby exacerbating cardiac injury (6). Inhibiting microglial
cell-mediated neuroinflammation can improve ventricular
arrhythmias in HF rats (104). In a canine MCAO model,
ventricular tachycardia (VT) occurrence is linked to heightened
left stellate ganglion activity, elevated NE levels, and activated
M1-type microglia in the ventricle, along with increased TNF-a,
NF-kB, and MCP-1 These
significantly diminished by ablating the left stellate ganglion

levels. phenomena can be
(105). This may be related to the increase in SN activity caused
by pro-inflammatory factors such as IL1-B, TNF-a, and IL-6

stimulating glutaminergic neurons to secrete glutamic acid (106,
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107). In addition, orexin A (OXA) in rat PVN can promote the
expression of IL1-B, IL-6, and TNF-o through orexin 1 receptor
(OXIR) and increase SN activity (108).

However, few studies have explored the relationship between
oxidative stress and SNS activation after AIS. Several studies
have illustrated from the side the connection between central
oxidative stress and the SNS as well as cardiac injury.
Inducing the overexpression of inducible nitric oxide synthase
(INOS) in RVLM caused SN excitation in rats and increased
NE production (109). The use
dihydropyridine channel blockers can inhibit SN activity and the

of long-acting calcium
oxidative stress level of RVLM and increase the ability to resist
oxidative stress (110). When atropine is administered to inhibit
PN system activity, MCAO mice exhibit more severe cardiac
injury, characterized by reduced left ventricular ejection fraction,
increased myocardial apoptosis, and fibrosis. Concurrently, the
expression of the antioxidant factor endothelial nitric oxide
synthase (eNOS) is decreased (9). Renal denervation can reduce
the release of catecholamines and inhibit the expression of
NADPH oxidase in the brain of rat models at high risk of
stroke (111). These findings indicate that neuroinflammation
and oxidative stress enhance SN excitation after AIS and induce
cardiac damage.

3 Cardiotoxicity triggered by
catecholamines

After stroke, increased SN tension elevates circulating
catecholamine levels, subsequently inducing cardiac dysfunction
(112). These catecholamines primarily consist of epinephrine (E)
and NE (11). NE is primarily synthesized by noradrenergic
neurons in the central nervous system and postganglionic
sympathetic neurons (113, 114), which serve as neurotransmitters
in the regulation of intracranial signals and the control of
peripheral target organs such as the heart and vasculature. In the
adrenal medulla, tyrosine undergoes a series of enzymatic
reactions to gradually convert into NE. Ultimately, under the
catalysis of phenylethanolamine N-methyltransferase, a significant
portion of NE is converted into E (115), which is released into
the bloodstream in a hormonal form to participate in the
regulation of physiological functions. However, the plasma NE
primarily originates from the release of neurotransmitters from
the terminals of postganglionic sympathetic neurons, not from
the adrenal medulla. Therefore, NE functions both as a classical
neurotransmitter in the synaptic cleft and as a hormone via the
bloodstream, reflecting its dual role in physiological regulation.

Many clinical investigations and animal studies have
demonstrated catecholamine surges after stroke (6, 77, 81, 116).
Excess catecholamines can induce coronary artery constriction,
raise heart rate, and increase myocardial oxygen consumption.
This can lead to myocardial inflammation, oxidative stress, Ca**
overload, mitochondrial dysfunction, and myocardial cell
apoptosis. In conclusion, these processes are very complex. Our
study has summarized the cardiotoxicity of catecholamines and

its mechanism (Figure 2).
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3 The of
cardiotoxicity after AIS. After AIS, sympathetic nerve tension

Figure mechanism catecholamine-triggered
increases, and sustained overexcitation of the sympathetic nerve
network leads to substantial catecholamine release. The activation
of AR, inflammatory response, oxidative stress, Ca** overload and
mitochondrial dysfunction constitute the main network of
catecholamine-induced cardiac  injury. These pathological
processes are interrelated. Centered on oxidative stress, they form
a complex network through multiple

eventually leading cardiomyocyte apoptosis,

signaling pathways,
to myocardial
hypertrophy and cardiac fibrosis. The relevant signal pathways or

key molecules are marked below each topic in the text box.

3.1 The molecular mechanisms of
catecholamine-mediated cardiac injury

3.1.1 Cardiac inflammation and oxidative stress
induced by catecholamines

In Takotsubo syndrome, AIS, and ISO-induced myocardial
infarction animal models, a significant inflammatory response
was observed in the heart, as evidenced by infiltration of
inflammatory cells and upregulation of inflammatory factor

10.3389/fcvm.2025.1632704

levels (117-120). A large number of clinical, animal and cellular
experiments demonstrated that post-stroke cardiac injury was
closely related to inflammation, and that the main mechanism
involved the up-regulation of pro-inflammatory factors and
mediators, as well as the infiltration of inflammatory cells such
as monocytes, macrophages, and lymphocytes (6, 19, 121-123).
that
catecholamines may lead to cardiac damage and observed

Researchers  have long  noted stress-generated
significant myocardial inflammation (124), and a positive
correlation between leukocyte levels and NE levels (125). With
the (MRI)
techniques, of the

myocardium has been observed in patients with Takotsubo

development of magnetic resonance imaging

significant macrophage infiltration
syndrome (121). Animal experiments often use a model of ISO-
induced cardiac damage. ISO is a B-AR agonist and has a
chemical structure similar to that of biogenic amines and is
often used as a synthetic model to study catecholamine toxicity.
Several studies have found that elevated catecholamine levels,
left ventricular inflammatory infiltration and myocardial fibrosis
were observed in both ISO-induced and chronic stress-induced
rat Takotsubo models (126). These results suggest that elevated
AIS may be
contributing to cardiac inflammation.

catecholamines after an important factor

— Stimulation —»[ Activation of SNS
--->Possible / indirect stimulation 1
<— Bidirectional stimulation Catecholamine
[ 1
* E

¥
Inflammation
NLRP3, TLR4/NF-kB, JAK2/STAT3,
HMGBI1-TLR4,Mst1/Hippo,
VEGF-B/AMPK/eNOS,
AMPK/eNOS/AKT, Nrf2/HO-1

|

Ca2*overload

B-AR/PKA, CaMKII/PKA,
RyR2, IP3R, ROS/CaM

Mitochondrial dysfunction

FIGURE 3

The mechanism of catecholamine-triggered cardiotoxicity after AIS. After AIS, sympathetic nerve tension increases, and sustained overexcitation of
the sympathetic nerve network leads to substantial catecholamine release. The activation of AR, inflammatory response, oxidative stress, Ca®*
overload and mitochondrial dysfunction constitute the main network of catecholamine-induced cardiac injury. These pathological processes are
interrelated. Centered on oxidative stress, they form a complex network through multiple signaling pathways, eventually leading to
cardiomyocyte apoptosis, myocardial hypertrophy and cardiac fibrosis. The relevant signal pathways or key molecules are marked below each
topic in the text box. The figure was constructed with Microsoft PowerPoint.
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Several studies have reported several mechanisms to mimic
catecholamine-induced cardiac inflammation with ISO: mainly
Nod-like receptor protein 3 (NLRP3), TLR4/NF-kB pathway,
JAK2/STAT3 pathway, and HMGBI-TLR4
excitability activates the NLRP3 vesicles in the heart and

signaling. SN

generates IL-1B to induce myocardial injury (127), and recent
studies have also demonstrated that cardiac insufficiency
occurring after MCAO in mice is associated with sustained pro-
inflammatory changes in monocytes/macrophages driven by IL-
1B (122). In the ISO-induced male mouse model of stress
cardiomyopathy, ISO triggers NLRP3 inflammasome activation
via NOX4-dependent
regulates downstream inflammatory cytokines including IL-6
and TNF-o, and promotes recruitment of CD68" CDI11b"
macrophages into the myocardium (128). ISO also stimulates
NLRP3 inflammasome via NOX4-dependent mitochondrial ROS
and activates downstream inflammatory signals (e.g., IL6 and
TNFo) while inducing infiltration of CD68 and CD11b-
expressing macrophages into the myocardium of mice (129). In
addition, MD2 is also activated by PI1-AR-ROS signaling and
induces macrophage polarization to generate inflammation via
the PB2-AR-cAMP-PKA-ROS axis (130). HK1 has also been
found to activate NLRP3 in the myocardium of ISO-treated
mice (131). This suggests that HK1, MD2 may also be a
pathway that induces cardiac inflammation.

mitochondrial ROS generation, up-

TLR4 has been shown to be extensively involved in stroke,
myocardial infarction and inflammation, where its binding to
the bridging molecules MyD88 or MAPK activates NF-xB and
triggers the up-regulation of IL-1p, IL-18 and TNF-a expression
(132-134). On the one hand, ISO can upregulate Gal-3
expression and induce myocardial inflammation and fibrosis via
the TLR4/ MyD88/NF-«kB pathway, and the use of the Gal-3
blocker MCP ameliorates this adverse outcome (135). On the
other hand, myocardial inflammation and apoptosis can also be
induced through the AMPK/NF-«B pathway (136).

The JAK2/STATS3 signaling pathway is also involved in ISO-
induced myocardial inflammation and hypertrophy. Upon
activation, it drives macrophages to polarize into a pro-
inflammatory phenotype and induces the release of pro-
inflammatory factors, and JAK2 inhibitors ameliorate myocardial
inflammation (137). High mobility group protein 1 (HMGBI) is
also found to be upregulated in expression in ISO-treated rat
hearts and trigger inflammation through the HMGBI1-TLR4
pathway (138). Several other signaling pathways, such as Mstl/
Hippo, VEGF-B/AMPK/eNOS, AMPK/eNOS/AKT, and Nrf2/
HO-1, have recently been found to be involved in the regulation
of cardiac inflammation after ISO treatment (139-142).

The metabolism of NE has an important role in oxidative stress,
such as ROS production (143). NE is eliminated mainly through
presynaptic and extraneuronal reuptake as well as metabolism.
First, oxidative deamination by monoamine oxidase (MAO)
converts NE to dihydroxyphenylethanol. Then, it is converted to
methoxyhydroxyphenylglycol (MHPG) catalyzed by catechol-O-
methyltransferase (COMT). It is finally converted to 3-methoxy-
4-hydroxymandelic acid (VMA) and 3-methoxynorepinephrine
(NMN) in the

liver and excreted via wurine (144-146).
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Catecholamine-induced  oxidative stress injury has been
demonstrated in the heart (147). It can lead to increased lipid
peroxidation, and several antioxidants can attenuate the damage
caused by lipid peroxidation (148-150). For example, after ISO
injection, the levels of antioxidant enzymes SOD and glutathione
peroxidase (GSH-Px) in the myocardium of rats decreased
significantly, while the contents of oxidative stress markers MDA
and NO increased significantly. Inhibiting oxidative stress can
effectively alleviate heart damage (120, 142). Cardiomyocytes
(-OH) and
peroxynitrite (ONOO™) (151). The expression of antioxidants
such as SOD, GSH-Px and catalase was also found to be

decreased in H9c2 cardiomyocytes exposed to NE, while the

treated with E produced hydroxyl radicals

expression of 4-hydroxynonenal was upregulated (152). These
results suggest that catecholamine-induced oxidative stress is also
an important cause of cardiac injury. In addition, when liver
function is impaired, the activities of MAO and COMT decrease,
and the ability to generate and clear catecholamine metabolites
(such as VMA) declines, which may lead to the accumulation of
these metabolites in the body (153-155). Similarly, when the
kidneys are damaged, especially when the glomerular filtration
rate (GFR) decreases, it can also lead to a reduction in the
excretion of catecholamine metabolites, further intensifying the
accumulation of these metabolites in the body (156). Therefore,
when renal or hepatic dysfunction is present, the impaired
clearance of these metabolites may act as a “second hit” to
cardiac injury. However, current research on the association
between the toxic byproducts of catecholamine metabolism and
cardiac injury after stroke remains insufficient. Clarifying these
relationships may be of significant importance for elucidating the
mechanisms underlying neurogenic cardiac injury after stroke.
The conditions that trigger oxidative stress include multiple
complex factors such as mitochondrial damage, inflammation,
apoptosis and oxidative damage to proteins, lipids and DNA (11).
Among these factors, ROS production is the main driver of
oxidative stress. The source of catecholamine-induced ROS is
multifactorial in nature and consists of the following two main
aspects: (1) Stimulation of the AR: for example, in cardiac
myocytes NADPH oxidase is activated by al-AR stimulation,
which leads to the generation of superoxide anion radicals (O,—s)
(157).
catecholamines: the MAO pathway induces oxidative deamination

(2) Enzymatic and non-enzymatic degradation of
of NE to produce hydrogen peroxide (H,O,) which is further
catalyzed to “OH”; and degradation of NE by non-enzymatic
pathways produces “aminochromes” toxic compounds (11, 158).
This catecholamine-mediated oxidative stress causes aberrant cell
signaling, intracellular Ca?* overload, mitochondrial damage,
inflammatory responses, and disruption of the extracellular
matrix and lysosomes, which in turn triggers apoptosis in
cardiomyocytes (159-163). Also, these adverse outcomes directly
or indirectly enhance oxidative stress, ultimately causing
arrhythmias, cardiac hypertrophy, myocardial fibrosis, cardiac
insufficiency, and HF. These results suggest that catecholamine-
induced oxidative stress may be central to cardiac injury.

Recent study indicates that renal denervation decreases

catecholamine secretion in hypertensive HF rat models, lowering
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ROS and MDA levels and reducing myocardial hypertrophy and
fibrosis. This may be related to the inhibition of BACH1 by the
TGF-B1/SMADs/SP1 signaling pathway and the alleviation of
mitochondrial oxidative stress by PACS-2 (164). However, there
is currently a lack of more research to explain how renal
denervation directly inhibits specific molecular pathways within
the heart. This may be related to the fact that renal denervation
reduces sympathetic nerve activity and catecholamine levels
throughout the body, and it is precisely these systemic changes
that ultimately affect the signal transduction pathways of the
heart. In both ISO—treated mice and cardiomyocytes, p-JAK2, p-
STAT3, MDA, NOX2, and NOX4 show increased expression, yet
inhibitors can reverse this trend (137). Thus, JAK2/STAT3
signaling plays a dual role in ISO-induced oxidative stress and
inflammation. In addition, the Mstl/Hippo, RAGE/NF-«B, ROS/
NF-kB, TLR4/MyD88/MAPKS/NF-kB, and SIRT1/FOXO3a/
MnSOD signaling pathways are also found to be involved in ISO-
induced oxidative stress injury in the heart (139, 165-168).
Activation of these signaling pathways may in part explain the
mechanisms of catecholamine-induced cardiac inflammation and
oxidative stress. However, these processes remain complex and
can influence each other, and more mechanistic studies are needed.

3.1.2 Ca®* overload in cardiomyocytes

Ca®" is a key regulatory ion in cardiac excitation-contraction
coupling. Excessive release of catecholamines sustains activation of
the B-AR, leading to a significant increase in myocardial
excitability and contractility. B-AR overactivation may trigger
C a2+

. P . 2 . 2
cardiomyocyte injuries. Meanwhile, Ca®" overload activates Ca

intracellular overload, which leads to a series of
“-dependent ATPase, leading to mitochondrial dysfunction and
increased oxidative stress, which in turn triggers cardiomyocyte
injury (169).

A significant increase in the level of Ca®* in myocardial cells is
observed in the ISO-induced myocardial ischemia model (170).
Further studies have shown that ISO promotes Ca®" transients
and increases Ca* load in the myocardial sarcoplasmic reticulum
(SR) via B-AR (171). In addition, ISO can cause Ca®* overload
via L-type calcium channels (LCC) (172). In cardiomyocytes, NE
activates B1-AR, which in turn promotes Ca%* endocytosis via
LCC and triggers Ca** release from the SR via the ryanodine
receptors (RyR2) pathway (173). Continuous accumulation of Ca?
" may continuously activate calcium ion-dependent ATPase,
thereby damaging mitochondrial oxidative
This
disturbance of intracellular Ca®>" homeostasis, disrupt normal

phosphorylation

function. impairment would further exacerbate the
energy metabolism, promote ROS accumulation, and ultimately
lead to myocardial excitation-contraction dysfunction (169, 174).
Ca2+

development of arrhythmias and may also directly induce

Intracellular overload is closely associated with the
cardiomyocyte apoptosis (175). This may be due to the opening
of the mitochondrial permeability transition pore after impaired
mitochondrial function, which triggers apoptosis (176).
Furthermore, oxidative stress can also cause impaired
mitochondrial function, resulting in insufficient ATP production,

ATP-dependent Na'-Ca®* exchange disorders, and promoting
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Ca®" accumulation (177). When 5-AR is activated, calmodulin-
dependent protein kinase II (CaMKII) regulates calcium channels
and RyR2 via PKA-dependent phosphorylation, thereby driving
Ca** (146). that
4-hydroxyketone, produced by NE metabolized by mitochondrial

accumulation Recently study found
MAO-A, promotes Ca®" accumulation through the voltage—
dependent anion channel 1/inositol-1,4,5-trisphosphate receptor 1
(IP3R) pathway (178). ROS generated by NE metabolism cause
intracellular Ca®" overload either by modulating calcium—
handling proteins or inducing membrane lipid peroxidation
(143). The resulting mitochondrial Ca®" accumulation disrupts
the mitochondrial membrane potential and damages the
respiratory chain, further boosting ROS production (11). This

vicious cycle may exacerbate cardiomyocyte injury.

3.1.3 Mitochondrial dysfunction

In numerous animal experiments, catecholamine-induced
cardiomyocyte mitochondrial dysfunction has been observed.
The ROS generated during catecholamine metabolism, such as
0’—s and H,0,, can directly attack the lipids, proteins, and
DNA
function of mitochondria become impaired, and their normal
affected (179, 180).

Another product of the metabolic process, dopaldehyde and

of mitochondria. Consequently, the structure and

oxidative phosphorylation process is
3,4-dihydroxyphenylacetaldehyde, can also interfere with the

normal physiological function of mitochondria, or even
destroy the structure of mitochondria, leading to mitochondrial
dysfunction (179). Moreover, catecholamine-induced mitochondrial
inhibits mitochondrial

synthesis, and increases mitochondrial permeability (11). Ca®*

Ca®*  overload respiration and ATP
overload can cause mitochondrial dynamism abnormalities,
which may be related to the acetylation of ATPase family AAA
domain—containing protein 3A (181). ISO can reduce the
expression of antioxidant enzymes such as SOD and CAT in
mitochondria, thereby increasing mitochondrial oxidative stress
levels (182).

Cardiomyocyte mitochondrial swelling and myofilament
vacuolization were observed in rats after ISO treatment (183).
Further analysis revealed that the respiratory control index
(184), the
phosphocreatine/ATP ratio, and ATP content were all reduced,
while MDA and eNOS expression increased (185, 186). This
indicates that ISO induced energy production impairment in the
that after ISO
intervention, mitochondrial dysfunction in the heart is associated
with enzymes,
mitochondrial [such as

reflecting  oxidative  phosphorylation cardiac

myocardium. Some studies have shown

reduced expression of certain including
NADH
dehydrogenase, succinate dehydrogenase (SDH), and cytochrome
¢ oxidase (CcO)] (187), aldehyde dehydrogenase 2 (ALDH2), and
the mitochondrial enzyme [-hydroxyacyl-CoA dehydrogenase
(HADH) (188).
Mitochondrial respiratory enzymes are crucial for normal
(189). NADH

dehydrogenase, the first enzyme complex in the mitochondrial

respiratory  enzymes

mitochondrial ~ physiological ~ functions

electron transport chain, mainly transfers electrons from NADH
to coenzyme Q (CoQ) while pumping protons from the
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mitochondrial matrix into the intermembrane space to form a
proton gradient for ATP synthesis. SDH, complex II of the
respiratory chain, passes electrons from FADH2 to CoQ, linking
the tricarboxylic acid cycle to the electron transport chain. As
the terminal oxidase in the chain, CcO receives electrons from
cytochrome C(Cyt-C) and transfers them to oxygen, completing
the final step of electron transport and driving ATP synthesis.
The reduction of NADH, SDH and CcO activities jointly
weakens the oxidative phosphorylation efficiency of
mitochondria, reduces ATP production, thereby leading to
and further
of the

myocardium (190). In addition, energy metabolism disorders

insufficient energy supply to cardiomyocytes

affecting the contractile and diastolic functions
can cause mitochondrial dysfunction, leading to an increase in
ROS production and subsequently damaging the mitochondrial
membrane and DNA. This kind of damage will further disrupt
mitochondrial function and promote the release of Cyt-C,
activate the caspase cascade reaction, and ultimately induce
apoptosis of cardiomyocytes (190, 191).

ALDH2 is involved in metabolizing reactive aldehydes
produced during oxidative stress and exerts cardioprotective
effects by inhibiting oxidative stress and inflammationALDH2
(192). ALDH2-knockout

ischemia-reperfusion injury (193). HADH, which participates in

mice show aggravated cardiac
fatty acid B-oxidation, causes abnormal energy production when
reduced, as it impedes fatty acid oxidation (194). The study has
found that SFRP4 is involved in ISO-induced cardiomyocyte
mitochondrial damage, and using an SFRP4 inhibitor can
alleviate mitochondrial dysfunction in the myocardium and HL-
1 cells (195). In summary, cardiomyocytes have a high energy
demand, and mitochondrial dysfunction may play a significant
role in the development of neurogenic cardiomyopathy after
AIS. Impaired mitochondrial function leads to disordered
energy metabolism and reduced ATP production in
cardiomyocytes. This exacerbates the imbalance of calcium ion
homeostasis, ultimately causing cardiomyocyte apoptosis and

necrosis and worsening myocardial injury (182, 183).

3.1.4 Apoptosis of cardiomyocytes

At physiological concentrations, the toxicity of catecholamines
to cardiomyocytes is generally insignificant. However, excessive
catecholamines may induce cardiomyocyte apoptosis. It should
be noted that the longer the exposure time of cardiomyocytes
to catecholamines, the more pronounced the potential
damaging effects may become. In a large number of animal and
cell experiments, it has been observed that NE and ISO can
induce cardiomyocyte apoptosis (16, 152, 196). They achieve
this by modulating the expression of Bcl-2 family proteins, for
instance, enhancing Bax expression and suppressing Bcl-2 and
Bcl-XL expression (197). In addition, NE and ISO can
upregulate Cyt-C expression. By activating caspases (including
caspase-2, caspase-3, caspase-6, and caspase-9) and death
receptors [such as Fas and TNF receptor l-associated death
domain (TRADD)], and enhancing the activity of apoptotic
protease activating factor-1 (Apaf-1), NE and ISO mediate

cardiomyocyte apoptosis (197-200).
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The Bcl-2 family plays a crucial regulatory role in apoptosis,
involved in both mitochondrial and some extrinsic apoptotic
pathways. It consists of two main subtypes: anti-apoptotic
proteins like Bcl-2, Bcl-XL, and Bcl-w, and pro-apoptotic
proteins, which include BAK, BAX, BOK, and BH3-only
proteins (201). In rat H9C2 cardiomyocytes treated with NE,
Hoechst fluorescence staining showed increased apoptosis, with
upregulated BAX and downregulated Bcl-2 expression (202). n
ISO-induced HF models, rats exhibited increased Bax, Cyt-C,
Caspase-3, and Caspase-9 expression, alongside decreased Bcl-2
and Bcl-XL expression in the myocardium (203). BAX forms a
heterodimer with Bcl-2, reducing its activity. This increases
mitochondrial membrane permeability, releasing Cyt-C into the
cytosol. Cyt-C binds to Apaf-1 to form an apoptosome,
triggering the Caspase cascade, leading to cell destruction and
apoptosis (201, 204). Conversely, Bcl-2 protects cells by
inhibiting Cyt-C release (205). Overall, NE and ISO induce

cardiomyocyte apoptosis via the mitochondrial apoptosis
pathway mediated by the Bcl-2 family.
Following ISO treatment, rats exhibited remarkable

myocardial injury, with upregulated cardiac expression of Fas
and caspase-3/8/9, and TNF-a genes (120, 206, 207). Mice with
TNF receptor 1 (TNFR1) knockout showed resistance to ISO-
induced cardiac injury, marked by downregulated expression of
IL-1 B, iNOS, NF-«B, and AP-1 (208). This implies the death
receptor family participates in ISO-mediated cardiomyocyte
apoptosis. After TNF o binds to TNFRI, its intracellular death
domain recruits TRADD. This facilitates the assembly of
signaling molecules like receptor-interacting protein kinase 1,
Fas-associated death domain protein, and caspase-8, forming
complex I. This process activates downstream genes (e.g., the
caspase cascade) and promotes complex II formation, inducing
apoptosis (199).

ISO TLR4/NF-kB and JAK2/STAT3
signaling pathways, triggering inflammatory responses that

also activates the

interact with apoptosis (135, 137). Additionally, other upstream
signals participate in ISO-induced cardiomyocyte apoptosis. For
example, TLR4/NOX4, p38 MAPK, and Jakl/Stat signaling are
activated (209-211), affecting Cyt-C release, activating caspases,
and mediating apoptosis via the mitochondrial apoptosis
B-AR-AC-cAMP-PKA pathway can activate
transcription factors like CREB, promoting pro-apoptotic gene

pathway. The

expression, and also induces cardiomyocyte apoptosis through
the mitochondrial apoptosis pathway (212). ER stress and
CaMKII-mPTP can cause Ca>" overload and promote apoptosis
in the same way (213, 214).

3.2 Catecholamine-induced structural
cardiac injury

3.2.1 Myocardial hypertrophy

Many studies have confirmed that sustained activation of the
SNS is closely related to cardiac hypertrophy (CH) (18, 215,
216), and that renal denervation of the SN can improve CH
(164). This may be closely related to the increased secretion of
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catecholamines caused by SN hyperactivity (202, 217). Continuous
pressure load can induce CH. This is an adaptive manifestation,
but long-term pressure loads can lead to the generation of HF.
CH is characterized by an increase in the heart weight—to—
body weight ratio (HW/BW). Hematoxylin-eosin staining shows
an increase in the cross-sectional area of cardiomyocytes, often
accompanied by increased expression of CH-related genes such
as BNP, B-MHC, and ANP (218). In animal HF models induced
by NE and ISO, significant CH has been observed (219, 220).
This may be related to the activation of signaling pathways such
as MAPK, NF-k B, Ca2+, JAK2/STAT3, G protein-coupled
receptor kinases (GRKs), and Protein Kinase A (PKA).

When NE binds to cardiac al-ARs, it activates p38 MAPK and
ERK1/2, upregulating genes related to CH. NF-«kB signaling
activation induces myocardial inflammation and promotes CH
(221). In a mouse CH model induced by NE, significant
increases in the phosphorylation levels of p38, MAPK, ERK1/2,
AKT, and NF-kB proteins occur in myocardial tissue, with
notable upregulation of CH-related genes like ANP, BNP, and
Bf-MHC. Moreover, pharmacological inhibition of the p38
MAPK/ERK1/2 and AKT/NF-xB pathways
attenuates CH in mice (218).

Ca®" regulatess CH through the calcineurin-NFAT and
CaMKII-MEF2 pathways. When NFAT in the cell membrane is
activated by calcineurin and translocated to the nucleus. It then

significantly

interacts with nuclear transcription factors like GATA-4 and
MEF2, upregulating the transcription of CH-related genes (222,
223). Interestingly, Ca** can activate the CaMKIIOB/CREB
Ca2+ uniporter(MCU)
expression to alleviate CH (224). But recent studies show that

pathway, increasing mitochondrial
MCU3 overexpression promotes Ca®" uptake and induces CH
(225). Thus, MCU upregulation may be a compensatory
mechanism where different MCU subunits interact to regulate
Ca®" homeostasis. Calcineurin can also activate the pathway
involving dynamic-related protein-1, upregulating mitochondrial
E3 ubiquitin ligase 1 expression. This promotes mitochondrial
fission and dysfunction, leading to CH (226, 227).

Some studies have indicated that JAK2/STAT3 signaling
activation upregulates genes tied to CH. Activated STAT3
increases expression of ANP, BNP, and f-MHC, triggering CH.
It AMPKa/mTOR
cardiomyocyte metabolism and autophagy,

also modulates signaling, influencing
and thus CH
regulation (202, 228). GRKs mainly impact cardiomyocyte signal
transduction by regulating G protein-coupled receptor activity.
Key GRKs like GRK2 and GRK5 play important roles. GRK2
influences cardiomyocyte survival and hypertrophy by regulating
PI3K/AKT signaling (229). GRK5 enhances NFAT transcriptional
activity, upregulating CH-related gene expression (230). SN-
induced catecholamine release, binding to p-AR, activates
adenylate cyclase and raises Cyclic adenosine monophosphate
(cAMP) levels. As a second messenger, CAMP can activate PKA
(231). PKA, via phosphorylated transcription factors like CREB
and NFAT, regulates transcription of CH-related genes. PKA
the
phosphorylated transcription factors such as cAMP response

element-binding protein (CREB) and NFAT (231).

regulates transcription of CH-related genes through
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Recent studies have found that ISO upregulates the expression
of cardiac epidermal growth factor (Ereg) and nerve growth factor
receptor (Ngfr). Knocking down Ereg downregulates the
expression of Natriuretic Peptide Precursor B (Nppb) and
Fibronectin 1 (Fnl), reduces cardiomyocyte size, and lowers
fibronectin expression (232). Ngfr may promote the proliferation
of cardiac fibroblasts and the synthesis of collagen by activating
downstream signals such as p38 MAPK, leading to myocardial
the of CH (233).

Neuraminidase 1 has also been found to interact with GATA4

fibrosis and exacerbating degree
to enhance Nppb expression, thereby promoting ISO-induced
CH (234). It has been discovered that the activation of HDACS8/
MMPI12 stimulates Nppb expression and increases extracellular
matrix degradation, thereby worsening CH (235). Additionally,
Reticulum Ca2+-ATPase (SERCA2a)

regarded as an important marker of pathological hypertrophy

SarcoEndoplasmic is
(236, 237). In a mouse HF model continuously stimulated by
ISO for two weeks, the expression of SERCA2a in the heart was
significantly reduced (238); The same down-regulation was also
observed in neonatal rat cardiomyocytes when NE was applied
for 24 h (239). Conversely, transfection of ascending aortic tract
HF rats with adenovirus carrying the SERCA2a gene could
significantly  increase survival rates and restore the
phosphocreatine/ATP ratio (240). Phospholamban (PLB), an
endogenous inhibitor of SERCA2a, has an elevated expression
that reduces the affinity of the calcium pump for Ca** and
(241). In ISO-induced
exhaustion mice, the level of PLB significantly increased (242),

impays cardiac diastolic function
while myocardial contractility was significantly enhanced after
PLB knockout (243, 244).

3.2.2 Cardiac fibrosis

Cardiac fibrosis (CF) is the excessive deposition of cardiac
extracellular matrix (ECM) and fibrosis, causing structural and
functional changes in the heart. It often occurs after myocardial
injury or chronic inflammation (245). Many studies have
indicated that NE and ISO can both induce CF (128, 246). For
instance, in the cardiomyocytes and fibroblasts of rats treated
with ISO, the expressions of basic fibroblast growth factor 2
(FGF2), collagen I and smooth muscle a-actin (a-SMA)
significantly increased and promoted CF (247). However, CF
development is extremely complex, involving various molecular
fibroblast
regulation by transforming

mechanisms and signaling pathways, such as
activation and transformation,
growth factor B (TGF-f), inflammatory responses, and immune
cell infiltration (248, 249).

In a healthy heart, fibroblasts are quiescent, primarily
maintaining ECM homoeostasis by synthesizing and secreting
of ECM like
fibronectin. When the heart is injured, fibroblasts are activated
by factors such as TGF-f, Platelet-derived growth factor, and

angiotensin II. This activation triggers downstream pathways,

small amounts components collagen and

including the Smad and MAPK pathways, prompting fibroblast
activation and their differentiation into myofibroblasts (MFB)
(248). MFB enhance cellular contractility, exerting tension on
myocardial tissue and affecting heart structure and function.
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They also overproduce and secrete ECM components, leading to
excessive ECM deposition in the myocardial interstitial and
gradual replacement of myocardial tissue with fibrosis (249).
Other signal pathways, such as the Wnt/B-catenin and Notch
pathways, are also involved in fibroblast activation and
transformation (250, 251).

The SNS and the renin-angiotensin-aldosterone system
(RAAS) form a tight “positive feedback” loop in heart diseases.
The excitement of SNS can trigger the activation of RAAS, and
the activation of RAAS in turn further intensifies SNS activities
(244, 252). Central Angiotensin II enhances the excitability of
preganglionic sympathetic neurons through the Angiotensin II
Type 1 Receptor and increases the release of peripheral NE. The
application of angiotensin-converting enzyme inhibitors (ACEI)/
angiotensin II receptor blockers (ARB) can block this effect and
reduce central sympathetic output (253). Meanwhile, the NE
released by the renal sympathetic efferent fibers directly acts on
the B1 receptor of parapylebular cells, stimulating the massive
secretion of renin through the Gsa/cAMP/PKA signaling
cascade, thereby initiating and amplifying the RAAS effect
(254). RAAS activation is a key driving force for myocardial
fibrosis. Angiotensin II and aldosterone induce the activation of
myocardial fibroblasts, promote the synthesis of collagen and
ECM (255, 256), and accelerate ECM remodeling by regulating
the imbalance of matrix metalloproteinases (MMPs) and their
inhibitors (TIMPs) (257, 258). In addition, the inflammatory
response mediated by RAAS and the burst of reactive oxygen
species (ROS) further aggravate CF and dysfunction. The above-
mentioned mechanism reveals that the interactive dialogue
between SNS and RAAS plays an important role in the process
of CF (259, 260).

The persistent excessive activation of B-AR can cause cardiac
pathological remodeling characterized by CF. For example, B-AR
activation stimulates IL-18 secretion, promoting inflammation,
and induces galectin-3 expression in macrophages, driving
fibroblast to MFB transformation and causing CF (261, 262).
Galectin-3 can mediate myocardial inflammation and promote
CF through the TLR4/MyD88/NF- kB pathway (135). Blocking
B-AR signaling will inhibit inflammasomes and improve CF
(263). Studies have found that the activation of the B-AR-camp-
PKA pathway triggers CF, which may be caused by promoting
the expression of ROS, cardiomyocyte connective tissue growth
factor, vascular endothelial growth factor, and TGF-B1 to trigger
fibroblast proliferation (130, 264). Activating the NE-AR-PKC
pathway upregulates BNIP3l expression, promoting cardiac
fibroblast proliferation and ECM expression (265). Transient
receptor potential (TRP) channels have also been found to
regulate the proliferation, migration and differentiation of
cardiac fibroblasts, as well as the synthesis and secretion of ECM
(266). For instance, TGF- B1 activates TRPM7 channels to
promote cardiac fibroblast proliferation, and TRPM7-mediated
Ca®* signaling enhances the fibrotic effects of TGF-Bl (267).
Activation of TRPV4 can promote the proliferation and
migration of fibroblasts (268). Recent studies have shown that
methyltransferase-like 3, Insulin-like Growth Factor Binding
Protein 3, and Set7 Methyltransferase are also involved in CF.
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Silencing METTL3 can down-regulate the expression of IGFBP3
and alleviate ISO-induced CF (269). Silencing Set7 also shows
inhibition of CF (270).

4 Therapeutic strategy

Given the elevated risk of cardiac complications following AIS,

active cardiovascular monitoring is imperative. Particular
attention should be paid to patients with insular and right
hemispheric ischemia, as these lesions may predispose to
excessive activation of the SNS. AIS patients exhibit a high
prevalence of electrocardiographic abnormalities, with study
reporting incidence rates exceeding 90%, primarily manifesting
as ST-segment elevation/depression, QTc prolongation, and AF
(271). Meta-analyses have demonstrated significant elevations in
BNP and NT-proBNP levels among AIS patients (272). Elevated
NT-proBNP levels show strong correlations with ST-T segment
(273),

predict clinical outcomes in stroke patients (274). Furthermore,

alterations and electrocardiographic evaluation may
increased cardiac troponin levels are strongly associated with
mortality risk in AIS (275), with elevated high-sensitivity cardiac
troponin T (hs-cTnT) and troponin I serving as potential
biomarkers of myocardial injury post-AIS (276, 277). These
markers are also recognized as indicators of coronary artery
disease risk (278). Notably, the National Institutes of Health
Stroke Scale (NIHSS) score correlates with myocardial injury, as
patients with NIHSS >10 demonstrate significantly higher
troponin levels (279). In AIS patients with elevated hs-cTnT,
focal fibrosis of the heart, left ventricular hypertrophy and left
atrial dilation were observed using MRI (280). Subsequent
echocardiographic evaluation is essential for assessing post-AIS
cardiac dysfunction (281, 282), particularly reduced ejection
fraction associated with systolic impairment (279). Therefore,
of
(including ambulatory ECG),

systematic monitoring electrocardiographic
NIHSS

biomarkers facilitates early identification of high-risk patients

parameters
scores, and cardiac
for cardiac sequelae, especially in those with SN-activating
lesions such as insular or right hemispheric infarcts. When
electrocardiographic abnormalities or biomarker elevations are
detected, comprehensive cardiac functional assessment through
echocardiography is strongly recommended. This multimodal
intervention  and

approach  enables

management of stroke-associated cardiac complications.

timely improved

Given that SNS overactivation and elevated catecholamine
secretion may serve as key pathogenic drivers of neurogenic
cardiac injury following AIS, targeting SNS hyperactivity and
mitigating catecholamine critical

toxicity may represent

Here, we focus
of

interventions

therapeutic strategies. on exploring the

therapeutic ~ potential several  pharmacological and

of
overactivation and reducing catecholamine toxicity in AIS-

technological capable suppressing  SNS
associated neurogenic cardiac injury. These include beta-blocker
(BB), sodium-glucose cotransporter 2 inhibitors (SGLT2i),
inhibitor (ARNI),

neuromodulatory techniques designed to attenuate SN tension.

angiotensin  receptor-neprilysin and
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BB can inhibit the binding of catecholamines (such as NE) to
B-AR and reduce their cardiotoxic effects. Meanwhile, it also has
multiple effects such as inhibiting SN excitation, improving
(283, 284).
A clinical study involving 5,212 ischemic stroke (IS) patients

ventricular remodeling and cardiac function
revealed that post-stroke BB administration was associated with
reduced mortality and lower incidence of pneumonia (285).
Recent post-hoc analysis of 5,049 AIS patients with baseline
heart >100 bpm demonstrated

benefits of sustained BB therapy. Over a 10-year follow-up,

rates significant long-term
discontinuation correlated with increased early mortality risk,
whereas continuous BB use substantially decreased both all-
cause mortality and stroke recurrence rates (286). Subgroup
analysis identified enhanced therapeutic benefits in patients with
elevated mean heart rates, concomitant atrial fibrillation (AF), or
pre-existing coronary artery disease (286). These findings
that BB

tachycardic patients through dual mechanisms: heart rate

suggest exert pronounced cardioprotection in
reduction and suppression of pathological SN overactivation,
collectively mitigating neurocardiac injury cascades.

A study found that for patients with AIS combined with high
heart rate at admission, for every 10 beats per minute increase in
heart rate, the relative risk of in-hospital death increased by 40%
(287). Failure to receive BB treatment significantly increased the
readmitted rate and mortality risk within 3 months and 1 year
after discharge in elderly patients with HF combined with IS.
Similarly, patients with a high heart rate also had a significantly
increased related risk at 3 months or 1 year after discharge
(288). Animal experiments found that metoprolol inhibits SNS
excitation in MCAO mice, slowed down cardiac remodeling,
and improved chronic cardiac dysfunction induced by SNS
excitation (289). However, Eizenberg Y found that the use of
beta-blockers before stroke was not associated with adverse
functional outcomes or mortality 3 months after stroke (290),
and Balla HZ also supported this conclusion through a meta-
analysis (291). A clinical study involving 3,915 patients with IS
also showed that BB treatment was not related to the functional
prognosis and mortality of patients with IS complicated with
hypertension (292). Although these studies have shown that the
benefits of using BB treatment after AIS are not definite.
However, they did not separately include patients with cardiac
injuries such as high heart rate, AF or coronary heart disease
after AIS in the analysis. This confounding might mask the
actual efficacy of BB in specific populations. Regarding the
impact of using BB when arrhythmia and cardiac complications
(such as high heart rate, AF, HF, and coronary heart disease)
occur after AIS, more high-quality studies are still needed for
exploration at present.

SGLT2i have also been found to have an inhibitory effect on
SN hyperactivity (293). Chiba et al. found that SGLT2 was
expressed in both human and rat brains (294). SGLT2 was
found to be distributed in the regions from the telencephalon,
diencephalon to the brainstem (295). Interestingly, SGLT2
activation in the RVLM was associated with SN excitation
(296, 297), and inhibition of SGLT reduced RVLM neuronal
activity and suppresses SN output (298). Dapagliflozin was
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found to reduce the incidence of AF in patients with type 2
diabetes (299). Further meta-analysis revealed that SGLT2i
reduced the risks of AF, atrial flutter and VT (300), but its
protective effect on the posterior brain of AIS remains
controversial (301). In addition, SGLT2i can improve HF by
improving ventricular remodeling, modulating cardiac energy
metabolism and ion exchange (302). Studies have found that
SGLT?2i can reduce sympathetic nerve activity through multiple
mechanisms, among which regulating the feedback mechanism
of the renal tubule-bulle apparatus is one of the key factors
(303). SGLT2i reduces sodium reabsorption and increases
sodium content in the distal convoluted tubules by inhibiting
SGLT2 in the proximal convoluted tubules of the kidney (304).
This activates the feedback mechanism of the renal tubule-
parbulbar organ, causing the entry arterioles to contract and
reducing the intraventricular pressure of the glomerulus. This
mechanism not only improves the hemodynamics of the
kidneys, but also indirectly reduces the activity of the
sympathetic nervous system by decreasing renin secretion and
lowering the activity of the renin-angiotensin system. By
reducing sympathetic nerve activity, SGLT2i can decrease
sympathetic nerve overload in the heart, alleviate myocardial
This
independent of its hypoglycemic effect and is effective for both
diabetic and non-diabetic patients with HF (305). Therefore,
SGLT2i is expected to become an effective drug for treating

injury and inflammatory responses. mechanism s

cardiac injury caused by excessive excitement of SNS after stroke.

The mechanism of action of ARNI is achieved by binding
angiotensin II receptor antagonists (such as valsartan) and
enkephalinase inhibitors (such as sacubitril). This combination
drug can simultaneously inhibit the RAAS and enhance the
activity of the natriuretic peptide system. The protective effect of
sacubitril-valsartan, the representative drug of ARNI, in HF has
(306). that
sacubitril-valsartan ~demonstrates the
treatment of heart failure patients after myocardial infarction
compared with traditional ACEI and ARB. Specifically, it is
manifested as a higher left ventricular ejection fraction, a lower

been widely recognized Meta-analysis shows

superior efficacy in

left ventricular end-diastolic diameter and NT-proBNP level
(307). In addition, for heart failure patients with reduced
ejection fraction, sacubitril/valsartan also shows a lower all-cause
mortality rate (308). This drug can also reduce the relative risks
of cardiovascular death and HF hospitalization (309). This is
related to the effects of RAAS inhibition, natriuretic peptide
system activation, anti-inflammatory and antioxidant stress
(310-312). Furthermore, sacubitril-valsartan has the effects of
inhibiting the excitation of the SNS, reducing NE release and
lowering arrhythmia. The mechanism is related to its regulation
of the RAAS and natriuretic peptide systems (313). On the one
hand, Sacubitril-valsartan reduces the excitability of the SNS and
decreases the release of norepinephrine by decreasing renin
secretion and inhibiting the activity of the RASS (314). On the
other hand, it not only inhibits the SNS by inhibiting the
degradation of natriuretic peptides (such as ANP and BNP), but
also enhances the diuretic, diuretic and vasodilatory effects of
natriuretic peptides, thereby reducing the burden on the heart
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(315). A study found that sacubitril-valsartan alleviated ISO-
induced myocardial inflammation and fibrosis in rats and
improved cardiac insufficiency (316). And therapeutic effect
was related to the regulation of the TLR4/NF-kB and TGF-
B1/Smad signaling pathways. The above results show that
SGLT2i and sacubitril-valsartan can play a potential role in
resisting the toxicity of catecholamines to the heart and
inhibiting the excitation of the SNS, which provides possible
therapeutic value for them in the treatment of neurogenic
cardiac injury after AIS.

Several SN tension inhibition techniques, such as stellate
ganglion block (SGB) and vagus nerve stimulation (VNS), hold
promise as potential treatments for arrhythmias after AIS. SGB
reduces SN excitability in the myocardium by blocking SN
efferent fibers in the stellate ganglion, which in turn reduces
cardiomyocyte autoregulation, triggered activity, and folding,
leading to arrhythmia prevention and treatment (317). SGB has
shown high therapeutic benefits and safety in the treatment of
refractory angina and ventricular arrhythmias (318-320).
Although SGB has many advantages, it still lacks high-quality
clinical evidence to support it and has certain operational risks,
difficulties in efficacy evaluation, large individual differences, and
toxicity of local anesthetics. In the future, it is necessary to
further optimize the operation techniques, improve the accuracy
of the evaluation of the blocking effect, and carry out more high-
quality randomized controlled trials. In recent years, VNS has
received increasing attention in the field of arrhythmia treatment.
Its mechanism of action lies in the fact that by stimulating the
vagus nerve, it enhances the activity of the PN while inhibiting
the overexcitation of the SN, which in turn improves the
regulatory imbalance state of the cardiac AN and helps to restore
normal cardiac rhythms and function (321). VNS reduces the
infarct size, ventricular arrhythmia, and AF after myocardial
the ability to
contractile function of the heart and ventricular remodeling (322).
This may be related to the fact that VNS attenuated inflammation
(323). Furthermore, the PN advantage induced by VNS is related
to regulating the ANS in different regions of the cerebral cortex
(324),
dysregulation of AN after AIS. However, VNS surgery has a

ischemia/reperfusion and has improve the

which is of great significance for improving the

relatively high risk of long-term complications, such as
arrhythmia, laryngeal hematoma, vocal cord injury, and breathing
difficulties. In addition, it still faces problems such as inconsistent
therapeutic effects and difficulty in standardizing stimulation
parameters. In the future, it is necessary to optimize the stimulus
parameters, reduce adverse reactions, and conduct more clinical
trials to evaluate its safety and efficacy.

In conclusion, actively monitoring the indicators reflecting
cardiac damage and focusing on patients with ischemic injury
involving the right ANS may be of great value for the early
AlS.

Suppressing SNS hyperactivity and mitigating catecholamine-

identification of neurogenic cardiac damage after

mediated cardiotoxicity demonstrate therapeutic potential in
ameliorating cardiac damage. These strategies should therefore
be prioritized in  clinical

management to  optimize

neurocardiac outcomes.
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5 Conclusion

While substantial advances have been made in understanding
neurogenic cardiac injury after AIS, the regulatory mechanisms of
the sympathetic-catecholaminergic axis within the brain-heart
network under pathological conditions remain incompletely
Further
sympathetic hyperactivity triggers myocardial injury-particularly

elucidated. investigation into how  post-stroke

through region-specific ~brain lesions and downstream
catecholamine-mediated signaling pathways-remains a critical
research priority with profound clinical implications for
precision prevention and targeted therapies.

For the management of neurogenic heart disease caused by
AIS, active monitoring of indicators reflecting cardiac damage
should be carried out, with a focus on patients whose ischemic
injury involves the right SNS. Regulating excessive excitation of
ANS, reducing inflammation and oxidative stress may be the
focus of preventing and treating myocardial injury after AIS.
Future research should delve deeper into the mechanisms of
toxicity of the sympathetic-catecholamine system on the heart
after AIS. Efforts must be made to translate these theoretical
insights into clinical practice and propel the development of

clinical applications.
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