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Objective: To construct a model for predicting the risk of symptomatic
ischemic cerebrovascular disease (ICVD) based on carotid plaque
characteristics utilizing Automated Machine Learning (AutoML) technology,
systematically identify key predictive factors, and provide evidence for clinical
risk stratification and individualized intervention.

Methods: A single-center retrospective study design was employed, enrolling
626 patients with carotid plaques who were treated between January 2020
and December 2022. Structured electronic medical records (EMRs) were used
to extract comprehensive clinical data, including: Demographic characteristics
(gender, age); Cardiovascular risk factors (e.g., hypertension, diabetes
mellitus); Lifestyle habits (smoking, alcohol consumption); Laboratory
parameters (blood lipid profiles, C-reactive protein); Ultrasound-evaluated
carotid plaque characteristics (stenosis severity, ulcer formation, plaque
number, intraplaque neovascularization). The dataset was divided into a
training set (501 patients, ~80%) and a test set (125 patients, ~20%). Utilizing
the AutoML framework, we implemented the Improved Newton-Raphson
Based Optimizer (INRBO) to optimize model hyperparameters. Feature
importance was validated through dual-dimensional analysis employing
LASSO regression and SHAP (SHapley Additive exPlanations) interpretability
models. Furthermore, an interactive nursing decision support system was
developed using MATLAB.

Results: Among the 626 patients, 375 (59.90%) developed symptomatic ICVD.
The prediction model constructed in this study demonstrated significantly
enhanced performance: On the training set: ROC-AUC rose to 0.9537 and
PR-AUC improved to 0.9522. On the independent test set: ROC-AUC
remained high at 0.9343 and PR-AUC was 0.9104. These results consistently
surpassed all other comparative models. The model definitively identified six
core variables predicting symptomatic ICVD onset: Stenosis Severity;
Ulcerative Plaque; Plague Number; Intraplague Neovascularization; Age;
Diabetes Status. LASSO regression analysis independently selected seven
variables, achieving an 85.71% overlap rate (6 out of 7 features) with the
features selected by the AutoML model. SHAP analysis confirmed the top
three feature importance rankings: (1) Stenosis Severity, (2) Ulcerative Plaque,
(3) Plague Number.
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Conclusion: By integrating multidimensional clinical data with interpretable
machine learning techniques, this study confirms the pivotal role of carotid
plaque morphological features and metabolic factors in symptomatic ICVD risk
prediction. Crucially, it achieves the real-time translation of risk assessment into

actionable
methodological

intervention decisions,

thereby providing innovative tools and

advances for the precision diagnosis and treatment of

cerebrovascular diseases.

KEYWORDS

automated machine learning (AutoML), symptomatic ischemic cerebrovascular disease
(symptomatic ICVD), carotid plaque, prediction model, risk factors, contrast-enhanced

ultrasound (CEUS)

1 Introduction

Ischemic cerebrovascular disease (ICVD) is one of the leading
global causes of disability and mortality. Among its forms,
symptomatic ICVD poses a core clinical challenge in neurology
due to its high incidence, elevated recurrence rate, and poor
prognosis (1). The formation of carotid atherosclerotic plaques
is widely recognized as a key pathological basis for triggering
symptomatic ICVD. Its pathogenesis is closely linked to the
biological characteristics of the plaques, particularly intraplaque
neovascularization (IPN), which serves as a core marker for
assessing plaque vulnerability (2, 3). Molecular biology studies
indicate that IPN promotes erythrocyte extravasation and
inflammatory cell infiltration by secreting vascular endothelial
growth factor (VEGF) and matrix metalloproteinases (MMPs).
This process subsequently weakens the structural stability of the
fibrous cap, ultimately triggering plaque rupture and
thromboembolic events (4, 5). More significantly, prospective
cohort studies have confirmed that IPN is not only an
independent predictor of recurrent events within one month in
acute stroke patients but also significantly correlates with the
risk of coronary artery disease, highlighting its cross-system
value in predicting systemic vascular events (6).

In recent years, multimodal imaging techniques have been
extensively applied for the non-invasive evaluation of carotid
plaques. Computed tomography angiography (CTA), magnetic
resonance angiography (MRA), digital subtraction angiography
(DSA), and positron emission tomography (PET) can precisely
analyze plaque morphological and functional characteristics. The
current landscape of carotid plaque assessment primarily
features digital subtraction angiography (DSA) as the gold
standard for evaluating stenosis severity and plaque ulceration
DSA  demonstrates

characterizing plaque composition due to its fundamental

(7). However, critical limitations in
methodological constraints: As a luminographic technique, it
visualizes blood flow dynamics but lacks the resolution to
differentiate intraplaque components such as lipid-rich necrotic
cores, fibrous cap integrity, or intraplaque hemorrhage. This
limitation is compounded by its invasive nature—requiring
arterial puncture—which carries procedural risks including
vascular dissection, and cerebral

hematoma formation,

embolism. Alternative modalities like CT angiography suffer
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MRI
accessibility barriers due to prolonged scan times and high costs

from radiation exposure limitations, while faces

(8, 9). Collectively, these constraints highlight an urgent need

for non-invasive, high-resolution techniques capable of
comprehensive plaque characterization. In contrast, conventional
ultrasound is widely utilized for preliminary assessment of
morphological — parameters like plaque thickness and
echogenicity due to its advantages of being non-invasive, low-
cost, and enabling real-time dynamic imaging. Nevertheless, its
hinders the

micrometer-scale neovascular structures (10).

limited spatial resolution identification  of

The innovative application of contrast-enhanced ultrasound
(CEUS) offers a new pathway to overcome these bottlenecks
(11). This technology non-invasively visualizes neovessels with
diameters <100 um by intravenous injection of inert gas
microbubbles encapsulated by phospholipid shells, leveraging
their nonlinear oscillation properties to enhance blood flow
signals. Additionally, the pulmonary metabolism mechanism of
the microbubbles within the body ensures circulatory stability.
However, translating imaging features into clinical risk
prediction still faces a critical obstacle: the insufficient efficacy of
existing risk models. Traditional prediction tools suffer from
two major deficiencies: firstly, their sensitivity and ROC-AUC
are generally low, making it difficult to effectively stratify high-
risk populations; secondly, the underlying algorithms are prone
to issues like sensitivity to initial values and local convergence,
often leading optimization processes to suboptimal solutions,
thereby compromising model robustness and generalizability
(12). Enhanced intelligent algorithms and machine learning
methods demonstrate significant advantages in constructing
predictive models based on multi-source data (e.g., imaging,
clinical and demographic features) (13, 14). These intelligent
algorithms can integrate high-dimensional heterogeneous
variables and capture complex non-linear relationships, thereby
optimizing the early identification accuracy for symptomatic
ICVD risk, and providing support for personalized intervention
strategies. Currently, the predictive value of intraplaque
neovascularization for symptomatic ICVD occurrence and its
associated risk factors remain unclear.

Our study employs an integrative artificial intelligence
framework to build a multidimensional prediction model for

symptomatic ischemic cerebrovascular disease (ICVD). While
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CEUS comprehensively characterizes plaque morphology—
including features such as intraplaque hemorrhage, ulceration,
and neovascularization—this work specifically centers on
intraplaque neovascularization (IPN) as the core imaging
biomarker for three key reasons: (1) IPN is a well-established
histopathological hallmark of plaque vulnerability, strongly
correlated with future cardiovascular events; (2) CEUS uniquely
enables quantitative assessment of microvascular perfusion
(<100 pm resolution) non-invasively; and (3) IPN features
demonstrate superior dynamic range for algorithmic learning, as

evidenced by recent radiomics literature. Crucially, our AI

framework  synthesizes IPN  quantification  with 24
complementary variables—spanning conventional ultrasound
markers (plaque thickness, echogenicity, stenosis degree),

clinical risk factors, and biochemical profiles—to achieve holistic
risk stratification beyond any single modality.

2 Methods
2.1 Study population

This single-center retrospective study enrolled patients
diagnosed with carotid artery plaques by vascular ultrasound at
the Fourth Medical Center of the PLA General Hospital between
January 2020 and December 2022. As a retrospective analysis,
patient informed consent was waived. The study protocol was
reviewed and approved by the Ethics Committee of the Fourth
Medical Center of PLA General Hospital (Ethics Approval
Number: LC-202505175).

Inclusion criteria were: (1) Meeting the diagnostic criteria for
ICVD; (2) Detection of carotid atherosclerotic plaque by
conventional ultrasound and subsequent undergoing of contrast-
enhanced ultrasound (CEUS); (3) Full consciousness.

Exclusion criteria were: (1) Major organ dysfunction; (2)
Immune system disorders or malignancies; (3) Known allergy to
ultrasound contrast agents; (4) Contraindications to ultrasound
examination; (5) Poor quality ultrasound images.

2.2 Data collection

All patient data were extracted from the hospital’s electronic
medical record (EMR) system using a structured approach. The
collected  data
(gender, age),
hyperlipidemia, diabetes mellitus), lifestyle habits (smoking,

encompassed: demographic  characteristics

cardiovascular risk factors (hypertension,
alcohol consumption), laboratory parameters (lipid profiles,
fasting blood glucose, C-reactive protein), and carotid plaque
characteristics assessed by ultrasound. All patients underwent
standardized ultrasound examinations performed by two
certified sonographers using a Siemens ACUSON Sequoia
system (9L4 transducer). Plaque echogenicity was visually
classified during live B-mode imaging according to Gray-Weale
criteria as: hyperechoic, isoechoic, hypoechoic, or anechoic.

Contrary to research-focused quantitative texture analysis tools,
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this clinical assessment relied on real-time sonographer
interpretation rather than offline computerised plaque analysis
software. The echogenicity assessment followed established
clinical protocols where plaques were categorized as “low
exhibiting

characteristics, consistent with current guideline-recommended

echogenicity”  if hypoechoic  or  anechoic
practice (15). All sonographers underwent pre-study calibration
with
agreement validated through independent assessments of 50

training to standardize interpretation, inter-observer
random cases (x =0.82). Data quality control was implemented
through dual-independent data entry and logic validation.
Discrepancies were resolved by arbitration from a third senior
expert. Patients missing baseline data or with substandard image
quality were excluded during case screening. Ultimately, 626
patients were included. The outcome variable was whether the
patient had symptomatic ICVD. Symptomatic ICVD was
defined as: the presence of new-onset focal neurological deficit
symptoms (e.g., hemiplegia, aphasia, visual field loss) persisting
for >24h, confirmed by CT/MRI or digital subtraction
angiography (DSA) as acute cerebral infarction or an ischemic
lesion within the territory of the responsible artery, and
independently reviewed and confirmed by at least two associate
chief physicians of neurology. Patients with transient ischemic
attacks (TIA) or asymptomatic imaging findings of ischemic
lesions were excluded from the symptomatic ICVD group.

The presence or absence of IPN served as a key predictive
feature in this study. To ensure objective and standardized
IPN  was

ultrasound (CEUS) examinations, focusing specifically on the

assessment, evaluated using contrast-enhanced
detection of microbubbles (signal enhancement) within the

carotid plaque, indicative of neovessel formation and
permeability. Definition of IPN Presence: IPN was strictly
classified as a binary variable (present/absent) based on
established CEUS

experienced readers:

criteria  and visual interpretation by

Presence (“Yes”): Defined as the visualized penetration and
accumulation of microbubbles within the carotid plaque
substance during the dynamic contrast phase. This was
confirmed by the observation of discrete, punctate, or linear
enhancement signals originating within the plaque core on
CEUS cine loops, persisting for several seconds. Enhancement
confined solely to the plaque surface, shoulders, or the
adventitia, without clear evidence of intraplaque penetration,
was not classified as IPN presence.

Absence (“No”): Defined as the lack of any detectable microbubbles
within the plaque substance observed throughout the dynamic
CEUS examination. Plaque enhancement, if any, was limited to
the surface or immediately adjacent adventitial tissues without
intraplaque migration.

2.3 Model development

Our study proposes
framework based on an improved Newton-Raphson-based

an adaptive ensemble modeling
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optimizer (INRBO). The framework employs a 0-1 encoding full-
parameter space collaborative optimization strategy to achieve
synchronous optimization of feature selection, base classifier
configuration, and hyperparameter tuning. During data
partitioning, stratified random sampling was applied based on
ICVD”  vs.
symptomatic) to divide the entire dataset into a training set
(N=501) and an independent test set (N=125) at a 4:1 ratio,

ensuring proportional distribution of outcome classes in both

the outcome variable (“symptomatic non-

the original cohort and subsets. During data preprocessing, we
specifically implemented the Synthetic Minority Oversampling
Technique (SMOTE) to address class imbalance in our training
cohort (375 symptomatic ICVD cases vs. 251 non-symptomatic,
60:40 ratio). This technique generated synthetic minority class
through
neighboring cases prior to model optimization. The SMOTE

instances feature space interpolation between

application was exclusively confined to the training set using its
default (k=5) while the
independent test set remained untouched to preserve real-world

k-nearest neighbors parameter
validation integrity.

Addressing the limitations of the traditional Newton-
Raphson optimizer (NRO), specifically its susceptibility to
initial value sensitivity and local convergence constraints (16),
our study enhanced its global search capability through a two-
stage improvement: (1) Parameter Initialization: Tent chaotic
mapping was employed to generate the initial candidate
solution set, improving parameter space coverage. (2) Iterative
Update: A dynamic Gaussian mutation mechanism was
embedded. When fitness stagnated (no improvement over five
consecutive iterations), perturbation was applied to the current
best solution via mutation to escape local optima traps. While
feature engineering can enhance predictive performance, we
prioritized  biological interpretability and translational
applicability, ensuring model parsimony. Thus, our primary
analysis utilized raw clinical features directly extracted from
electronic medical records, intentionally preserving clinical
feature integrity.

During model construction, a hybrid encoding scheme (0-1
feature mask vector+base classifier index code + real-valued
hyperparameter vector) was designed to establish a unified
optimization space. Each generated individual in the INRBO
population specific
selected feature subset (1 for inclusion, 0 for exclusion), type of

encoding represented a configuration:
base learner (selected from a heterogeneous model pool
Machine,

associated

comprising Logistic Regression, Support Vector
AdaBoost, XGBoost, and LightGBM), and
hyperparameter combinations [e.g., regularization coefficient A €
(0.01, 10), maximum tree depth for boosting d € (3, 15),
learning rate n € (0.001, 0.3)]. The algorithm’s fitness evaluation
was driven by the five-fold cross-validated Area Under the
Receiver Operating Characteristic Curve (AUC) on the training
set. The model’s generalization performance was validated using
the independent test set. The final output of the framework
corresponded to the optimized feature-model-hyperparameter
joint configuration. The overall research workflow is depicted
in Figure 1.
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2.4 Evaluation metrics

This study employed multi-dimensional quantitative metrics
to evaluate the model’s classification performance and clinical
utility. Fundamental classification metrics included: Precision
(PRE): Measuring the accuracy of positive predictions.
Sensitivity (SEN - Recall): Assessing the ability to identify
positive-class samples. Specificity (SPE): Reflecting the capacity
to exclude negative-class samples. Accuracy (ACC): Representing
the overall classification correctness. Fl-score: Harmonizing the
trade-off between precision (PRE) and sensitivity (SEN). ROC-
AUC (Area Under the Receiver Operating Characteristic Curve):
Quantifying the model’s discriminative power for potential
sample categories. PR-AUC (Area Under the Precision-Recall
Curve): Evaluating stability specifically for imbalanced datasets.
For assessing clinical application value, Decision Curve Analysis
(DCA) compared the net benefit of model-guided prediction
strategies against baseline intervention scenarios (e.g., intervene-
all or intervene-none) across dynamically varying threshold
probabilities. This validated the model’s effective threshold range
and its generalizability for risk assessment in clinical contexts.

2.5 Feature validation

The scientific validity and clinical plausibility of prognostic
prediction features were rigorously verified through a dual-
dimensional approach combining LASSO regression analysis and
the SHAP (SHapley Additive exPlanations) interpretability model.
First, the LASSO regression algorithm was applied for sparse
modeling of high-dimensional clinical features. Its adaptive
regularization  constraint mechanism effectively  eliminated
redundant variables, screening out key features significantly
associated with symptomatic ICVD patients. This ensured model
parsimony and robustness against overfitting. Subsequently, the
SHAP interpretability framework was used to elucidate the
contribution of selected features at both the global (overall model
behavior) and local (individual prediction) levels. SHAP quantified
the magnitude and direction (positive or negative influence) of
each variable on the patient’s predicted risk score. These results
were then interpreted in light of clinical prior knowledge to verify
the consistency of synergistic or antagonistic interactions among
features. This multi-scale approach ultimately revealed complex
association patterns between key biomarkers and the clinical
endpoint events (symptomatic ICVD), providing transparent visual
explanations of the model’s predictive logic. This enhanced the

interpretability and credibility of the clinical decision support system.

2.6 Decision support system development

Using MATLAB’s App Designer for interactive application
development, we designed and implemented an Intelligent Nursing
Decision Support Platform. The core functional module of this
system is the integrated prognostic prediction model. The platform
provides user interfaces for patient data input, real-time risk
probability calculation, and automatic generation of prediction

frontiersin.org
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FIGURE 1
Flow chart of the study.
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results. Employing a modular design, it supports deployment across
different platforms (e.g., web-based or local servers). Graphical
controls and dynamic visualization of results enhance human-
computer interaction efficiency, providing a reliable technical
foundation for precise decision-making in clinical practice.

2.7 Statistical analysis

All data were imported into the SPSS 26.0 statistical analysis
platform for standardized processing: Continuous variables
conforming to a normal distribution were presented as
mean * standard deviation. Categorical variables were presented
as percentages. Differences in continuous variables between two
groups were analyzed using the independent samples ¢-test.
Associations between categorical variables across groups were
analyzed using the Chi-square test. A two-sided p-value <0.05
was considered statistically significant.

3 Results

3.1 Baseline characteristics of different
datasets

A total of 626 patients were included in our study. Among
them, 375 patients (59.90%) experienced symptomatic ICVD.

Frontiers in Cardiovascular Medicine

The clinical characteristics of patients in the training set
(N=501) and the test set (N=125) are compared below
(Table 1). The results demonstrate no statistically significant
differences (p>0.05) in any of the clinical characteristics
between the two datasets.

3.2 Algorithm performance comparison

To verify the optimization capability of the improved INRBO
algorithm, our study conducted comparative tests against the
original NRBO, Whale Optimization Algorithm (WOA), Grey
Wolf Optimizer (GWO), Particle Swarm Optimization (PSO),
Genetic Algorithm (GA), GA-PSO hybrid algorithm, and GA-
Ant Colony Optimization (ACO) hybrid algorithm. The
experiments utilized all 12 benchmark functions from the
CEC2022 test suite. All testing functions were configured with a
variable dimension of 10, a population size of 30, and a
of 500. Each
independently run 30 times to ensure statistical reliability. Based

maximum iteration count algorithm  was
on the 30 independent run outcomes, box plots were generated
to assess the optimization stability of each algorithm. The results
that INRBO
counterparts in the vast majority of the test functions,
showcasing significantly superior stability compared to the

NRBO and the

demonstrated consistently outperformed its

original other benchmarked algorithms
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TABLE 1 Comparison of clinical characteristics between training Set and test Set.

Characteristic Training set Statistics p-value
(n=501)
Male, n (%) 290 (57.88%) 77 (61.60%) 0.569 0.450
Age (years, Mean + SD) 69.93 +9.61 71.42 +10.58 1.519 0.129
BMI (kg/mz, Mean + SD) 26.54+4.24 27.19+5.31 1.453 0.147
Hypertension [Yes, n (%)] 364 (72.65%) 93 (74.40%) 0.155 0.694
Hyperlipidemia [Yes, n (%)] 297 (59.28%) 71 (56.80%) 0.254 0.614
Diabetes [Yes, n (%)] 160 (31.94%) 46 (36.80%) 1.072 0.301
Smoking [Yes, n (%)] 385 (76.85%) 101 (80.80%) 0.901 0.343
Alcohol use [Yes, n (%)] 311 (62.08%) 71 (56.80%) 1.171 0.279
TC (mmol/L, Mean + SD) 4.69 £ 0.64 4.80 £ 0.57 1.756 0.08
TG (mmol/L, Mean + SD) 1.95+0.34 1.98£0.3 0.903 0.367
HDL-C (mmol/L, Mean + SD) 1.26 £ 0.31 1.25+0.29 0.327 0.744
LDL-C (mmol/L, Mean + SD) 2.65+0.38 2.72+0.40 1.823 0.069
Fasting blood glucose (mmol/L, Mean + SD) 5.52+0.55 5.47 +£0.48 0.932 0.352
C-reactive protein (mg/L, Mean + SD) 8.37+1.08 8.43+1.03 0.561 0.575
Bilateral mean carotid intima-media thickness (mm, Mean + SD) 1.12+0.35 1.18 £0.40 1.665 0.097
Ulcerative plaque [Yes, n (%)] 261 (52.10%) 58 (46.40%) 1.299 0.254
Low echogenicity [Yes, n (%)] 275 (54.89%) 66 (52.80%) 0.176 0.675
Intraplaque neovascularization [Yes, n (%)] 305 (60.88%) 80 (64.00%) 0.412 0.521
Plaque thickness [n (%)]
<4 mm 291 (58.08%) 67 (53.60%) 0.821 0.365
>4 mm 210 (41.92%) 58 (46.40%)
Plaque number [n (%)]
Single 315 (62.87%) 73 (58.40%) 0.85 0.357
Multiple 186 (37.13%) 52 (41.60%)
Stenosis Degree [n (%)]
<70% 309 (61.68%) 73 (58.40%) 0.452 0.502
>70% 192 (38.32%) 52 (41.60%)
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(Figure 2). Furthermore, convergence curve analysis indicated that
INRBO achieved faster convergence speeds and exhibited the
lowest risk of becoming trapped in local optima during the
iterative process (Figure 3). These experimental findings
conclusively substantiate the significant advantages of the
INRBO algorithm in terms of global optimization performance

and convergence efficiency.

3.3 Model training results and key factor
identification

Based on the feature screening results from the improved
(INRBO-AutoML),
five core variables predictive of symptomatic ICVD were ultimately
identified: Stenosis Severity, Ulcerative Plaque, Plaque Number,

automatic machine learning framework

Intraplaque Neovascularization, and Age. Employing a multi-

objective framework  (balancing  predictive
performance with clinical interpretability), the model automatically

selected LightGBM as the optimal base learner. Comparative

optimization

experimental results validated through cross-validation against six
of
Regression, Random Forest) and traditional ensemble models
(AdaBoost, XGBoost, LightGBM) demonstrated that INRBO-
AutoML achieved significantly superior performance: It attained an
F1-Score of 0.9045. Its ROC-AUC and PR-AUC significantly
increased to 0.9537 and 0.9522, respectively. Detailed results are
presented in Table 2 and Figure 4.

groups traditional machine learning models (Logistic

10.3389/fcvm.2025.1648352

3.4 Predictive performance on the test set

Results on the independent test set confirmed the outstanding
predictive capability of the AutoML model: It achieved an F1-Score
of 0.9333, ROC-AUC of 0.9343, and PR-AUC of 0.9104. This
strong performance validated its excellent generalization ability.
Detailed metrics are listed in Table 3 and visualized in Figure 5.

3.5 Clinical application value analysis

Decision Curve Analysis (DCA) evaluating the net clinical
benefit for predicting symptomatic ICVD risk across different
threshold probabilities is shown in Figure 6. DCA curves for the
test set clearly demonstrate that utilizing the AutoML model for
predicting symptomatic ICVD risk results in a greater net
clinical benefit compared to traditional baseline strategies
(intervening on all or no patients). This finding underscores the
model’s significant clinical utility in identifying high-risk
patients for targeted intervention.

3.6 Feature validation results

3.6.1 LASSO analysis

LASSO regression analysis (Figure 7) was employed for feature
selection, providing independent validation of the effectiveness of
the features selected by the AutoML model. LASSO identified
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TABLE 2 Performance of models on the training set (cross-validation).

10.3389/fcvm.2025.1648352

Models PRE SEN SPE ACC F1 ROC-AUC PR-AUC
LR 0.7000 0.7831 0.5194 0.6747 0.7392 0.6764 0.7159
SVM 0.6909 0.9017 0.4223 0.7046 0.7824 0.7962 0.8553
Adaboost 0.7514 0.8915 0.5777 0.7625 0.8155 0.8245 0.8543
XGBoost 0.8054 0.8136 0.7184 0.7745 0.8094 0.8317 0.8748
LightGBM 0.7871 0.9525 0.6311 0.8204 0.8620 0.9225 0.9313
AutoML 0.8529 0.9627 0.7621 0.8802 0.9045 0.9537 0.9522
A B Precision-Recall Curve
1 1 1F 1
09r 4
0.8 1 08} .
Q 0.7F 1
€ 06
= g 06f 1
> o
E=) 05t 1
8 8
o 04T T S04t -
2
= 03} .
02} N ———LR-AUC=0.67644 J ——— LR (PR-AUC = 0.7159)
i —— SVM-AUC=0.79622 0.2 F|——svM (PR-AUC = 0.8553) T
7 Adaboost-AUC=0.8245 Adaboost(PR-AUC = 0.8543)
~——— XGBoost-AUC=0.83169 0.1 | |——— XGBoost (PR-AUC = 0.8748) T
of —— LightGBM-AUC=0.92251 | —— LightGBM (PR-AUC = 0.9313)
AutoML-AUC=0.95369 or AutoML (PR-AUC = 0.9522) ]
0 0.2 0.4 0.6 0.8 1 0 02 0.4 0.6 0.8 1
False Positive Rate Recall

FIGURE 4

Performance comparison of training set cross-validation. (A) ROC curves of the training set; (B) Precision-Recall (PR) curves of the training set.

TABLE 3 Model performance on the test set.

Models PRE SEN SPE ACC F1 ROC-AUC PR-AUC
LR 0.6790 0.7143 0.4583 0.6160 0.6962 0.6347 0.7132
SVM 0.6800 0.8831 0.3333 0.6720 0.7684 0.7660 0.8479
Adaboost 0.7701 0.8701 0.5833 0.7600 0.8171 0.8266 0.8706
XGBoost 0.7867 0.7662 0.6667 0.7280 0.7763 0.7882 0.8594
LightGBM 0.8111 0.9481 0.6458 0.8320 0.8743 0.8961 0.8898
AutoML 0.8750 1.0000 0.7708 0.9120 0.9333 0.9343 0.9104

variables within one standard error of the minimum mean
squared error (LambdalSE) in its sparse model. It selected seven
key features: Stenosis Severity, Ulcerative Plaque, Plaque
Number, Intraplaque Neovascularization, Hypoechoic Plaque,
Age, and Diabetes Status. The overlap rate between the LASSO-
selected features and those identified by AutoML was 85.71%
(6 out of 7 features), confirming the robustness of the AutoML

feature selection.

3.6.2 SHAP analysis

Based on the results of the SHAP analysis (Figure 8): The
ranked feature importance (from highest to lowest contribution
to the model’s prediction of symptomatic ICVD risk) is: (1)

Frontiers in Cardiovascular Medicine

Stenosis Severity; (2) Ulcerative Plaque; (3) Plaque Number; (4)
Intraplaque Neovascularization; (5) Age; (6) Diabetes Status.
SHAP provides both global insights into overall feature
importance (Figure 8B) and local explainability for individual
predictions (Figure 8A).

3.7 Decision support system development
(demonstration)

The operational workflow of the developed visualization

system is demonstrated in Figure 9. During clinical application:
Users simply input the specific values for the required features
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in the “Feature Input” panel. The system then automatically
predicted risk of
symptomatic ICVD. This provides clinicians with immediate,

calculates and outputs the patient’s
model-driven risk assessment to support decision-making.

To elucidate the interpretability mechanism of SHAP for
individual patient predictions in detail, this study selects a high-
risk sample (Patient ID: P-135) for local interpretation. The
patient is a 68-year-old male with clinical characteristics
including severe carotid artery stenosis (80%), presence of
ulcerated  plaque, multiple (=3),

plaques intraplaque

Frontiers in Cardiovascular Medicine

neovascularization (IPN), and confirmed diabetes. The model
high probability of
cerebrovascular events at 0.92. SHAP attribution analysis reveals

predicts a symptomatic  ischemic
that ulcerated plaque is the most significant risk driver for this
patient (SHAP value +0.38), followed by severe stenosis (+0.35),
while the presence of IPN and multiple plaques contribute +0.22
and +0.19 to risk elevation, respectively. Notably, the patient’s
age of 68 years is below the training set mean age (72.3 years),
resulting in a slight protective effect (SHAP value —0.11). From
the decision path perspective, the model’s base prediction value
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LASSO regression analysis results. (A) Variable selection paths (trajectory) plot; (B) Cross-validation curve for tuning parameter (lambda) selection.
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Machine learning interpretability analysis using SHAP. (A) SHAP summary plot (Bee-swarm plot visualizing feature contribution per sample); (B) SHAP

B Shapley Importance Plot

Degree of Stenosis
Ulcerated Plaque

Number of Plaques

Predictor

Age

Intraplaque Neovascularization

Diabetes Mellitus Status

ymptomatic
I Symptomatic

0 2 4 6 8 10 12 14
Mean of Absolute Shapley Values

(i.e., the predicted probability with all features at mean values) is
0.32. Driven strongly by ulcerated plaque and severe stenosis, the
risk probability increases substantially. The compounding effects
of IPN and multiple plaques further reinforce the high-risk
propensity, culminating in a final high-risk determination of
0.92. This outcome is highly consistent with clinical consensus,
of ulcer

hemodynamic impairment as core risk factors.

confirming the importance morphology and

4 Discussion

Our study presents an in-depth analysis of a novel risk
prediction system for symptomatic ischemic cerebrovascular
disease (ICVD) based on an improved machine learning model.
The findings unequivocally demonstrate that our developed
INRBO-AutoML
breakthrough in prediction efficacy. Its core value lies in the

algorithm model achieves a significant

Frontiers in Cardiovascular Medicine

successful integration of contrast-enhanced ultrasound (CEUS)

evaluated intraplaque  neovascularization features  with
multidimensional clinical parameters. Validation on the
independent test set revealed the model’s exceptional

generalization capability, achieving an Fl-score of 0.9333, a
ROC-AUC (Area Under the Receiver Operating Characteristic
Curve) of 0.9343, and a PR-AUC (Area Under the Precision-
Recall Curve)
performance leap of 22.8% to 29.96% compared to traditional
models like Support Vector Machine (SVM, ROC-AUC = 0.766)
and Logistic Regression (LR, ROC-AUC =0.6347). While the
model achieved a sensitivity of 100%, theoretically enabling the

of 0.9104. Particularly noteworthy is the

precise identification of all high-risk patients, it is crucial to
acknowledge that no model can achieve completely perfect
prediction.  This
attributable to the current sample size, necessitating future
studies with larger cohorts for further validation. Decision
Curve Analysis (DCA) further substantiated that applying this

potential limitation might be partially
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FIGURE 9

Clinical decision support system demonstration. Created using MATLAB App Designer.

model within a specific risk threshold range can lead to a higher
net clinical benefit rate compared to conventional strategies.
This distinct advantage stems from the model’s exceptional
capability in successfully integrating complex imaging features—
including stenosis severity, ulcerative plaque, and intraplaque
neovascularization—as core predictive factors.

Compared with previous research, our work achieves dual
breakthroughs. Methodologically, traditional prediction models
often rely on single-algorithm architectures, as exemplified by
the commonly used Logistic Regression in the Amani study
(17), which faces significant limitations in handling high-
dimensional heterogeneous data. By introducing the innovative
(INRBO),
effectively overcame critical issues such as gradient explosion
sensitivity. Key

Improved Newton-Raphson-based Optimizer we

and initial value technical innovations
manifested in the application of Tent chaotic mapping to
enhance parameter space coverage and the dynamic Gaussian
mutation mechanism to accelerate convergence speed. On the
application level, early studies like the Sheng trial primarily
focused on clinical variables largely overlooking critical image
features (18). Our research, however, pioneered the deep

integration of intraplaque neovascularization subtypes assessed
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via contrast-enhanced ultrasound with established clinical

characteristics. This novel paradigm of multi-source data
integration  successfully  elucidates complex non-linear
associations not previously discovered: LASSO regression

identified six core features (including stenosis severity), with an
85.71% the AutoML
Furthermore, SHAP interpretability analysis revealed stenosis

overlap rate relative to selection.

severity as the primary factor in prediction (highest importance
This
phenomenon provides a crucial theoretical basis for personalized

ranking). observation of a graded risk escalation
intervention strategies.

The established relevance of the screened factors to
symptomatic ICVD occurrence stands as a core discovery of
this study. Dual-dimensional validation—through LASSO
regression and SHAP interpretability analysis—confirmed the
significance of six key predictors: Stenosis Severity, Ulcerative
Plaque, Plaque Number, Intraplaque Neovascularization
(IPN), Age, and Diabetes Status. These demonstrate well-
documented pathophysiological links to disease risk: Stenosis
Severity, identified as the primary predictor (SHAP rank #1),
primarily stems from hemodynamic alterations (19). Elevated

stenosis induces abnormal shear stress that not only activates
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platelet aggregation pathways leading to thrombus formation
but also increases mechanical strain on the fibrous cap. This
biomechanical stress potentiates plaque disruption, releasing
fragments or thrombi that cause cerebral embolism via distal
occlusion. While hypoperfusion remains another important
consequence of severe stenosis affecting watershed territories,
its contribution to overall stroke risk may be comparatively
smaller in populations principally characterized by embolic
mechanisms. Ulcerative Plaque and Plaque Number are
recognized indicators of morphological instability. While
ulceration triggers local inflammation through lipid core
exposure, multiple plaque presence signifies systemic
atherosclerotic burden that contributes to instability through
distinct mechanisms (20). Specifically, plaque multiplicity
reflects widespread endothelial dysfunction and vascular
This

amplifies shear stress vulnerability across arterial segments,

inflammation, creating a pro-thrombotic milieu.
while elevating circulating inflammatory
mediators (e.g., IL-6, CRP) that degrade fibrous caps through

matrix metalloproteinase activation. Consequently, patients

simultaneously

with multiple plaques exhibit substantially higher cumulative

rupture risks compared to single-plaque counterparts-a

phenomenon consistently demonstrated in longitudinal
studies (21). The association of IPN is particularly prominent.
Elevated IPN grades linked VEGF

overexpression and MMP-9 secretion, causing fibrous cap

are directly to
degradation and accelerating plaque rupture (22). Prospective
studies indicate that IPN is not only an independent predictor
of ICVD recurrence but also correlates with systemic vascular
events, highlighting its pan-vascular pathologic significance
(23). Age, an immutable demographic factor, exhibits a non-
linear risk surge in SHAP analysis attributed to multiple
mechanisms including reduced vascular elasticity, impaired
endothelial
vasomotor reactivity—with the latter compromising cerebral
blood flow

hypoperfusion-related stroke risk (24). Diabetes status, a

repair capacity, and diminished cerebral

autoregulation and independently elevating

traditional metabolic factor, exerts its influence through
endothelial
dysfunction induced by hyperglycemia, cooperatively driving

mechanisms involving oxidative stress and
the progression of atherosclerosis (25). The clinical relevance
of these factors is corroborated by the SHAP model’s global
interpretation. Furthermore, the 85.71% feature selection
overlap rate achieved by LASSO regression demonstrates the
robustness of the chosen feature set. Overall, the selected
factors span imaging and epidemiological dimensions,
forming a multi-level risk amplifier: stenosis severity provides
the IPN

molecular-level disruption, and metabolic diseases exacerbate

hemodynamic mechanical basis, intensifies

systemic inflammation. Through these complex non-linear
interactions, they collectively drive ICVD events, thereby
providing a scientific foundation for targeted clinical
interventions. This synergistic risk amplification framework
helps contextualize the null predictive value observed for
(CIMT) in our

establish CIMT’s

bilateral carotid intima-media thickness

cohort: while population-based studies
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utility in primary prevention (26), its significance diminishes
in established atherosclerosis where vulnerability mechanisms
The effect
and diminished discriminatory capacity relative to active

dominate. plateau in vascular remodeling

processes like intraplaque neovascularization explains why

comprehensive  plaque multiple
synergistic pathways to outperform isolated structural metrics
ICVD prediction.

validation should explore CIMT’s potential early-window

morphology integrates

in symptomatic Future multi-center
utility before advanced plaque formation.

Despite the achievements, the study has limitations requiring
acknowledgment: Its single-center retrospective design (n = 626)
results in insufficient external validation scope, particularly
regarding regional specificity. Technically, the decision system’s
reliance on MATLAB hinders widespread adoption, especially
in primary care settings. While IPN assessment employed a
the

microbubble perfusion parameters might limit the depth of

standardized grading system, lack of quantitative

biological ~mechanism interpretation. = Methodologically,

variations in input feature sets—particularly concerning data
preprocessing choices such as feature scaling methods, missing
value imputation strategies, or inclusion criteria for
ultrasound-derived  parameters—can
AutoML model

characteristics.

significantly ~ impact
architecture generation and performance
Future work

should prioritize three key

directions: Establishing a multi-center prospective cohort
(target sample size >3,000 patients), incorporating optical
(OCT)

quantification accuracy. Developing an advanced learning

coherence  tomography for enhanced plaque
framework based on the Transformer architecture to enable
cross-center data collaboration and dynamic analysis of CEUS
sequences. real-time risk alert

Constructing a platform

integrated with electronic medical record systems, and
conducting cost-effectiveness analyses under different risk
stratification scenarios using the validated model.

In summary, the ICVD prediction model established in our
study represents an effective integration of radiomics, machine
learning, and clinical decision-making. Its core value extends
beyond outperforming traditional models in predictive efficacy.
More importantly, it pioneers an interpretable, user-friendly,
and highly effective precision risk assessment paradigm, thereby
providing a novel approach for individualized prevention and

management of cerebrovascular disease.
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