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Objective: To construct a model for predicting the risk of symptomatic 

ischemic cerebrovascular disease (ICVD) based on carotid plaque 

characteristics utilizing Automated Machine Learning (AutoML) technology, 

systematically identify key predictive factors, and provide evidence for clinical 

risk stratification and individualized intervention.

Methods: A single-center retrospective study design was employed, enrolling 

626 patients with carotid plaques who were treated between January 2020 

and December 2022. Structured electronic medical records (EMRs) were used 

to extract comprehensive clinical data, including: Demographic characteristics 

(gender, age); Cardiovascular risk factors (e.g., hypertension, diabetes 

mellitus); Lifestyle habits (smoking, alcohol consumption); Laboratory 

parameters (blood lipid profiles, C-reactive protein); Ultrasound-evaluated 

carotid plaque characteristics (stenosis severity, ulcer formation, plaque 

number, intraplaque neovascularization). The dataset was divided into a 

training set (501 patients, ∼80%) and a test set (125 patients, ∼20%). Utilizing 

the AutoML framework, we implemented the Improved Newton-Raphson 

Based Optimizer (INRBO) to optimize model hyperparameters. Feature 

importance was validated through dual-dimensional analysis employing 

LASSO regression and SHAP (SHapley Additive exPlanations) interpretability 

models. Furthermore, an interactive nursing decision support system was 

developed using MATLAB.

Results: Among the 626 patients, 375 (59.90%) developed symptomatic ICVD. 

The prediction model constructed in this study demonstrated significantly 

enhanced performance: On the training set: ROC-AUC rose to 0.9537 and 

PR-AUC improved to 0.9522. On the independent test set: ROC-AUC 

remained high at 0.9343 and PR-AUC was 0.9104. These results consistently 

surpassed all other comparative models. The model definitively identified six 

core variables predicting symptomatic ICVD onset: Stenosis Severity; 

Ulcerative Plaque; Plaque Number; Intraplaque Neovascularization; Age; 

Diabetes Status. LASSO regression analysis independently selected seven 

variables, achieving an 85.71% overlap rate (6 out of 7 features) with the 

features selected by the AutoML model. SHAP analysis confirmed the top 

three feature importance rankings: (1) Stenosis Severity, (2) Ulcerative Plaque, 

(3) Plaque Number.

TYPE Original Research 
PUBLISHED 06 October 2025 
DOI 10.3389/fcvm.2025.1648352

Frontiers in Cardiovascular Medicine 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2025.1648352&domain=pdf&date_stamp=2020-03-12
mailto:jennywqs@163.com
https://doi.org/10.3389/fcvm.2025.1648352
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1648352/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1648352/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1648352/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1648352/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1648352/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2025.1648352


Conclusion: By integrating multidimensional clinical data with interpretable 

machine learning techniques, this study confirms the pivotal role of carotid 

plaque morphological features and metabolic factors in symptomatic ICVD risk 

prediction. Crucially, it achieves the real-time translation of risk assessment into 

actionable intervention decisions, thereby providing innovative tools and 

methodological advances for the precision diagnosis and treatment of 

cerebrovascular diseases.

KEYWORDS

automated machine learning (AutoML), symptomatic ischemic cerebrovascular disease 
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1 Introduction

Ischemic cerebrovascular disease (ICVD) is one of the leading 

global causes of disability and mortality. Among its forms, 

symptomatic ICVD poses a core clinical challenge in neurology 

due to its high incidence, elevated recurrence rate, and poor 

prognosis (1). The formation of carotid atherosclerotic plaques 

is widely recognized as a key pathological basis for triggering 

symptomatic ICVD. Its pathogenesis is closely linked to the 

biological characteristics of the plaques, particularly intraplaque 

neovascularization (IPN), which serves as a core marker for 

assessing plaque vulnerability (2, 3). Molecular biology studies 

indicate that IPN promotes erythrocyte extravasation and 

in+ammatory cell infiltration by secreting vascular endothelial 

growth factor (VEGF) and matrix metalloproteinases (MMPs). 

This process subsequently weakens the structural stability of the 

fibrous cap, ultimately triggering plaque rupture and 

thromboembolic events (4, 5). More significantly, prospective 

cohort studies have confirmed that IPN is not only an 

independent predictor of recurrent events within one month in 

acute stroke patients but also significantly correlates with the 

risk of coronary artery disease, highlighting its cross-system 

value in predicting systemic vascular events (6).

In recent years, multimodal imaging techniques have been 

extensively applied for the non-invasive evaluation of carotid 

plaques. Computed tomography angiography (CTA), magnetic 

resonance angiography (MRA), digital subtraction angiography 

(DSA), and positron emission tomography (PET) can precisely 

analyze plaque morphological and functional characteristics. The 

current landscape of carotid plaque assessment primarily 

features digital subtraction angiography (DSA) as the gold 

standard for evaluating stenosis severity and plaque ulceration 

(7). However, DSA demonstrates critical limitations in 

characterizing plaque composition due to its fundamental 

methodological constraints: As a luminographic technique, it 

visualizes blood +ow dynamics but lacks the resolution to 

differentiate intraplaque components such as lipid-rich necrotic 

cores, fibrous cap integrity, or intraplaque hemorrhage. This 

limitation is compounded by its invasive nature—requiring 

arterial puncture—which carries procedural risks including 

hematoma formation, vascular dissection, and cerebral 

embolism. Alternative modalities like CT angiography suffer 

from radiation exposure limitations, while MRI faces 

accessibility barriers due to prolonged scan times and high costs 

(8, 9). Collectively, these constraints highlight an urgent need 

for non-invasive, high-resolution techniques capable of 

comprehensive plaque characterization. In contrast, conventional 

ultrasound is widely utilized for preliminary assessment of 

morphological parameters like plaque thickness and 

echogenicity due to its advantages of being non-invasive, low- 

cost, and enabling real-time dynamic imaging. Nevertheless, its 

limited spatial resolution hinders the identification of 

micrometer-scale neovascular structures (10).

The innovative application of contrast-enhanced ultrasound 

(CEUS) offers a new pathway to overcome these bottlenecks 

(11). This technology non-invasively visualizes neovessels with 

diameters <100 μm by intravenous injection of inert gas 

microbubbles encapsulated by phospholipid shells, leveraging 

their nonlinear oscillation properties to enhance blood +ow 

signals. Additionally, the pulmonary metabolism mechanism of 

the microbubbles within the body ensures circulatory stability. 

However, translating imaging features into clinical risk 

prediction still faces a critical obstacle: the insufficient efficacy of 

existing risk models. Traditional prediction tools suffer from 

two major deficiencies: firstly, their sensitivity and ROC-AUC 

are generally low, making it difficult to effectively stratify high- 

risk populations; secondly, the underlying algorithms are prone 

to issues like sensitivity to initial values and local convergence, 

often leading optimization processes to suboptimal solutions, 

thereby compromising model robustness and generalizability 

(12). Enhanced intelligent algorithms and machine learning 

methods demonstrate significant advantages in constructing 

predictive models based on multi-source data (e.g., imaging, 

clinical and demographic features) (13, 14). These intelligent 

algorithms can integrate high-dimensional heterogeneous 

variables and capture complex non-linear relationships, thereby 

optimizing the early identification accuracy for symptomatic 

ICVD risk, and providing support for personalized intervention 

strategies. Currently, the predictive value of intraplaque 

neovascularization for symptomatic ICVD occurrence and its 

associated risk factors remain unclear.

Our study employs an integrative artificial intelligence 

framework to build a multidimensional prediction model for 

symptomatic ischemic cerebrovascular disease (ICVD). While 
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CEUS comprehensively characterizes plaque morphology— 

including features such as intraplaque hemorrhage, ulceration, 

and neovascularization—this work specifically centers on 

intraplaque neovascularization (IPN) as the core imaging 

biomarker for three key reasons: (1) IPN is a well-established 

histopathological hallmark of plaque vulnerability, strongly 

correlated with future cardiovascular events; (2) CEUS uniquely 

enables quantitative assessment of microvascular perfusion 

(<100 μm resolution) non-invasively; and (3) IPN features 

demonstrate superior dynamic range for algorithmic learning, as 

evidenced by recent radiomics literature. Crucially, our AI 

framework synthesizes IPN quantification with 24 

complementary variables—spanning conventional ultrasound 

markers (plaque thickness, echogenicity, stenosis degree), 

clinical risk factors, and biochemical profiles—to achieve holistic 

risk stratification beyond any single modality.

2 Methods

2.1 Study population

This single-center retrospective study enrolled patients 

diagnosed with carotid artery plaques by vascular ultrasound at 

the Fourth Medical Center of the PLA General Hospital between 

January 2020 and December 2022. As a retrospective analysis, 

patient informed consent was waived. The study protocol was 

reviewed and approved by the Ethics Committee of the Fourth 

Medical Center of PLA General Hospital (Ethics Approval 

Number: LC-202505175).

Inclusion criteria were: (1) Meeting the diagnostic criteria for 

ICVD; (2) Detection of carotid atherosclerotic plaque by 

conventional ultrasound and subsequent undergoing of contrast- 

enhanced ultrasound (CEUS); (3) Full consciousness.

Exclusion criteria were: (1) Major organ dysfunction; (2) 

Immune system disorders or malignancies; (3) Known allergy to 

ultrasound contrast agents; (4) Contraindications to ultrasound 

examination; (5) Poor quality ultrasound images.

2.2 Data collection

All patient data were extracted from the hospital’s electronic 

medical record (EMR) system using a structured approach. The 

collected data encompassed: demographic characteristics 

(gender, age), cardiovascular risk factors (hypertension, 

hyperlipidemia, diabetes mellitus), lifestyle habits (smoking, 

alcohol consumption), laboratory parameters (lipid profiles, 

fasting blood glucose, C-reactive protein), and carotid plaque 

characteristics assessed by ultrasound. All patients underwent 

standardized ultrasound examinations performed by two 

certified sonographers using a Siemens ACUSON Sequoia 

system (9L4 transducer). Plaque echogenicity was visually 

classified during live B-mode imaging according to Gray-Weale 

criteria as: hyperechoic, isoechoic, hypoechoic, or anechoic. 

Contrary to research-focused quantitative texture analysis tools, 

this clinical assessment relied on real-time sonographer 

interpretation rather than of+ine computerised plaque analysis 

software. The echogenicity assessment followed established 

clinical protocols where plaques were categorized as “low 

echogenicity” if exhibiting hypoechoic or anechoic 

characteristics, consistent with current guideline-recommended 

practice (15). All sonographers underwent pre-study calibration 

training to standardize interpretation, with inter-observer 

agreement validated through independent assessments of 50 

random cases (κ = 0.82). Data quality control was implemented 

through dual-independent data entry and logic validation. 

Discrepancies were resolved by arbitration from a third senior 

expert. Patients missing baseline data or with substandard image 

quality were excluded during case screening. Ultimately, 626 

patients were included. The outcome variable was whether the 

patient had symptomatic ICVD. Symptomatic ICVD was 

defined as: the presence of new-onset focal neurological deficit 

symptoms (e.g., hemiplegia, aphasia, visual field loss) persisting 

for >24 h, confirmed by CT/MRI or digital subtraction 

angiography (DSA) as acute cerebral infarction or an ischemic 

lesion within the territory of the responsible artery, and 

independently reviewed and confirmed by at least two associate 

chief physicians of neurology. Patients with transient ischemic 

attacks (TIA) or asymptomatic imaging findings of ischemic 

lesions were excluded from the symptomatic ICVD group.

The presence or absence of IPN served as a key predictive 

feature in this study. To ensure objective and standardized 

assessment, IPN was evaluated using contrast-enhanced 

ultrasound (CEUS) examinations, focusing specifically on the 

detection of microbubbles (signal enhancement) within the 

carotid plaque, indicative of neovessel formation and 

permeability. Definition of IPN Presence: IPN was strictly 

classified as a binary variable (present/absent) based on 

established CEUS criteria and visual interpretation by 

experienced readers: 

Presence (“Yes”): Defined as the visualized penetration and 

accumulation of microbubbles within the carotid plaque 

substance during the dynamic contrast phase. This was 

confirmed by the observation of discrete, punctate, or linear 

enhancement signals originating within the plaque core on 

CEUS cine loops, persisting for several seconds. Enhancement 

confined solely to the plaque surface, shoulders, or the 

adventitia, without clear evidence of intraplaque penetration, 

was not classified as IPN presence.

Absence (“No”): Defined as the lack of any detectable microbubbles 

within the plaque substance observed throughout the dynamic 

CEUS examination. Plaque enhancement, if any, was limited to 

the surface or immediately adjacent adventitial tissues without 

intraplaque migration.

2.3 Model development

Our study proposes an adaptive ensemble modeling 

framework based on an improved Newton-Raphson-based 
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optimizer (INRBO). The framework employs a 0–1 encoding full- 

parameter space collaborative optimization strategy to achieve 

synchronous optimization of feature selection, base classifier 

configuration, and hyperparameter tuning. During data 

partitioning, stratified random sampling was applied based on 

the outcome variable (“symptomatic ICVD” vs. non- 

symptomatic) to divide the entire dataset into a training set 

(N = 501) and an independent test set (N = 125) at a 4:1 ratio, 

ensuring proportional distribution of outcome classes in both 

the original cohort and subsets. During data preprocessing, we 

specifically implemented the Synthetic Minority Oversampling 

Technique (SMOTE) to address class imbalance in our training 

cohort (375 symptomatic ICVD cases vs. 251 non-symptomatic, 

60:40 ratio). This technique generated synthetic minority class 

instances through feature space interpolation between 

neighboring cases prior to model optimization. The SMOTE 

application was exclusively confined to the training set using its 

default k-nearest neighbors parameter (k = 5) while the 

independent test set remained untouched to preserve real-world 

validation integrity.

Addressing the limitations of the traditional Newton- 

Raphson optimizer (NRO), specifically its susceptibility to 

initial value sensitivity and local convergence constraints (16), 

our study enhanced its global search capability through a two- 

stage improvement: (1) Parameter Initialization: Tent chaotic 

mapping was employed to generate the initial candidate 

solution set, improving parameter space coverage. (2) Iterative 

Update: A dynamic Gaussian mutation mechanism was 

embedded. When fitness stagnated (no improvement over five 

consecutive iterations), perturbation was applied to the current 

best solution via mutation to escape local optima traps. While 

feature engineering can enhance predictive performance, we 

prioritized biological interpretability and translational 

applicability, ensuring model parsimony. Thus, our primary 

analysis utilized raw clinical features directly extracted from 

electronic medical records, intentionally preserving clinical 

feature integrity.

During model construction, a hybrid encoding scheme (0–1 

feature mask vector+base classifier index code + real-valued 

hyperparameter vector) was designed to establish a unified 

optimization space. Each generated individual in the INRBO 

population encoding represented a specific configuration: 

selected feature subset (1 for inclusion, 0 for exclusion), type of 

base learner (selected from a heterogeneous model pool 

comprising Logistic Regression, Support Vector Machine, 

AdaBoost, XGBoost, and LightGBM), and associated 

hyperparameter combinations [e.g., regularization coefficient λ ∈ 

(0.01, 10), maximum tree depth for boosting d ∈ (3, 15), 

learning rate η ∈ (0.001, 0.3)]. The algorithm’s fitness evaluation 

was driven by the five-fold cross-validated Area Under the 

Receiver Operating Characteristic Curve (AUC) on the training 

set. The model’s generalization performance was validated using 

the independent test set. The final output of the framework 

corresponded to the optimized feature-model-hyperparameter 

joint configuration. The overall research work+ow is depicted 

in Figure 1.

2.4 Evaluation metrics

This study employed multi-dimensional quantitative metrics 

to evaluate the model’s classification performance and clinical 

utility. Fundamental classification metrics included: Precision 

(PRE): Measuring the accuracy of positive predictions. 

Sensitivity (SEN - Recall): Assessing the ability to identify 

positive-class samples. Specificity (SPE): Re+ecting the capacity 

to exclude negative-class samples. Accuracy (ACC): Representing 

the overall classification correctness. F1-score: Harmonizing the 

trade-off between precision (PRE) and sensitivity (SEN). ROC- 

AUC (Area Under the Receiver Operating Characteristic Curve): 

Quantifying the model’s discriminative power for potential 

sample categories. PR-AUC (Area Under the Precision-Recall 

Curve): Evaluating stability specifically for imbalanced datasets. 

For assessing clinical application value, Decision Curve Analysis 

(DCA) compared the net benefit of model-guided prediction 

strategies against baseline intervention scenarios (e.g., intervene- 

all or intervene-none) across dynamically varying threshold 

probabilities. This validated the model’s effective threshold range 

and its generalizability for risk assessment in clinical contexts.

2.5 Feature validation

The scientific validity and clinical plausibility of prognostic 

prediction features were rigorously verified through a dual- 

dimensional approach combining LASSO regression analysis and 

the SHAP (SHapley Additive exPlanations) interpretability model. 

First, the LASSO regression algorithm was applied for sparse 

modeling of high-dimensional clinical features. Its adaptive 

regularization constraint mechanism effectively eliminated 

redundant variables, screening out key features significantly 

associated with symptomatic ICVD patients. This ensured model 

parsimony and robustness against overfitting. Subsequently, the 

SHAP interpretability framework was used to elucidate the 

contribution of selected features at both the global (overall model 

behavior) and local (individual prediction) levels. SHAP quantified 

the magnitude and direction (positive or negative in+uence) of 

each variable on the patient’s predicted risk score. These results 

were then interpreted in light of clinical prior knowledge to verify 

the consistency of synergistic or antagonistic interactions among 

features. This multi-scale approach ultimately revealed complex 

association patterns between key biomarkers and the clinical 

endpoint events (symptomatic ICVD), providing transparent visual 

explanations of the model’s predictive logic. This enhanced the 

interpretability and credibility of the clinical decision support system.

2.6 Decision support system development

Using MATLAB’s App Designer for interactive application 

development, we designed and implemented an Intelligent Nursing 

Decision Support Platform. The core functional module of this 

system is the integrated prognostic prediction model. The platform 

provides user interfaces for patient data input, real-time risk 

probability calculation, and automatic generation of prediction 
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results. Employing a modular design, it supports deployment across 

different platforms (e.g., web-based or local servers). Graphical 

controls and dynamic visualization of results enhance human- 

computer interaction efficiency, providing a reliable technical 

foundation for precise decision-making in clinical practice.

2.7 Statistical analysis

All data were imported into the SPSS 26.0 statistical analysis 

platform for standardized processing: Continuous variables 

conforming to a normal distribution were presented as 

mean ± standard deviation. Categorical variables were presented 

as percentages. Differences in continuous variables between two 

groups were analyzed using the independent samples t-test. 

Associations between categorical variables across groups were 

analyzed using the Chi-square test. A two-sided p-value <0.05 

was considered statistically significant.

3 Results

3.1 Baseline characteristics of different 
datasets

A total of 626 patients were included in our study. Among 

them, 375 patients (59.90%) experienced symptomatic ICVD. 

The clinical characteristics of patients in the training set 

(N = 501) and the test set (N = 125) are compared below 

(Table 1). The results demonstrate no statistically significant 

differences (p > 0.05) in any of the clinical characteristics 

between the two datasets.

3.2 Algorithm performance comparison

To verify the optimization capability of the improved INRBO 

algorithm, our study conducted comparative tests against the 

original NRBO, Whale Optimization Algorithm (WOA), Grey 

Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), 

Genetic Algorithm (GA), GA-PSO hybrid algorithm, and GA- 

Ant Colony Optimization (ACO) hybrid algorithm. The 

experiments utilized all 12 benchmark functions from the 

CEC2022 test suite. All testing functions were configured with a 

variable dimension of 10, a population size of 30, and a 

maximum iteration count of 500. Each algorithm was 

independently run 30 times to ensure statistical reliability. Based 

on the 30 independent run outcomes, box plots were generated 

to assess the optimization stability of each algorithm. The results 

demonstrated that INRBO consistently outperformed its 

counterparts in the vast majority of the test functions, 

showcasing significantly superior stability compared to the 

original NRBO and the other benchmarked algorithms 

FIGURE 1 

Flow chart of the study.
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TABLE 1 Comparison of clinical characteristics between training Set and test Set.

Characteristic Training set 
(n = 501)

Test set 
(n = 125)

Statistics p-value

Male, n (%) 290 (57.88%) 77 (61.60%) 0.569 0.450

Age (years, Mean ± SD) 69.93 ± 9.61 71.42 ± 10.58 1.519 0.129

BMI (kg/m2, Mean ± SD) 26.54 ± 4.24 27.19 ± 5.31 1.453 0.147

Hypertension [Yes, n (%)] 364 (72.65%) 93 (74.40%) 0.155 0.694

Hyperlipidemia [Yes, n (%)] 297 (59.28%) 71 (56.80%) 0.254 0.614

Diabetes [Yes, n (%)] 160 (31.94%) 46 (36.80%) 1.072 0.301

Smoking [Yes, n (%)] 385 (76.85%) 101 (80.80%) 0.901 0.343

Alcohol use [Yes, n (%)] 311 (62.08%) 71 (56.80%) 1.171 0.279

TC (mmol/L, Mean ± SD) 4.69 ± 0.64 4.80 ± 0.57 1.756 0.08

TG (mmol/L, Mean ± SD) 1.95 ± 0.34 1.98 ± 0.3 0.903 0.367

HDL-C (mmol/L, Mean ± SD) 1.26 ± 0.31 1.25 ± 0.29 0.327 0.744

LDL-C (mmol/L, Mean ± SD) 2.65 ± 0.38 2.72 ± 0.40 1.823 0.069

Fasting blood glucose (mmol/L, Mean ± SD) 5.52 ± 0.55 5.47 ± 0.48 0.932 0.352

C-reactive protein (mg/L, Mean ± SD) 8.37 ± 1.08 8.43 ± 1.03 0.561 0.575

Bilateral mean carotid intima-media thickness (mm, Mean ± SD) 1.12 ± 0.35 1.18 ± 0.40 1.665 0.097

Ulcerative plaque [Yes, n (%)] 261 (52.10%) 58 (46.40%) 1.299 0.254

Low echogenicity [Yes, n (%)] 275 (54.89%) 66 (52.80%) 0.176 0.675

Intraplaque neovascularization [Yes, n (%)] 305 (60.88%) 80 (64.00%) 0.412 0.521

Plaque thickness [n (%)]

<4 mm 291 (58.08%) 67 (53.60%) 0.821 0.365

≥4 mm 210 (41.92%) 58 (46.40%)

Plaque number [n (%)]

Single 315 (62.87%) 73 (58.40%) 0.85 0.357

Multiple 186 (37.13%) 52 (41.60%)

Stenosis Degree [n (%)]

<70% 309 (61.68%) 73 (58.40%) 0.452 0.502

≥70% 192 (38.32%) 52 (41.60%)

FIGURE 2 

Performance comparison of swarm intelligence optimization algorithms.
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(Figure 2). Furthermore, convergence curve analysis indicated that 

INRBO achieved faster convergence speeds and exhibited the 

lowest risk of becoming trapped in local optima during the 

iterative process (Figure 3). These experimental findings 

conclusively substantiate the significant advantages of the 

INRBO algorithm in terms of global optimization performance 

and convergence efficiency.

3.3 Model training results and key factor 
identification

Based on the feature screening results from the improved 

automatic machine learning framework (INRBO-AutoML), 

five core variables predictive of symptomatic ICVD were ultimately 

identified: Stenosis Severity, Ulcerative Plaque, Plaque Number, 

Intraplaque Neovascularization, and Age. Employing a multi- 

objective optimization framework (balancing predictive 

performance with clinical interpretability), the model automatically 

selected LightGBM as the optimal base learner. Comparative 

experimental results validated through cross-validation against six 

groups of traditional machine learning models (Logistic 

Regression, Random Forest) and traditional ensemble models 

(AdaBoost, XGBoost, LightGBM) demonstrated that INRBO- 

AutoML achieved significantly superior performance: It attained an 

F1-Score of 0.9045. Its ROC-AUC and PR-AUC significantly 

increased to 0.9537 and 0.9522, respectively. Detailed results are 

presented in Table 2 and Figure 4.

3.4 Predictive performance on the test set

Results on the independent test set confirmed the outstanding 

predictive capability of the AutoML model: It achieved an F1-Score 

of 0.9333, ROC-AUC of 0.9343, and PR-AUC of 0.9104. This 

strong performance validated its excellent generalization ability. 

Detailed metrics are listed in Table 3 and visualized in Figure 5.

3.5 Clinical application value analysis

Decision Curve Analysis (DCA) evaluating the net clinical 

benefit for predicting symptomatic ICVD risk across different 

threshold probabilities is shown in Figure 6. DCA curves for the 

test set clearly demonstrate that utilizing the AutoML model for 

predicting symptomatic ICVD risk results in a greater net 

clinical benefit compared to traditional baseline strategies 

(intervening on all or no patients). This finding underscores the 

model’s significant clinical utility in identifying high-risk 

patients for targeted intervention.

3.6 Feature validation results

3.6.1 LASSO analysis
LASSO regression analysis (Figure 7) was employed for feature 

selection, providing independent validation of the effectiveness of 

the features selected by the AutoML model. LASSO identified 

FIGURE 3 

Convergence performance comparison of swarm intelligence optimization algorithms.
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variables within one standard error of the minimum mean 

squared error (Lambda1SE) in its sparse model. It selected seven 

key features: Stenosis Severity, Ulcerative Plaque, Plaque 

Number, Intraplaque Neovascularization, Hypoechoic Plaque, 

Age, and Diabetes Status. The overlap rate between the LASSO- 

selected features and those identified by AutoML was 85.71% 

(6 out of 7 features), confirming the robustness of the AutoML 

feature selection.

3.6.2 SHAP analysis

Based on the results of the SHAP analysis (Figure 8): The 

ranked feature importance (from highest to lowest contribution 

to the model’s prediction of symptomatic ICVD risk) is: (1) 

Stenosis Severity; (2) Ulcerative Plaque; (3) Plaque Number; (4) 

Intraplaque Neovascularization; (5) Age; (6) Diabetes Status. 

SHAP provides both global insights into overall feature 

importance (Figure 8B) and local explainability for individual 

predictions (Figure 8A).

3.7 Decision support system development 
(demonstration)

The operational work+ow of the developed visualization 

system is demonstrated in Figure 9. During clinical application: 

Users simply input the specific values for the required features 

TABLE 2 Performance of models on the training set (cross-validation).

Models PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.7000 0.7831 0.5194 0.6747 0.7392 0.6764 0.7159

SVM 0.6909 0.9017 0.4223 0.7046 0.7824 0.7962 0.8553

Adaboost 0.7514 0.8915 0.5777 0.7625 0.8155 0.8245 0.8543

XGBoost 0.8054 0.8136 0.7184 0.7745 0.8094 0.8317 0.8748

LightGBM 0.7871 0.9525 0.6311 0.8204 0.8620 0.9225 0.9313

AutoML 0.8529 0.9627 0.7621 0.8802 0.9045 0.9537 0.9522

FIGURE 4 

Performance comparison of training set cross-validation. (A) ROC curves of the training set; (B) Precision-Recall (PR) curves of the training set.

TABLE 3 Model performance on the test set.

Models PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.6790 0.7143 0.4583 0.6160 0.6962 0.6347 0.7132

SVM 0.6800 0.8831 0.3333 0.6720 0.7684 0.7660 0.8479

Adaboost 0.7701 0.8701 0.5833 0.7600 0.8171 0.8266 0.8706

XGBoost 0.7867 0.7662 0.6667 0.7280 0.7763 0.7882 0.8594

LightGBM 0.8111 0.9481 0.6458 0.8320 0.8743 0.8961 0.8898

AutoML 0.8750 1.0000 0.7708 0.9120 0.9333 0.9343 0.9104
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in the “Feature Input” panel. The system then automatically 

calculates and outputs the patient’s predicted risk of 

symptomatic ICVD. This provides clinicians with immediate, 

model-driven risk assessment to support decision-making.

To elucidate the interpretability mechanism of SHAP for 

individual patient predictions in detail, this study selects a high- 

risk sample (Patient ID: P-135) for local interpretation. The 

patient is a 68-year-old male with clinical characteristics 

including severe carotid artery stenosis (80%), presence of 

ulcerated plaque, multiple plaques (≥3), intraplaque 

neovascularization (IPN), and confirmed diabetes. The model 

predicts a high probability of symptomatic ischemic 

cerebrovascular events at 0.92. SHAP attribution analysis reveals 

that ulcerated plaque is the most significant risk driver for this 

patient (SHAP value +0.38), followed by severe stenosis (+0.35), 

while the presence of IPN and multiple plaques contribute +0.22 

and +0.19 to risk elevation, respectively. Notably, the patient’s 

age of 68 years is below the training set mean age (72.3 years), 

resulting in a slight protective effect (SHAP value −0.11). From 

the decision path perspective, the model’s base prediction value 

FIGURE 5 

Performance curves. (A) ROC curve of the training set; (B) Precision-Recall (PR) curve of the training set.

FIGURE 6 

Decision curve analysis (DCA) of predictive models. (A) Training set; (B) Test set; The Y-axis displays net benefit. The solid black line represents the 

prediction model. The red dashed line represents the “intervene on all” strategy. The black dashed line represents the “intervene on none” strategy.
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(i.e., the predicted probability with all features at mean values) is 

0.32. Driven strongly by ulcerated plaque and severe stenosis, the 

risk probability increases substantially. The compounding effects 

of IPN and multiple plaques further reinforce the high-risk 

propensity, culminating in a final high-risk determination of 

0.92. This outcome is highly consistent with clinical consensus, 

confirming the importance of ulcer morphology and 

hemodynamic impairment as core risk factors.

4 Discussion

Our study presents an in-depth analysis of a novel risk 

prediction system for symptomatic ischemic cerebrovascular 

disease (ICVD) based on an improved machine learning model. 

The findings unequivocally demonstrate that our developed 

INRBO-AutoML algorithm model achieves a significant 

breakthrough in prediction efficacy. Its core value lies in the 

successful integration of contrast-enhanced ultrasound (CEUS) 

evaluated intraplaque neovascularization features with 

multidimensional clinical parameters. Validation on the 

independent test set revealed the model’s exceptional 

generalization capability, achieving an F1-score of 0.9333, a 

ROC-AUC (Area Under the Receiver Operating Characteristic 

Curve) of 0.9343, and a PR-AUC (Area Under the Precision- 

Recall Curve) of 0.9104. Particularly noteworthy is the 

performance leap of 22.8% to 29.96% compared to traditional 

models like Support Vector Machine (SVM, ROC-AUC = 0.766) 

and Logistic Regression (LR, ROC-AUC = 0.6347). While the 

model achieved a sensitivity of 100%, theoretically enabling the 

precise identification of all high-risk patients, it is crucial to 

acknowledge that no model can achieve completely perfect 

prediction. This potential limitation might be partially 

attributable to the current sample size, necessitating future 

studies with larger cohorts for further validation. Decision 

Curve Analysis (DCA) further substantiated that applying this 

FIGURE 7 

LASSO regression analysis results. (A) Variable selection paths (trajectory) plot; (B) Cross-validation curve for tuning parameter (lambda) selection.

FIGURE 8 

Machine learning interpretability analysis using SHAP. (A) SHAP summary plot (Bee-swarm plot visualizing feature contribution per sample); (B) SHAP 

feature importance bar plot.
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model within a specific risk threshold range can lead to a higher 

net clinical benefit rate compared to conventional strategies. 

This distinct advantage stems from the model’s exceptional 

capability in successfully integrating complex imaging features— 

including stenosis severity, ulcerative plaque, and intraplaque 

neovascularization—as core predictive factors.

Compared with previous research, our work achieves dual 

breakthroughs. Methodologically, traditional prediction models 

often rely on single-algorithm architectures, as exemplified by 

the commonly used Logistic Regression in the Amani study 

(17), which faces significant limitations in handling high- 

dimensional heterogeneous data. By introducing the innovative 

Improved Newton-Raphson-based Optimizer (INRBO), we 

effectively overcame critical issues such as gradient explosion 

and initial value sensitivity. Key technical innovations 

manifested in the application of Tent chaotic mapping to 

enhance parameter space coverage and the dynamic Gaussian 

mutation mechanism to accelerate convergence speed. On the 

application level, early studies like the Sheng trial primarily 

focused on clinical variables largely overlooking critical image 

features (18). Our research, however, pioneered the deep 

integration of intraplaque neovascularization subtypes assessed 

via contrast-enhanced ultrasound with established clinical 

characteristics. This novel paradigm of multi-source data 

integration successfully elucidates complex non-linear 

associations not previously discovered: LASSO regression 

identified six core features (including stenosis severity), with an 

85.71% overlap rate relative to the AutoML selection. 

Furthermore, SHAP interpretability analysis revealed stenosis 

severity as the primary factor in prediction (highest importance 

ranking). This observation of a graded risk escalation 

phenomenon provides a crucial theoretical basis for personalized 

intervention strategies.

The established relevance of the screened factors to 

symptomatic ICVD occurrence stands as a core discovery of 

this study. Dual-dimensional validation—through LASSO 

regression and SHAP interpretability analysis—confirmed the 

significance of six key predictors: Stenosis Severity, Ulcerative 

Plaque, Plaque Number, Intraplaque Neovascularization 

(IPN), Age, and Diabetes Status. These demonstrate well- 

documented pathophysiological links to disease risk: Stenosis 

Severity, identified as the primary predictor (SHAP rank #1), 

primarily stems from hemodynamic alterations (19). Elevated 

stenosis induces abnormal shear stress that not only activates 

FIGURE 9 

Clinical decision support system demonstration. Created using MATLAB App Designer.
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platelet aggregation pathways leading to thrombus formation 

but also increases mechanical strain on the fibrous cap. This 

biomechanical stress potentiates plaque disruption, releasing 

fragments or thrombi that cause cerebral embolism via distal 

occlusion. While hypoperfusion remains another important 

consequence of severe stenosis affecting watershed territories, 

its contribution to overall stroke risk may be comparatively 

smaller in populations principally characterized by embolic 

mechanisms. Ulcerative Plaque and Plaque Number are 

recognized indicators of morphological instability. While 

ulceration triggers local in+ammation through lipid core 

exposure, multiple plaque presence signifies systemic 

atherosclerotic burden that contributes to instability through 

distinct mechanisms (20). Specifically, plaque multiplicity 

re+ects widespread endothelial dysfunction and vascular 

in+ammation, creating a pro-thrombotic milieu. This 

amplifies shear stress vulnerability across arterial segments, 

while simultaneously elevating circulating in+ammatory 

mediators (e.g., IL-6, CRP) that degrade fibrous caps through 

matrix metalloproteinase activation. Consequently, patients 

with multiple plaques exhibit substantially higher cumulative 

rupture risks compared to single-plaque counterparts-a 

phenomenon consistently demonstrated in longitudinal 

studies (21). The association of IPN is particularly prominent. 

Elevated IPN grades are directly linked to VEGF 

overexpression and MMP-9 secretion, causing fibrous cap 

degradation and accelerating plaque rupture (22). Prospective 

studies indicate that IPN is not only an independent predictor 

of ICVD recurrence but also correlates with systemic vascular 

events, highlighting its pan-vascular pathologic significance 

(23). Age, an immutable demographic factor, exhibits a non- 

linear risk surge in SHAP analysis attributed to multiple 

mechanisms including reduced vascular elasticity, impaired 

endothelial repair capacity, and diminished cerebral 

vasomotor reactivity—with the latter compromising cerebral 

blood +ow autoregulation and independently elevating 

hypoperfusion-related stroke risk (24). Diabetes status, a 

traditional metabolic factor, exerts its in+uence through 

mechanisms involving oxidative stress and endothelial 

dysfunction induced by hyperglycemia, cooperatively driving 

the progression of atherosclerosis (25). The clinical relevance 

of these factors is corroborated by the SHAP model’s global 

interpretation. Furthermore, the 85.71% feature selection 

overlap rate achieved by LASSO regression demonstrates the 

robustness of the chosen feature set. Overall, the selected 

factors span imaging and epidemiological dimensions, 

forming a multi-level risk amplifier: stenosis severity provides 

the hemodynamic mechanical basis, IPN intensifies 

molecular-level disruption, and metabolic diseases exacerbate 

systemic in+ammation. Through these complex non-linear 

interactions, they collectively drive ICVD events, thereby 

providing a scientific foundation for targeted clinical 

interventions. This synergistic risk amplification framework 

helps contextualize the null predictive value observed for 

bilateral carotid intima-media thickness (CIMT) in our 

cohort: while population-based studies establish CIMT’s 

utility in primary prevention (26), its significance diminishes 

in established atherosclerosis where vulnerability mechanisms 

dominate. The plateau effect in vascular remodeling 

and diminished discriminatory capacity relative to active 

processes like intraplaque neovascularization explains why 

comprehensive plaque morphology integrates multiple 

synergistic pathways to outperform isolated structural metrics 

in symptomatic ICVD prediction. Future multi-center 

validation should explore CIMT’s potential early-window 

utility before advanced plaque formation.

Despite the achievements, the study has limitations requiring 

acknowledgment: Its single-center retrospective design (n = 626) 

results in insufficient external validation scope, particularly 

regarding regional specificity. Technically, the decision system’s 

reliance on MATLAB hinders widespread adoption, especially 

in primary care settings. While IPN assessment employed a 

standardized grading system, the lack of quantitative 

microbubble perfusion parameters might limit the depth of 

biological mechanism interpretation. Methodologically, 

variations in input feature sets—particularly concerning data 

preprocessing choices such as feature scaling methods, missing 

value imputation strategies, or inclusion criteria for 

ultrasound-derived parameters—can significantly impact 

AutoML model architecture generation and performance 

characteristics. Future work should prioritize three key 

directions: Establishing a multi-center prospective cohort 

(target sample size ≥3,000 patients), incorporating optical 

coherence tomography (OCT) for enhanced plaque 

quantification accuracy. Developing an advanced learning 

framework based on the Transformer architecture to enable 

cross-center data collaboration and dynamic analysis of CEUS 

sequences. Constructing a real-time risk alert platform 

integrated with electronic medical record systems, and 

conducting cost-effectiveness analyses under different risk 

stratification scenarios using the validated model.

In summary, the ICVD prediction model established in our 

study represents an effective integration of radiomics, machine 

learning, and clinical decision-making. Its core value extends 

beyond outperforming traditional models in predictive efficacy. 

More importantly, it pioneers an interpretable, user-friendly, 

and highly effective precision risk assessment paradigm, thereby 

providing a novel approach for individualized prevention and 

management of cerebrovascular disease.

Data availability statement

The raw data supporting the conclusions of this article will be 

made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the Ethics 

committee of the Fourth Medical Center of the PLA General 

Hospital (Approval No. LC-202,505,175). The studies were 

Chen et al.                                                                                                                                                             10.3389/fcvm.2025.1648352 

Frontiers in Cardiovascular Medicine 12 frontiersin.org



conducted in accordance with the local legislation and 

institutional requirements. The ethics committee/institutional 

review board waived the requirement of written informed 

consent for participation from the participants or the 

participants’ legal guardians/next of kin because As a 

retrospective analysis, patient informed consent was waived.

Author contributions

JC: Data curation, Methodology, Writing – original draft, 

Funding acquisition, Investigation, Formal analysis. JW: 

Writing – review & editing, Formal analysis, Data curation. 

QW: Resources, Project administration, Methodology, Writing – 

review & editing. WS: Writing – review & editing, Investigation, 

Data curation. XH: Investigation, Writing – review & editing, 

Data curation. XL: Methodology, Writing – review & editing, 

Investigation.

Funding

The author(s) declare that financial support was received for 

the research and/or publication of this article. This study was 

supported by the National Natural Science Foundation of China 

(No. 81771833).

Conflict of interest

The authors declare that the research was conducted in the 

absence of any commercial or financial relationships that could 

be construed as a potential con+ict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this 

article has been generated by Frontiers with the support of 

artificial intelligence and reasonable efforts have been made to 

ensure accuracy, including review by the authors wherever 

possible. If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 

and do not necessarily represent those of their affiliated organizations, 

or those of the publisher, the editors and the reviewers. Any product 

that may be evaluated in this article, or claim that may be made by its 

manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Homssi M, Saha A, Delgado D, RoyChoudhury A, Thomas C, Lin M, et al. 
Extracranial carotid plaque calcification and cerebrovascular ischemia: a systematic 
review and meta-analysis. Stroke. (2023) 54(10):2621–8. doi: 10.1161/ 
STROKEAHA.123.042807

2. Han Y, Ren L, Fei X, Wang J, Chen T, Guo J, et al. Effect of moderate-intensity 
statin on carotid intraplaque neovascularization of coronary artery disease: a 
retrospective cohort study. Quant Imaging Med Surg. (2024) 14(2):1660–72. 
doi: 10.21037/qims-23-1104

3. Huang Z, Cheng XQ, Liu YN, Bi XJ, Deng YB. Value of intraplaque 
neovascularization on contrast-enhanced ultrasonography in predicting ischemic 
stroke recurrence in patients with carotid atherosclerotic plaque. Korean J Radiol. 
(2023) 24(4):338–48. doi: 10.3348/kjr.2022.0977

4. Chen J, Zhao F, Lei C, Qi T, Xue X, Meng Y, et al. Effect of evolocumab on the 
progression of intraplaque neovascularization of the carotid based on contrast- 
enhanced ultrasonography (EPIC study): a prospective single-arm, open-label 
study. Front Pharmacol. (2023) 13:999224. doi: 10.3389/fphar.2022.999224

5. Li Y, Zhang L, Yang W, Lin L, Pan J, Lu M, et al. Notoginsenoside R1 decreases 
intraplaque neovascularization by governing pericyte-endothelial cell communication 
via Ang1/Tie2 axis in atherosclerosis. Phytother Res. (2024) 38(8):4036–52. doi: 10. 
1002/ptr.8257

6. Han Y, Ren L, Fei X, Wang J, Chen T, Guo J, et al. Association between carotid 
intraplaque neovascularization detected by contrast-enhanced ultrasound and the 
progression of coronary lesions in patients undergoing percutaneous coronary 
intervention. J Am Soc Echocardiogr. (2023) 36(2):216–23. doi: 10.1016/j.echo.2022.10.012

7. Saba L, Nardi V, Cau R, Gupta A, Kamel H, Suri JS, et al. Carotid artery plaque 
calcifications: lessons from histopathology to diagnostic imaging. Stroke. (2022) 
53(1):290–7. doi: 10.1161/STROKEAHA.121.035692

8. Hashiguchi A, Tonegawa T, Tashima K, Moroki K, Tokuda H. Preoperative 
evaluation for carotid endarterectomy using CT and MRI fusion images without 
contrast Media. Cureus. (2024) 16(2):e54321. doi: 10.7759/cureus.54321

9. Nemoto S. Diagnostic imaging of carotid stenosis: ultrasound, magnetic 
resonance imaging, and computed tomography angiography. Nihon Geka Gakkai 
Zasshi. (2011) 112(6):371–6. Japanese.

10. David E, Martinelli O, Pacini P, Di Serafino M, Huang P, Dolcetti V, et al. New 
technologies in the assessment of carotid stenosis: beyond the color-Doppler 

ultrasound-high frame rate vector-+ow and 3D arterial analysis ultrasound. 
Diagnostics (Basel). (2023) 13(8):1478. doi: 10.3390/diagnostics13081478

11. Kopyto E, Czeczelewski M, Mikos E, Stępniak K, Kopyto M, Matuszek M, et al. 
Contrast-enhanced ultrasound feasibility in assessing carotid plaque vulnerability- 
narrative review. J Clin Med. (2023) 12(19):6416. doi: 10.3390/jcm12196416

12. Plisky P, Schwartkopf-Phifer K, Huebner B, Garner MB, Bullock G. Systematic 
review and meta-analysis of the Y-balance test lower quarter: reliability, discriminant 
validity, and predictive validity. Int J Sports Phys Ther. (2021) 16(5):1190–209. doi: 10. 
26603/001c.27634

13. Gao C, Zhang R, Chen X, Yao T, Song Q, Ye W, et al. Integrating internet 
multisource big data to predict the occurrence and development of COVID-19 
cryptic transmission. NPJ Digit Med. (2022) 5(1):161. doi: 10.1038/s41746-022- 
00704-8

14. Li L, Han X, Zhang Z, Han T, Wu P, Zhang L, et al. Construction of prognosis 
prediction model and visualization system of acute paraquat poisoning based on 
improved machine learning model. Digit Health. (2024) 10:20552076241287891. 
doi: 10.1177/20552076241287891

15. Arning C, Widder B, von Reutern GM, Stiegler H, Görtler M. 
Ultraschallkriterien zur graduierung von stenosen der A. Carotis interna—revision 
der DEGUM-kriterien und transfer in NASCET-stenosierungsgrade [Revision of 
DEGUM ultrasound criteria for grading internal carotid artery stenoses and 
transfer to NASCET measurement]. Ultraschall Med. (2010) 31(3):251–7. doi: 10. 
1055/s-0029-1245336

16. Sowmya R, Premkumar M, Jangir P. Newton-Raphson-based optimizer: a new 
population-based metaheuristic algorithm for continuous optimization problems. 
Eng Appl Artif Intell. (2024) 128:107532. doi: 10.1016/j.engappai.2023.107532

17. Amani F, Fattahzadeh-Ardalani G, Sharghi A, Jafarizadeh R. Using multiple logistic 
regression to determine factors affecting delaying hospital arrival of patients with acute 
ischemic stroke. Neurol India. (2022) 70(4):1548–53. doi: 10.4103/0028-3886.355102

18. Sheng Z, Kuang J, Yang L, Wang G, Gu C, Qi Y, et al. Predictive models for 
delay in medical decision-making among older patients with acute ischemic stroke: 
a comparative study using logistic regression analysis and lightGBM algorithm. 
BMC Public Health. (2024) 24(1):1413. doi: 10.1186/s12889-024-18855-6

19. Howard DPJ, Gaziano L, Rothwell PM; Oxford Vascular Study. Risk of stroke in 
relation to degree of asymptomatic carotid stenosis: a population-based cohort study, 

Chen et al.                                                                                                                                                             10.3389/fcvm.2025.1648352 

Frontiers in Cardiovascular Medicine 13 frontiersin.org

https://doi.org/10.1161/STROKEAHA.123.042807
https://doi.org/10.1161/STROKEAHA.123.042807
https://doi.org/10.21037/qims-23-1104
https://doi.org/10.3348/kjr.2022.0977
https://doi.org/10.3389/fphar.2022.999224
https://doi.org/10.1002/ptr.8257
https://doi.org/10.1002/ptr.8257
https://doi.org/10.1016/j.echo.2022.10.012
https://doi.org/10.1161/STROKEAHA.121.035692
https://doi.org/10.7759/cureus.54321
https://doi.org/10.3390/diagnostics13081478
https://doi.org/10.3390/jcm12196416
https://doi.org/10.26603/001c.27634
https://doi.org/10.26603/001c.27634
https://doi.org/10.1038/s41746-022-00704-8
https://doi.org/10.1038/s41746-022-00704-8
https://doi.org/10.1177/20552076241287891
https://doi.org/10.1055/s-0029-1245336
https://doi.org/10.1055/s-0029-1245336
https://doi.org/10.1016/j.engappai.2023.107532
https://doi.org/10.4103/0028-3886.355102
https://doi.org/10.1186/s12889-024-18855-6


systematic review, and meta-analysis. Lancet Neurol. (2021) 20(3):193–202. doi: 10. 
1016/S1474-4422(20)30484-1

20. Cui L, Liu R, Zhou F, Tian B, Chen Y, Xing Y. Incremental clinical value of 
intraplaque neovascularization in predicting recurrent ischemic stroke. Ann Clin 
Transl Neurol. (2025) 12(2):291–9. doi: 10.1002/acn3.52255

21. Larson AS, Brinjikji W, Lekah A, Klaas JP, Lanzino G, Huston J, et al. 
Nonstenotic carotid plaques and embolic stroke of undetermined source: a 
multimodality review. AJNR Am J Neuroradiol. (2023) 44(2):118–24. doi: 10.3174/ 
ajnr.A7750

22. Song Y, Dang Y, Wang J, Cai H, Feng J, Zhang H, et al. Carotid intraplaque 
neovascularization predicts ischemic stroke recurrence in patients with carotid 
atherosclerosis. Gerontology. (2021) 67(2):144–51. doi: 10.1159/000511360

23. Migdalski A, Jawien A. Neovascularization as a leading mechanism 
of intraplaque hemorrhage and carotid plaque destabilization: a 

narrative review. Curr Vasc Pharmacol. (2024) 22(6):377–85. doi: 10.2174/ 
0115701611304241240523045704

24. Yang Q, Sun S, Cui LB, Gao S, Gu Z, Fang Z, et al. Ischemic cardio- 
cerebrovascular disease and all-cause mortality in Chinese elderly patients: a 
propensity-score matching study. Eur J Med Res. (2024) 29(1):330. doi: 10.1186/ 
s40001-024-01929-x

25. Georgakis MK, Harshfield EL, Malik R, Franceschini N, Langenberg C, 
Wareham NJ, et al. Diabetes mellitus, glycemic traits, and cerebrovascular disease: 
a Mendelian randomization study. Neurology. (2021) 96(13):e1732–42. doi: 10. 
1212/WNL.0000000000011555

26. Willeit P, Tschiderer L, Allara E, Reuber K, Seekircher L, Gao L, et al. Carotid 
intima-media thickness progression as surrogate marker for cardiovascular risk: 
meta-analysis of 119 clinical trials involving 100,667 patients. Circulation. (2020) 
142(7):621–42. doi: 10.1161/CIRCULATIONAHA.120.046361

Chen et al.                                                                                                                                                             10.3389/fcvm.2025.1648352 

Frontiers in Cardiovascular Medicine 14 frontiersin.org

https://doi.org/10.1016/S1474-4422(20)30484-1
https://doi.org/10.1016/S1474-4422(20)30484-1
https://doi.org/10.1002/acn3.52255
https://doi.org/10.3174/ajnr.A7750
https://doi.org/10.3174/ajnr.A7750
https://doi.org/10.1159/000511360
https://doi.org/10.2174/0115701611304241240523045704
https://doi.org/10.2174/0115701611304241240523045704
https://doi.org/10.1186/s40001-024-01929-x
https://doi.org/10.1186/s40001-024-01929-x
https://doi.org/10.1212/WNL.0000000000011555
https://doi.org/10.1212/WNL.0000000000011555
https://doi.org/10.1161/CIRCULATIONAHA.120.046361

	Risk prediction for symptomatic ischemic cerebrovascular disease based on ultrasound indicators of carotid plaque neovascularization
	Introduction
	Methods
	Study population
	Data collection
	Model development
	Evaluation metrics
	Feature validation
	Decision support system development
	Statistical analysis

	Results
	Baseline characteristics of different datasets
	Algorithm performance comparison
	Model training results and key factor identification
	Predictive performance on the test set
	Clinical application value analysis
	Feature validation results
	LASSO analysis
	SHAP analysis

	Decision support system development (demonstration)

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


