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Background: In our previous study, through integrative transcriptomic and ChIP-

seq analysis, we revealed that ETV1 is a potential transcription factor involved in

ventricular remodeling in the early stage of MI. This study aims to investigate the

regulatory roles of ETV1 and whether ETV1 regulates angiogenesis after MI.

Methods: In this study, MI model was induced by ligating the left anterior

descending coronary artery. The expression of Etv1 was modulated via

intramyocardial injection of adeno-associated virus serotype 9 (AAV9) with

endothelial-specific promoter Icam2. Fibrosis was determined by Masson

staining and apoptosis was assessed by TUNEL staining. Angiogenesis was

evaluated by CD31 immunofluorescence staining. For in vitro experiments,

HUVECs were transfected with ETV1 overexpression lentivirus, and wound

healing and tube formation assays were performed to validate the angiogenic

role of ETV1. Western blot was conducted to determine the level of angiogenetic

factors and the underlying mechanisms.

Results: The expression of Etv1 was decreased in the hearts of MI mice, as well as

in isolated cardiac microvascular endothelial cells (CMECs). Moreover,

overexpression of Etv1 alleviated the deterioration of heart function, mitigated

the fibrosis, reduced apoptosis, and promoted angiogenesis after MI. Moreover,

ETV1 overexpression enhanced migration and tube formation abilities of

HUVECs. Mechanistically, ETV1 upregulated the expression of VEGFA, VEGFR2,

and eNOS.

Conclusions: In summary, Etv1 promote angiogenesis via activating VEGFA/

VEGFR2/eNOS pathway after MI, which further ameliorate adverse ventricular

remodeling. These results suggest that ETV1 may serve as a potential target

for the treatment of myocardial infarction.
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1 Introduction

Acute myocardial infarction (AMI) is myocardial necrosis

resulting from ischemia and hypoxia of the myocardium due to

occlusion of coronary arteries (1). Numerous studies have shown

that genes associated with inflammation, autophagy, apoptosis,

and myocardial hypertrophy are activated after MI, ultimately

leading to pathological ventricular remodeling (2, 3). Ventricular

remodeling is the leading cause of arrhythmias, cardiac

dysfunction, and heart failure after AMI (4).

There is evidence that early cardiac remodeling is partially

reversible (4, 5). Angiogenesis, the sprouting of new capillaries

from preexisting vessels, plays a vital role in promoting

myocardial repair and alleviating adverse ventricular remodeling

after MI. Das et al. demonstrated that the neonatal mouse heart

can regenerate and repair itself through building collateral

arteries in response to ischemic myocardial injury, but this

capacity is lost in the adult mammalian heart due to impaired

collateral artery formation (6). Meanwhile, neovascularization

begins at the infarct border zone in the early stage of MI (7).

However, due to inflammation and oxidative stress, angiogenesis

is insufficient and unable to meet the metabolic demands of the

ischemic myocardium, resulting in progression of pathological

ventricular remodeling and aggravation of heart failure (8, 9).

Therefore, exploring the regulatory mechanisms and therapeutic

strategies for angiogenesis is of great significance.

By administering exogenous CXCL12, Das et al. reported that

endothelial cells could be induced to migrate, proliferate, and

reassemble into collateral arteries in the hearts of adult mice post-

MI (6). In recent years, mesenchymal stromal cell (MSC)-based

therapies and hydrogels-based therapies have gained much

attention in promoting angiogenesis (10–12). Nevertheless, despite

the progress that has been made, the poor biocompatibility and the

potential cytotoxicity of these biomaterials remain to be solved.

ETV1 is a member of the ETS domain-containing transcription

factor family. Emerging evidence indicates that ETV1 is implicated

in the occurrence and metastasis of gastrointestinal cancer (13, 14).

Sangphil et al. demonstrated that ETV1 facilitates colorectal

tumorigenesis by binding to the FOXQ1 gene promoter (15). In

addition, ETV1 is also found to be associated with prostate

cancer progression (16, 17). Meanwhile, there are still relatively

few studies exploring the roles of ETV1 in cardiovascular

diseases. The current researches are mainly focused on atrial

electrical and structural remodeling. Rommel et al. observed that

cardiomyocyte-specific overexpression of ETV1 induces atrial

arrhythmia, dilatation, and fibrosis in mice (18). Similarly, ETV1

is also reported to mediate the atrial remodeling induced by

pressure overload (19). Our previous study deciphered that ETV1

is a potential transcription factor involved in ventricular

remodeling in the early stage of MI (20). However, it is still

unknown whether ETV1 regulates angiogenesis after MI.

In this study, we investigate the effect of ETV1 on angiogenesis

and explore the potential mechanisms in vitro and in vivo. Our

results indicate that ETV1 gene delivery improved cardiac function,

reduced fibrosis, and increased angiogenesis. Consistently, in vitro

overexpression of ETV1 promotes angiogenesis of HUVECs.

Mechanistically, ETV1 exerts pro-angiogenic property through

modulating VEGFA/VEGFR2/eNOS pathway.

2 Methods and materials

2.1 Animals

Malewild-type (WT) C57BL/6mice (8weeks old) were purchased

from Animal Center of Shanxi Medical University. All experiments

were performed in accordance with the Guidelines for the Care and

Use of Laboratory Animals published by the US National Institutes

of Health, and the experiments were approved by the Animal Care

and Use Committee of Shanxi Medical University.

2.2 Myocardial infarction

Mice were anaesthetized with chloral hydrate (300 mg/kg).

Acute Myocardial infarction model was induced by ligation of

left anterior descending coronary artery. The same procedure was

performed in the sham group without LAD occlusion. Mice were

sacrificed 1 week post-surgery for heart tissue collection.

2.3 AAV9 vectors construction and adult
mice intracardiac injection

Etv1 overexpressing adeno-associated virus driven by endothelial

specific gene Icam2 promoter (AAV2/9-Icam2-mEtv1-Flag-P2A-

EGFP, AAV9-Etv1) or control viral vectors (AAV2/9-Icam2-EGFP,

AAV9-NC) were constructed by Taitool Bioscience Co., Ltd

(Shanghai, China) following standard methods (21). Briefly, the

cDNA fragments encoding mouse ETV1 was cloned into inverted

terminal repeat (ITR)-containing AAV9 plasmid harboring the

human endothelial specific Icam2 promoter. AAV9 vectors, rep2/

cap9 packaging plasmids, and helper plasmids were packaged in

HEK293T cells (Thermo Scientific). After transfection using

polyethylenimine for 72 h, cells were collected and lysed. AAV9

was purified and concentrated by gradient centrifugation. AAV9

titer was determined by qPCR. For the in vivo experiment, 3 days

before MI surgery, mice received an intracardiac injection of

AAV9-NC or AAV9-Etv1 using an insulin syringe with a 30-gauge

needle at a dose of 4 × 1011 viral genome particles per animal as

previously described (22). Hearts were collected 1 week after MI.

2.4 Echocardiography

One week after MI surgery, mice were anaesthetized using

1.5%–2% isoflurane and placed in supine position. Heart

function was assessed by echocardiography. Left ventricular

ejection fraction (LVEF), left ventricular short-axis shortening

rate (LVFS), left ventricular end-systolic diameter (LVIDs) and

left ventricular end-diastolic diameter (LVIDd) were measured

using the corresponding formulas.
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2.5 Histology

Myocardial tissues from the infarct border zone were harvested

at 7 days after MI surgery. Heart tissues were fixed in 4%

paraformaldehyde and then dehydrated. After dehydration, the

samples were embedded in paraffin and sectioned longitudinally.

The sections were stored at −80°C until further use.

2.6 Masson staining

Masson’s trichrome staining was performed by using a kit

(Solarbio) according to the manufacturer’s protocol. The cardiac

tissue sections from the infarct border zone were dewaxed and

stained with Weigert’s hematoxylin. After washing thoroughly

with tap water and then rinsed with distilled water, the sections

were stained with acid fuchsin solution, differentiated in

phosphotungstic‒phosphomolybdic acid, stained with aniline

blue, and washed with 1% acetic acid. After dehydration, the

slides were mounted and scanned. The fibrotic area was

measured with image J software.

2.7 TUNEL staining

Myocardial apoptosis in the infarct border zone was detected

using a terminal deoxynucleotidyl transferase dUTP nick-end

labeling (TUNEL) assay kit (Beyotime, China) according to the

manufacturer’s instructions. The slides were counterstained with

DAPI for nuclei labeling. The fraction of apoptotic cells was

estimated as ratio of TUNEL-positive cells to total cell nuclei.

2.8 Immunofluorescence

The sections from the infarct border zone were fixed with 4%

paraformaldehyde. After permeabilization with 0.1% Triton

X-100, the slides were blocked with 10% goat serum and then

incubated with the primary antibodies against cTnT (Abcam,

ab209813, 1:1,000) and CD31 (Abcam, ab222783, 1:1,000). The

next day, the sections were washed and stained with the

corresponding fluorescent secondary antibodies (Alexa Fluor-488

or Alexa Fluor-555, Abcam, 1:1,000). The nuclei were labeled

with DAPI. Images were taken using an inverted fluorescence

microscope (Olympus BX51, Japan). To assess the density of

capillaries in border zones, the numbers of vessels were counted

in 5 random fields on each section per animal and recorded as

CD31+ vessels/mm2.

2.9 CMECs isolation

Cardiac microvascular endothelial cells (CMECs) were isolated

as previously described (23). Briefly, the Mice hearts from each

group were harvested and minced into small pieces. After

digestion with collagenase type II and dispase, the cells were

collected and incubated with CD31 magnetic beads (Miltenyi

Biotec, Germany) for endothelial cell sorting. The isolated

endothelial cells were cultured and used between passages 2 and

4 for subsequent western blot experiments.

2.10 Western blot analysis

Myocardial tissues from the infarct border zone and HUVECs

were harvested and homogenized. The samples were lysed with

RIPA buffer containing protease inhibitors. The concentration of

protein was then quantified by BCA method. Equal amounts of

total protein was separated by SDS-PAGE gels and then

transferred to PVDF membranes. After blocking with 5% skim

milk, the membranes were incubated with primary antibodies

overnight against ETV1 (Abcam, ab314874, 1:1,000), VEGF

Receptor 2 (CST, #2,479, 1:1,000), VEGFA (Abcam, ab214424,

1:1,000), eNOS (CST, #32,027, 1:1,000), and GAPDH (Abcam,

ab9485, 1:1,000). The next day, the membranes were incubated

with secondary antibodies, and protein signals were visualized

using an Odyssey infrared imaging system. The gray value of

protein bands was quantitatively analyzed by Image J software.

2.11 Cell culture

Human umbilical vein endothelial cells (HUVECs) were

obtained from ATCC (American Type Culture Collection,

USA). The cells were cultured in Endothelial Cell Growth

Medium supplemented with 5% FBS, penicillin, and

streptomycin. HUVECs between passages 3 and 5 were used for

subsequent experiments.

2.12 Lentiviral vector construction and
transfection

Lentivirus to overexpress ETV1 (Lenti-esEF1a-hETV1-Flag-

IRES-MataGFP, Lenti-ETV1) and blank lentivirus (Lenti-esEF1A-

3xFlag-IRES-MataGFP, Lenti-NC) were designed and constructed

by Taitool Bioscience Co., Ltd (Shanghai, China). Briefly, human

ETV1 cDNA was cloned into lentiviral vector at the MCS locus.

The HEK293T cells were transfected with the lentiviral vector

plasmid and packaging plasmids. The transfected cells were

cultivated, and the supernatants were collected 72 h after

transfection. Viral supernatants were concentrated using

ultracentrifugation. Lentivirus titers were measured using FACS

analysis and determined by infection of 293 T cells (24).

Lentiviruses expressing GFP gene were used as the control. For

the in vitro experiment, HUVECs were infected with lentiviruses

at a multiplicity of infection of 3, and the transfection was

performed according to the manufacturer’s instructions. Briefly,

cells were seeded at 1 × 105/ml per well in 12-well plates.

2 × 108 TU/ml ETV1 overexpression lentivirus or 2 × 108 TU/ml

control lentivirus were added to HUVECs. The medium was

changed 24 h post-transfection.
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2.13 Scratch wound healing assay

Parallel lines were drawn on the back of 6-well plate. 5 × 105

HUVECs were inoculated in 6-well plate and incubated overnight

with 5% CO2 at 37°C. The next day, a scratch wound perpendicular

to the parallel lines was made in the middle of the well using a

200 μl pipette tip. The cells were washed with PBS to remove the

floating cells and then infected with lenti-ETV1 or lenti-NC for

24 h. The area of scratch wound was photographed at 0 and 24 h

following infection, and the distance was measured using ImageJ.

2.14 Tube formation assay

Before the experiment, Matrigel was thawed at 4°C overnight.

Firstly, 50 μl Matrigel matrix was added to each well of a 96-well

plate and incubated at 37°C for 30 min. After polymerization,

1 × 104 HUVECs per well were seeded into the 96-well plate

coated by Matrigel. Next, the cells were infected with lenti-ETV1

or lenti-NC for 24 h. Tubule formation was then observed

and photographed under an inverted microscope. The length of

tubes and number of branch points were quantified using

ImageJ software.

2.15 Statistical analysis

No statistical methods were used to predetermine sample sizes;

however, our sample sizes were similar to those reported in a

previous publication (25, 26). The results were presented as

mean ± standard deviation (SD). Comparisons between groups

were performed using Student’s t test or one-way ANOVA

followed by LSD post hoc test. P < 0.05 was considered to be

statistically significant.

3 Results

3.1 Overexpression of ETV1 ameliorates
cardiac dysfunction, alleviates apoptosis,
and curtails fibrosis area of myocardial
tissue after MI

Our previous study demonstrated that ETV1 is a potential

transcription factor involved in ventricular remodeling after AMI

(20). To explore the role of ETV1 in the process of pathological

ventricular remodeling after AMI, the expression level of Etv1 in

CMECs isolated from sham and MI mouse hearts were examined.

Our data indicated that the ETV1 protein level was significantly

downregulated in CMECs isolated from the infarct border zone

compared with that in the sham group (Figure 1A). To further

determine whether Etv1 improves cardiac function after MI, Etv1

was overexpressed in endothelium through intramyocardial

injection of adeno-associated virus serotype 9 (AAV9) carrying the

endothelial-specific promoter Icam2 (AAV9- Etv1) 3 days before

LAD ligation. Western blot showed that AAV9-Etv1 injection

resulted in significantly increased level of ETV1 in endothelial cells

(Figure 1A). Cardiac functions were then monitored by

echocardiography 1 week after MI surgery.

Our results showed that MI challenge significantly decreased

left ventricular ejection fraction (LVEF) and left ventricular

fractional shortening (LVFS), while left ventricular end-diastolic

diameter (LVEDD) and left ventricular end-systolic diameter

(LVESD) were significantly increased in AAV9-NC MI mice

compared with sham mice. However, after transfection with

AAV9-Etv1, the values for LVEF and LVFS were markedly

higher, and the values for LVEDD and LVESD were markedly

lower compared with AAV9-GFP mice (Figure 1B), indicating

that Etv1 ameliorates cardiac dysfunction after MI.

Myocardial fibrosis and apoptosis are important pathological

mechanisms responsible for the development of pathological

ventricular remodeling (PVR) and cardiac dysfunction after MI.

We then investigated whether overexpression of Etv1 could

attenuate pathological ventricular remodeling. Masson staining

showed that increased expression of ETV1 by AAV9-Etv1

transfection significantly alleviated cardiac interstitial fibrosis

compared with AAV9-NC MI mice in the border regions, as

evidenced by reduced collagen deposition (Figure 1C). Moreover,

Etv1 overexpression significantly reduced cardiac apoptosis

compared with the AAV9-NC MI mice (Figure 1D). These results

suggest that ETV1 inhibited deterioration of cardiac function and

at least partially ameliorated adverse cardiac remodeling in MI

mice through its anti-fibrotic and anti-apoptotic effects.

3.2 Overexpression of ETV1 promotes
angiogenesis after MI

Angiogenesis is essential for cardiac repair after MI. The

insufficient neovascularization and subsequent shortage of oxygen

supply in ischemic myocardium are major reasons leading to

pathological ventricular remodeling and heart failure after MI. As

mentioned previously, overexpression of Etv1 alleviated adverse

ventricular remodeling. To further explore the mechanisms of the

protective role of Etv1, angiogenesis was assessed by CD31

immunofluorescence staining in the myocardium at 1 week after

MI. Our results showed that overexpression of Etv1 significantly

increased the density of capillaries in the peri-infarct areas in

comparison with AAV9-NC MI mice, as evidenced by increased

CD31-positive vessels (Figure 2A), indicating that ETV1 enhances

angiogenesis after MI.

3.3 Overexpression of ETV1 promotes
migration and tube formation in human
umbilical vein endothelial cells (HUVECs)

As mentioned above, overexpression of ETV1 promotes

angiogenesis in mice after MI. In order to further clarify the

effect of ETV1 on HUVECs cultured in vitro and validate the

role of ETV1 in regulating angiogenesis, we transfected HUVECs

with ETV1 overexpression lentivirus (Lenti-ETV1) and negative
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FIGURE 1

ETV1 overexpression attenuated cardiac dysfunction and pathological ventricular remodeling after MI. (A) The expression levels of Etv1 in CMECs were

examined by Western blot. GAPDH was used as loading control (n= 3). (B) Representative M-mode echocardiographic images at 7 days post-MI.

Cardiac function was evaluated by echocardiography 7 days after surgery. Quantitative analysis was performed for left ventricular ejection fraction

(LVEF), left ventricular fractional shortening (LVFS), left ventricular end-systolic diameter (LVEDs), Left Ventricular end-diastolic diameter (LVEDd)

(n= 5). (C) Myocardial fibrosis was detected by Masson’s trichrome staining. Blue represents fibrosis (n= 3). (D) Apoptosis was examined by TUNEL

staining (n= 3). Scale bar = 100 μm. Data were presented as mean ± SD. Comparisons among multiple groups were analyzed by one-way ANOVA

followed by LSD post hoc test. *P < 0.05, **P < 0.01, ***P < 0.001, vs. indicated groups.
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FIGURE 2

ETV1 overexpression promoted angiogenesis. (A) Immunofluorescence for cTNT, DAPI, and CD31 in border zone. Red represents cTNT labelling, and

blue indicates nuclei stained with DAPI. Myocardial angiogenesis was examined by immunofluorescence staining for CD31 (green) (N= 3). Scale

bar = 100 μm. (B) HUVECs were transfected with Lenti-ETV1 or Lenti-NC for 24 h. The migration ability of transfected HUVECs was measured by

wound-healing assay (n= 3). Scale bar = 50 μm. (C) The angiogenic activity of transfected HUVECs was assessed by tube formation assay (n= 3).

Scale bar = 100 μm. Data were presented as mean ± SD. Comparisons among multiple groups were analyzed by one-way ANOVA followed by LSD

post hoc test. *P < 0.05, **P < 0.01, ***P < 0.001, vs. indicated groups.
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control lentivirus (Lenti-NC) for 24 h under normoxia. The wound

healing test and tube formation assay were then performed.

The scratch experiment showed that overexpression of ETV1

promoted the migration of HUVECs (Figure 2B). At the same

time, transfection of HUVECs with Lenti-ETV1 significantly

increased the length and amount of tubes compared to Lenti-NC

HUVECs (Figure 2C). Together, these results demonstrate that

ETV1 played an important role in regulating cardiac angiogenesis.

3.4 Overexpression of ETV1 increases the
expression of VEGFA, VEGFR2 and eNOS in
the cardiac tissues after MI

VEGF is a key angiogenetic factor and VEGF-VEGFR2 is

considered as one of the most important pathways regulating

angiogenesis. To gain insights into mechanisms underlying the

proangiogenic role of ETV1, the levels of VEGFA and VEGFR2

were measured by western blot. Our data showed that the ETV1

protein level was significantly downregulated, and the levels of

VEGF and VEGFR2 was significantly upregulated under MI

conditions. More importantly, transfection with AAV9-Etv1

further elevated the levels of VEGFA and VEGFR2 in comparison

with AAV9-NC MI mice. eNOS is a critical modulator implicated

in angiogenesis. Consistent with the expression of VEGFA and

VEGFR2, overexpression of Etv1 significantly increased the

expression of eNOS (Figure 3). Collectively, our results suggest that

ETV1 played an important role in upregulating the expression of

pro-angiogenic factors, which further promoted endothelial cell

proliferation, migration, and angiogenesis.

3.5 Overexpression of ETV1 increases the
expression of VEGFA, VEGFR2 and eNOS in
human umbilical vein endothelial cells
(HUVECs)

Our in vitro experiment demonstrated that overexpression of

ETV1 promoted endothelial migration and tube formation in

HUVECs. As described above, overexpression of ETV1 increased

the levels of angiogenetic factors (eNOS, VEGFR2, VEGFA) after

MI. To investigate the molecular mechanisms of proangiogenic

effects of ETV1 on HUVECs, we then also examined the effect

of ETV1 on expression of eNOS, VEGFR2, and VEGFA in

HUVECs after transfection with Lenti-ETV1. Consistent with the

expression pattern in vivo, transfection of HUVECs with Lenti-

ETV1 significantly elevated the levels of VEGF, VEGFR2, and

eNOS compared with Lenti-NC HUVECs (Figure 4). Taken

together, these data demonstrate that ETV1 promoted

angiogenesis via VEGF/VEGFR2/eNOS signaling pathway.

4 Discussion

Our previous study demonstrated that ETV1 is a potential

transcription factor involved in regulating gene expression and

ventricular remodeling after AMI; In this study, we found that

the expression of ETV1 was downregulated after MI, and

endothelial-specific overexpression of ETV1 mitigated the

deterioration of cardiac function, inhibited myocardial apoptosis

and fibrosis, and promoted angiogenesis after MI; in vitro

experiments showed that overexpression of ETV1 promotes the

migration and tube formation of HUVECs. These alterations

were associated with the activation of VEGF/VEGFR2/eNOS.

Percutaneous coronary intervention is an effective method to re-

establish blood flow and protect ischemic cardiomyocytes after AMI

(27). However, in-stent restenosis still remains a serious clinical

problem. Moreover, the long-term application of antiplatelet drugs

also increases the risk of postoperative bleeding, especially

gastrointestinal bleeding in elderly patients (28). On the other

hand, current drugs including calcium channel inhibitors and

nitrate ester improve blood supply mainly by dilating the coronary

artery. At present, there are no drugs targeting angiogenesis

approved for the treatment of ischemic cardiomyopathy.

Angiogenesis is defined as the sprouting of capillaries from pre-

existing vessels (29, 30). Early neovascularization is of great

significance in reducing the necrotic area, attenuating cardiac

dysfunction, and inhibiting pathological ventricular remodeling

(31); However, unlike excessive abnormal tumor angiogenesis,

angiogenesis in the infarct border zone is limited and restricted as

a result of multiple factors such as persistent local inflammation

and oxidative stress (8, 9, 32–34). Meanwhile, due to the relatively

insufficient angiogenesis, the ischemic myocardium is unable to

obtain adequate supply of oxygen and nutrients, resulting in

further ischemic damage and necrosis (35). Recently, therapeutic

angiogenesis has gained much attention in the treatment of

ischemic heart disease (36). Some natural active molecules,

mesenchymal stromal cell (MSC)-based therapies, and hydrogels-

based therapies have been proven to promote angiogenesis in

animal experiments (37, 38).

ETV1 is a member of the ETS family of transcription factors.

Accumulating evidence has highlighted the crucial role of ETV1 in

gastrointestinal stromal tumors. The effect of ETV1 on atrial

remodeling has also been revealed. However, whether ETV1 can

modulate angiogenesis after MI remains to be uncovered. In this

study, endothelial-specific overexpression of ETV1 improved cardiac

dysfunction, inhibited apoptosis and fibrosis post-MI, indicating

attenuation of pathological cardiac remodeling. Meanwhile,

angiogenesis is often measured by determining CD31-positive vessel

density (39). Our in vivo study showed that ETV1 overexpression

significantly increased the density of CD31-positive capillaries. The

proliferation and migration of endothelial cells are prerequisites for

angiogenesis (31). To investigate the impact of ETV1 on endothelial

cells, HUVECs were transfected with ETV1 overexpression

lentivirus, and subsequent experiment indicated that ETV1

enhanced the migration and tube formation of HUVECs. These

results suggested that ETV1 inhibited pathological myocardial

remodeling by promoting angiogenesis.

Mechanically, we further observed that the expression of

VEGF, VEGFR2, and eNOS was significantly upregulated after

overexpression of ETV1. Meanwhile, unlike the expression

pattern in CMECs, our results showed that the expression of
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ETV1 in the hearts of AAV9-ETV1 MI mice was lower than that in

the sham mice. This difference can be explained by the fact that,

apart from endothelial cells, cardiomyocytes and fibroblasts

constitute the predominant cell types in the heart (40, 41).

VEGF/VEGFR2 is considered as one of the most important

pathways responsible for angiogenesis (42). Previous studies have

demonstrated that VEGF promotes the proliferation and

migration of endothelial cells by binding to its receptor, VEGFR,

thus facilitating angiogenesis (43). As a member of the VEGF

family, VEGFA plays a major role in angiogenesis (44). However,

the generation of endogenous VEGFA is relatively inadequate

after MI and unable to induce sufficient angiogenesis for the

FIGURE 3

ETV1 overexpression increased the levels of VEGFA, VEGFR2 and eNOS in the cardiac tissues after MI. The protein levels of VEGFA, VEGFR2 and eNOS

in the myocardium were examined by Western blot. GAPDH was used as loading control (n= 3). Data were presented as mean ± SD. Comparisons

among multiple groups were analyzed by one-way ANOVA followed by LSD post hoc test. *P < 0.05, **P < 0.01, vs. indicated groups.
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FIGURE 4

ETV1 overexpression increased the levels of VEGFA, VEGFR2 and eNOS in HUVECs. The protein levels of VEGFA, VEGFR2 and eNOS in transfected

HUVECs were examined by Western blot. GAPDH was used as loading control (n= 3). Data were presented as mean ± SD. Comparisons among

multiple groups were analyzed by one-way ANOVA followed by LSD post hoc test. *P < 0.05, **P < 0.01, n.s. indicates not significant, vs.

indicated groups.

Wang et al. 10.3389/fcvm.2025.1633438

Frontiers in Cardiovascular Medicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1633438
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


repair of injured myocardium (45). Our study found that VEGFA

expression increased after MI. Moreover, overexpression of ETV1

further elevated the expression of VEGFA, which contributed to

the enhanced angiogenesis. As a receptor for VEGF, VEGFR2 is

the main mediator of VEGFA-induced angiogenesis (46).

Consistent with the expression pattern of VEGFA, the expression

of VEGFR2 was also up-regulated after ETV1 overexpression.

The above results suggested that ETV1 promotes angiogenesis by

regulating the VEGF/VEGFR2 signaling pathway.

eNOS is a downstream effector of the VEGF/VEGFR2 signaling

pathway and mediates VEGF-induced angiogenesis by catalysing the

production of NO (47). Studies have proved that NO promotes the

migration and proliferation of endothelial cells, thereby modulating

angiogenesis after MI (48, 49). Our study exposed that eNOS was

upregulated after overexpression of ETV1, which resulted in

enhanced angiogenic capabilities of endothelial cells.

In summary, our study revealed that ETV1 promotes angiogenesis

afterMI via the VEGFA/VEGFR2/eNOS pathway. However, this study

also has limitations. Firstly, this study did not decipher the

mechanisms of ETV1 in regulating angiogenesis at transcriptional

level, whether ETV1 could directly regulate the expression of

VEGFA expression need further exploration. Secondly, we did not

perform ETV1 knockdown experiments to further validate the

regulation of ETV1 on angiogenesis. Thirdly, our in vivo experiment

demonstrated that ETV1 inhibited myocardial apoptosis. However,

whether ETV1 suppresses endothelial cell apoptosis requires further

investigation. Furthermore, our study mainly focused on the effects

of endothelial ETV1 overexpression on angiogenesis and ventricular

remodeling. However, given the well-documented high affinity of

AAV9 for cardiomyocytes, we cannot exclude the possibility that

ETV1 could also be overexpressed in cardiomyocytes and the

cardioprotective effects of ETV1 may be partially attributed to its

direct regulatory role in cardiomyocytes. Despite these

shortcomings, our study suggested a potential role of ETV1 in

therapeutic angiogenesis for ischemic heart disease.
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