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Myocardial scarring is a hallmark of hypertrophic cardiomyopathy (HCM) and a 

major driver of adverse outcomes, including sudden cardiac death and heart 

failure progression. The fibrotic substrate in HCM is complex, encompassing 

both replacement and interstitial fibrosis, often accompanied by myocardial 

disarray. Advanced cardiovascular imaging enables detailed scar 

characterization, which is crucial for risk stratification and personalized 

management. Cardiovascular magnetic resonance (CMR) is the gold standard 

for non-invasive fibrosis assessment. Techniques such as late gadolinium 

enhancement, myocardial mapping of T1 and T2 relaxation properties, and 

diffusion tensor imaging provide complementary insights into scar burden 

and architecture. Cardiac computed tomography (CT) is an emerging 

modality with increasing clinical relevance. Delayed iodine enhancement and 

CT-derived extracellular volume mapping offer a valuable alternative for scar 

assessment, particularly when CMR is contraindicated. This review highlights 

the role of multimodality imaging in assessing myocardial scar in HCM, with a 

focus on CMR and CT, and explores their clinical implications.
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Myocardial scarring in hypertrophic 
cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is a prevalent inherited myocardial disease, 

affecting approximately 1 in 500 individuals in the general population (1, 2). It is 

characterized by left ventricular (LV) hypertrophy that occurs in the absence of systemic or 

cardiac conditions capable of inducing hemodynamic overload (3, 4). The hypertrophic 

myocardium in HCM exhibits a wide spectrum of structural alterations, both at the 

macroscopic and microscopic levels (5). In at least one-third of the myocardium, 

cardiomyocytes are hypertrophic and disorganized, displaying structural abnormalities in 

both shape and alignment, which is a phenomenon collectively referred to as myocardial 
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disarray. While most pronounced in hypertrophic segments, disarray 

may also affect regions with normal wall thickness (5). The 

extracellular matrix in HCM is typically expanded and rich in 

glycogen, with widespread interstitial fibrosis that, in advanced 

stages, can lead to fibrotic replacement and the formation of 

myocardial scars (6). Additionally, microvascular abnormalities are 

a frequent histological finding, including medial hypertrophy, 

disorganized elastic fibres, and endothelial hyperplasia of the 

intramyocardial coronary arteries. These changes contribute to 

vessel wall thickening and luminal narrowing, leading to 

microvascular dysfunction and impaired perfusion reserve. 

The downstream consequences are myocardial ischemia, myocyte 

necrosis, and replacement fibrosis (6–9). The combination 

of myocyte disarray, extracellular matrix expansion, and 

microvascular dysfunction results in complex structural 

remodelling, with fibrosis -either interstitial or replacement- 

representing a pathological hallmark of the disease.

Myocardial scarring has been implicated in the most threatening 

outcomes of HCM, namely sudden cardiac death (SCD) and adverse 

LV remodelling (10). SCD is one of the most unpredictable and 

devastating complication of HCM, and it may be the initial 

manifestation of the disease. It occurs at an estimated annual 

incidence of 0.7% in unselected HCM cohorts (11) and 

disproportionately affects younger individuals, with a cumulative 

5-year risk of approximately 8%–10% in paediatric patients (12). 

Ventricular arrhythmias, particularly ventricular tachycardia (VT) 

and fibrillation (VF) are the primary mechanisms underlying SCD 

(13), and myocardial scarring serves as a critical substrate for re- 

entrant circuits (14). Re-entry arrhythmias require the presence of 

a conduction barrier (anatomical or functional), two pathways with 

differing conduction velocities, a unidirectional block, and 

sufficient excitable myocardium. When these conditions are 

satisfied, electrical impulses may circulate continuously along a 

slow conduction pathway, reactivating previously recovered 

myocardium and leading to sustained VT (15). Dense fibrotic 

regions and anatomical structures act as non-conductive barriers, 

while myocardial disarray and interstitial fibrosis create a non- 

uniform conduction environment that promotes anisotropy and 

slowed conduction (16–18). Localized ischemia due to 

microvascular dysfunction contributes to electrical instability by 

creating zones of partial depolarization and further slowing of 

conduction, fostering arrhythmogenesis (18–21).

Adverse LV remodelling is another major disease progression 

pattern, occurring in approximately 15%–20% of HCM patients 

(22–24). It is defined by the superimposition of unfavourable 

structural changes upon the classic HCM phenotype (22). These 

changes include reduced LV ejection fraction (25), wall thinning 

(26), moderate-to-severe diastolic dysfunction (27, 28), marked left 

atrial enlargement (29), significant microvascular dysfunction (30), 

new-onset atrial fibrillation (31), spontaneous resolution of LV 

out;ow tract obstruction (26, 32), and formation of LV apical 

aneurysms (33). Each of these features has been individually 

associated with poor outcomes in HCM cohorts. From a 

pathophysiological standpoint, adverse remodelling appears to 

result from a combination of chronic microvascular ischemia, 

cellular energy depletion, and myocyte apoptosis, ultimately 

leading to progressive myocyte loss and fibrotic replacement (24, 

30, 34–38). The clinical manifestations of remodelling vary 

considerably, ranging from mild functional impairment to 

advanced heart failure (HF). End-stage HCM, the most extreme 

form, develops in approximately 5% of patients and is 

characterized by extensive fibrosis with either a hypokinetic-dilated 

phenotype, when systolic dysfunction predominates, or a 

hypokinetic-restrictive phenotype, marked by a small, stiff LV and 

severe diastolic impairment (4, 6, 25, 26, 35).

Together, SCD and HF, alongside thromboembolic 

complications, constitute the principal contributors to HCM- 

related mortality (25). Importantly, these outcomes are directly 

or indirectly related to the development of myocardial scar, 

which is a central prognostic marker. Consequently, the 

assessment of myocardial fibrosis has gained increasing 

importance in risk stratification and disease management.

Advances in cardiovascular imaging have greatly enhanced our 

ability to noninvasively characterize myocardial fibrosis in HCM. 

A multimodality approach including cardiovascular magnetic 

resonance (CMR) and cardiac computed tomography (CT) allows 

for comprehensive assessment of the extent, distribution, and 

nature of myocardial scarring, thereby informing prevention 

strategies and individualized risk stratification.

Cardiovascular magnetic resonance

CMR is the gold-standard non-invasive imaging modality for 

the assessment of myocardial scar (39, 40). Owing to its excellent 

spatial resolution and superior tissue contrast, CMR enables 

comprehensive characterization of both replacement and 

interstitial fibrosis. In recent years, significant technological 

advancements have expanded the capabilities of CMR, allowing 

for an even more detailed evaluation of myocardial scarring and 

its prognostic implications.

This section will explore the main CMR techniques employed 

for scar characterization in HCM, outlining their technical 

principles, summarizing the current evidence in the literature, 

and discussing their clinical relevance.

Late gadolinium enhancement

Late gadolinium enhancement (LGE) is the most established 

CMR technique for detecting replacement myocardial fibrosis 

(39). It involves the administration of a paramagnetic 

extracellular contrast agent (gadolinium), followed by the 

acquisition of T1-weighted images approximately 10–20 min 

after injection. This technique exploits the different kinetics of 

gadolinium distribution in healthy myocardium vs. scar tissue. 

Gadolinium accumulates in regions with expanded extracellular 

space due to necrosis or fibrosis, appearing as hyperintense 

areas on late-phase imaging, with signal intensity varying 

according to scar architecture (39).

LGE can be evaluated both qualitatively and quantitatively 

relative to total myocardial mass (39). Early investigations of 
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LGE as a prognostic marker in HCM focused on total scar 

burden, which emerged as a strong predictor of SCD, adverse 

remodelling, and HF hospitalizations in several prospective 

unselected cohorts (16, 41–47). The largest study to date 

assessing the role of LGE in predicting SCD in HCM showed a 

significant increase in SCD events among patients with a high 

scar burden (≥15% of total myocardial mass), whereas no 

meaningful increase in SCD risk was observed in those with 

minimal LGE (1%–5%) compared to patients without detectable 

scar (16). Based on these findings, the American College of 

Cardiology and American Heart Association (ACC/AHA) 

included a scar burden threshold of 15% as a risk factor to be 

considered, particularly in patients lacking conventional clinical 

risk factors or when ICD implantation is uncertain (2). 

However, the use of scar burden alone has limited sensitivity, as 

numerous adverse events have been documented in patients 

with LGE ≤15% (7, 44, 45).

In HCM, LGE patterns demonstrate substantial heterogeneity 

in their extent, intensity, and distribution (48). A large prospective 

registry provided novel insights into this variability, showing 

that distinct LGE patterns are closely associated with specific 

morphological subtypes and sarcomere mutation status (49). 

This heterogeneity re;ects the complex histopathological nature 

of HCM fibrosis, which differs from post-ischemic scars by 

comprising diffuse fibrosis interspersed with viable myocytes, 

rather than dense, localized subendocardial fibrosis within a 

specific coronary territory (7, 50–52). Such structural complexity 

creates a highly arrhythmogenic substrate, ideal for rapid-rate 

re-entrant VTs (15). These arrhythmias may progress to 

polymorphic VT or VF, driven by the distinct properties of 

the HCM myocardium—marked by sarcomeric disarray and 

heterogeneous, anisotropic conduction (53). CMR studies 

have demonstrated that areas of mild-to-intermediate LGE 

enhancement are more strongly associated with ventricular 

arrhythmias than intensely enhanced regions (54, 55). Moreover, 

in low- and intermediate-risk HCM patients, quantitative 

assessment of LGE heterogeneity (such as signal dispersion) has 

been shown to independently predict major arrhythmic events, 

even beyond total scar burden (48).

These findings support the notion that a qualitative evaluation 

of scar architecture, particularly LGE signal heterogeneity, may 

offer deeper insights into arrhythmic risk. However, 

conventional 2D LGE imaging has limitations in capturing the 

full complexity of the three-dimensional scar structure (48). To 

address this, advanced post-processing software have been 

developed to improve scar characterization (56, 57). These tools 

segment signal intensity at the pixel level to differentiate dense 

core fibrosis from diffuse border zone (BZ) fibrosis and 

reconstruct the data into 3D images (Figure 1). They identify 

corridors of BZ tissue surrounded by dense scars or anatomical 

barriers, which connect regions of viable myocardium, referred 

to as border zone channels (BZCs) (56). Functionally, BZCs 

represent slow-conducting pathways composed of excitable 

myocardium insulated by non-conductive fibrotic tissue 

serving as substrates for re-entrant VTs (56, 58). Recent CMR 

data demonstrated that the presence of BZCs is a strong 

independent predictor of ICD interventions for VT/VF in high- 

risk HCM patients (59).

Myocardial mapping

Tissue characterization through myocardial mapping is a 

relatively recent advancement in CMR. By applying specific 

imaging sequences, this technique enables quantitative 

measurement of the longitudinal (T1) and transverse (T2 or 

FIGURE 1 

The figure shows a short-axis view of a CMR of a patient with HCM, highlighting an extensive scar involving the interventricular septum. LGE-CMR 

images were post-processed using ADAS 3D (Galgo Medical, Barcelona, Spain), creating nine concentric surface layers spanning from the 

endocardium to the epicardium of the left ventricular wall thickness, resulting in a 3D shell for each layer. Color-coded pixel signal intensity (PSI) 

maps were projected onto each shell. Hyper-enhanced areas were classified as the core zone, borderline zone (BZ), or healthy tissue using 

thresholds of 40 ± 5% and 60 ± 5% of the maximum PSI. The scar-dense core is coded in red, BZ is coded in orange and white, and healthy 

myocardium is coded in blue.
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T2*) relaxation times of each myocardial voxel (60). These 

values are then visually represented as color-coded parametric 

maps. This allows the detection of microstructural and 

biochemical myocardial tissue properties that are invisible to 

the naked eye, including the quantification of extracellular 

volume (ECV) (60). Both in vivo and in vitro studies have 

shown that ECV and T1 mapping are reliable surrogate markers 

of diffuse myocardial fibrosis, re;ecting extracellular space 

expansion due to interstitial collagen deposition (61). By 

contrast, T2 mapping is a marker of myocardial oedema and 

in;ammation (62).

A recent study in a large cohort of HCM patients demonstrated 

that interstitial fibrosis assessed via ECV and native T1 values was 

independently associated with cardiac death and provided 

incremental prognostic value beyond traditional clinical risk 

markers (63). Additional studies have further confirmed the 

adverse prognostic impact of interstitial fibrosis, linking it to 

unfavourable clinical features such as adverse remodelling (64), left 

ventricular diastolic dysfunction (65), and ventricular arrhythmias 

(66). Notably, interstitial fibrosis detected by T1 mapping and ECV 

is often present in myocardial segments without LGE and retains 

significant independent prognostic value (67). These findings 

suggest that interstitial fibrosis plays a central and independent role 

in the prognosis of patients with HCM.

A recent single-centre observational study in a large cohort of 

patients demonstrated that cardiovascular death or appropriate 

implantable cardioverter-defibrillator therapies occurred more 

frequently in individuals with elevated myocardial T2 values. 

These findings suggest a role of myocardial oedema in the 

pathophysiology of major adverse events and highlight T2 

mapping as an additional parameter with potential value for 

prognostic stratification in HCM (68).

As such, mapping techniques have provided deeper insights into 

the role of interstitial fibrosis in HCM, particularly enhancing risk 

stratification in patients without LGE, traditionally considered low- 

risk (64, 69) However, combining mapping with LGE assessment 

has proven more effective than using either method separately, 

supporting the idea that LGE and mapping provide distinct but 

complementary information for a comprehensive evaluation of 

myocardial scar architecture (70).

Finally, a key advantage of tissue characterization by mapping 

is the ability to detect myocardial fibrosis sensitively without the 

need for contrast administration. Malek et al. demonstrated that 

automated machine learning models based on native (pre- 

contrast) T1 mapping can accurately identify myocardial fibrosis 

and closely align with LGE in HCM patients (71).

Perfusion CMR

First-pass perfusion CMR during vasodilator stress is a well- 

established technique for detecting myocardial ischemia due to 

either obstructive epicardial coronary artery disease or 

microvascular dysfunction (72). Images are acquired during the first 

pass of an intravenous gadolinium bolus under pharmacological 

stress (most commonly adenosine or regadenoson). Perfusion can 

be evaluated qualitatively by visual inspection or quantitatively 

through the calculation of absolute myocardial blood ;ow (MBF, 

ml/min/g) and myocardial perfusion reserve (MPR, stress-to-rest 

MBF ratio) (73).

In HCM, microvascular dysfunction typically manifests as 

subendocardial perfusion defects with a near-circumferential 

distribution, often extending beyond a single coronary territory, and 

is associated with reduced MBF and MPR (74, 75). Several studies 

have demonstrated that inducible ischemia identified by CMR 

perfusion, whether assessed qualitatively or quantitatively, correlates 

with a greater burden of LGE, underscoring the central role of 

microvascular dysfunction in the development of replacement 

fibrosis (47, 76, 77). Furthermore, perfusion abnormalities have 

been associated with adverse clinical features, including ventricular 

arrhythmias and the formation of apical aneurysms, even 

independently of the overall fibrosis burden (76–79).

Diffusion tensor CMR

Diffusion Tensor Imaging (DTI) is an advanced CMR technique 

that enables visualization of myocardial microstructure by mapping 

the three-dimensional diffusion of water molecules within the 

myocardium (80). By calculating fractional anisotropy (FA), 

cardiac DTI quantifies the directional variability of water diffusion: 

FA values approaching zero re;ect isotropic diffusion (random, 

unrestricted movement), while values closer to one represent 

anisotropic diffusion (preferential movement along a single 

direction). Consequently, high FA values are observed in 

voxels with coherently aligned myocytes, whereas low FA values 

indicate disorganized or misaligned fibres due to myocardial 

disarray (18, 81).

DTI is currently the only non-invasive imaging modality 

capable of identifying myocardial disarray, thus offering 

significant diagnostic and prognostic potential in HCM (82–86). 

A recent study demonstrated that myocardial disarray detected 

via cardiac DTI independently correlates with ventricular 

arrhythmic risk, regardless of the degree of fibrosis or 

hypertrophy, suggesting a direct pro-arrhythmic role (18).

In addition, diffusion-weighted imaging (DWI), a simplified 

precursor of DTI, has emerged as a feasible alternative to native 

T1 mapping and ECV for the identification of interstitial fibrosis 

in HCM. A recent study demonstrated that the mean apparent 

diffusion coefficient (ADC) measured by DWI can identify areas 

of LGE with sensitivity and specificity comparable to that of T1 

mapping and ECV quantification (87).

Despite its potential, DTI is still constrained by major 

technical challenges. Image acquisition is highly vulnerable to 

motion artifacts and requires complex, non-standardized 

protocols, while signal-to-noise ratio and reproducibility across 

vendors remain suboptimal (88, 89). Furthermore, the lack of 

universally accepted reference values for DTI-derived metrics, 

such as fractional anisotropy, limits clinical interpretation (90). 

As a result, DTI remains largely confined to research settings, 

and significant methodological refinements are needed before its 

integration into routine risk stratification in HCM.
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Radiomics

Radiomics is an emerging field in cardiovascular imaging that 

focuses on the extraction and analysis of high-dimensional 

quantitative features from medical images, effectively transforming 

visual data into mineable information (91, 92). The core principle 

of radiomics is that biomedical images contain a wealth of 

information that remains invisible to the human eye and is not 

captured through traditional qualitative interpretation (93). 

Radiomics seeks to uncover these hidden insights and derive novel 

biomarkers to improve diagnostic and prognostic accuracy, while 

reducing observer bias and subjectivity (94). Technically, radiomic 

analysis consists of several interdependent steps: image acquisition, 

raw data reconstruction, image pre-processing, segmentation, 

feature extraction, feature selection, and predictive model 

construction (95).

As previously discussed, scar heterogeneity in HCM is a 

critical prognostic factor that goes beyond simple quantitative 

assessment. Visual evaluation of scar heterogeneity, however, is 

often challenging and subject to considerable interobserver 

variability. Radiomics offers a promising solution by enabling a 

more objective and reproducible analysis. Recent studies in 

large, unselected cohorts of HCM patients have shown that 

LGE-based radiomic features re;ecting scar heterogeneity are 

significant predictors of SCD and provide incremental 

prognostic value beyond current clinical risk models (96–98).

In addition to assessing LGE texture, radiomics has broader 

potential applications in scar characterization, including 

integration with myocardial mapping techniques (99–101). 

However, translation into clinical practice remains limited. 

Radiomic features are highly sensitive to variations in 

acquisition, segmentation, and pre-processing, raising concerns 

about reproducibility and generalizability (99, 102). The absence 

of standardized pipelines or validated multicenter datasets 

precludes routine use. At present, radiomics should be regarded 

as a promising but experimental approach, with clinical 

adoption contingent on methodological standardization and 

large-scale prospective validation.

Serial CMR for monitoring scar evolution

Myocardial fibrosis in HCM is not a static phenomenon but a 

dynamic process that progresses over time, driving adverse 

ventricular remodeling and increasing arrhythmic risk (103). 

Longitudinal studies have shown that both the extent and 

heterogeneity of LGE frequently increase during follow-up, with 

progression rates in;uenced by clinical phenotype and patient 

profile (46, 47, 104). Importantly, fibrosis progression has been 

independently associated with higher rates of ventricular 

arrhythmias, sudden cardiac death, and the transition to end- 

stage remodeling, underscoring the prognostic significance of 

serial scar assessment (47).

In this context, repeat CMR examinations provide a unique 

opportunity to monitor scar evolution and refine risk stratification 

over time, particularly in patients who may not initially 

demonstrate extensive fibrosis. Serial CMR may be especially 

warranted in younger individuals, in those with intermediate risk 

profiles, or when clinical status changes. CMR thus emerges as a 

sensitive longitudinal biomarker of disease progression, enabling 

timely adjustment of preventive and therapeutic strategies in HCM.

Computed tomography

Cardiac CT has shown growing potential in the assessment of 

myocardial fibrosis in recent years, driven by continuous 

improvements in spatial resolution and advanced post- 

processing techniques (105). As a result, CT has emerged as a 

viable alternative to CMR, particularly in patients for whom 

CMR is contraindicated or not available.

Delayed iodine enhancement

Delayed Iodine Enhancement (DIE) represents the CT-based 

approach to direct assessment of myocardial fibrosis (106). 

This technique is conceptually analogous to LGE in CMR: 

gadolinium- and iodine-based contrast agents share similar 

kinetics, accumulating in regions with expanded extracellular 

space. Following the administration of iodinated contrast, late- 

phase images (typically acquired 5–10 min post-injection) allow 

for the identification of myocardial areas with altered contrast 

kinetics, indicative of scar tissue (107).

In HCM, several preliminary studies have shown that 

DIE enables the detection of late enhancement patterns 

topographically similar to those seen with CMR, predominantly 

located in the interventricular septum and at the ventricular 

insertion points (108). Comparative studies have confirmed this 

topographic concordance between DIE-CT and LGE-CMR, 

suggesting good sensitivity of the technique, especially in the 

presence of extensive or transmural scarring (109, 110).

However, DIE has several intrinsic limitations. CT offers 

lower contrast resolution compared to CMR, making it more 

challenging to detect subtle or patchy fibrosis. Moreover, fibrosis 

quantification is less standardized, although some studies have 

proposed attenuation thresholds in Hounsfield Units (HU) 

and semi-quantitative approaches (111, 112). Additional 

considerations include radiation exposure and the need for 

relatively high doses of iodinated contrast, which may be a 

concern particularly in younger patients or those with impaired 

renal function (106).

Despite these limitations, DIE-CT is an extremely valuable 

technique in patients who are not eligible for CMR or as a 

complementary tool when concurrent anatomical and coronary 

assessment is required (110). An interesting study in a small 

cohort of high-risk HCM patients with ICDs demonstrated that 

the myocardial fibrosis burden assessed by CT predicted 

ventricular fibrillation and ventricular tachycardia events (113). 

These findings were corroborated in an unselected group of 

HCM patients without coronary artery disease, where the 
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presence of CT-detected scar was associated with higher rate of 

major adverse cardiovascular events (114). Larger, prospective 

studies are needed to validate the prognostic value of DIE 

in HCM.

CT mapping

Contrast-enhanced CT techniques allow for the quantitative 

estimation of ECV. Technically, the principle is analogous to 

that of CMR, relying on HU attenuation measured before and 

after contrast administration (115). More recent technological 

advancements have further evolved CT mapping. Dual-energy 

CT or spectral CT systems acquire images at different energy 

levels, enabling the reconstruction of quantitative iodine 

distribution maps within the myocardium. Notably, these 

techniques do not require a pre-contrast scan, thereby reducing 

radiation exposure (116–118).

Several studies have demonstrated a good correlation between 

CT-derived and CMR-derived ECV in non-HCM patient cohorts 

(119–121), and Bandula et al. validated this approach 

histologically (122).

CT mapping potentially overcomes some limitations of 

conventional DIE, such as the subjectivity of visual thresholding 

for enhancement detection, particularly when integrated with 

emerging radiomics and deep learning post-processing 

techniques (115). However, clinical experience with CT mapping 

in HCM remains limited. To date, only one study has 

investigated the prognostic role of CT-derived ECV in a high- 

risk cohort of HCM patients with ICDs, revealing no significant 

association with the incidence of ventricular arrhythmias (123).

Overall, iodine mapping represents a promising frontier for 

the quantitative assessment of myocardial fibrosis in HCM. 

Further studies are needed to explore its clinical utility. 

On the other hand, widespread clinical adoption may be 

hindered by limited availability of dual-energy systems, 

increased post-processing complexity, and the need for 

optimized acquisition protocols.

Conclusions

Myocardial scarring is a hallmark of HCM and a major driver 

of adverse outcomes, including SCD and HF progression. The 

fibrotic substrate in HCM is complex, encompassing both 

replacement and interstitial fibrosis, often accompanied by 

myocardial disarray. CMR is the gold-standard non-invasive 

imaging modality for myocardial scar evaluation. Indeed, 

techniques such as LGE, myocardial mapping, and DTI provide 

complementary insights into scar burden and architecture. CT is 

an emerging modality with increasing clinical relevance. DIE 

and CT-derived ECV mapping offer a valuable alternative for 

scar assessment, particularly when CMR is contraindicated.

Table 1 summarizes the applications of CMR and CT 

techniques in scar assessment.

Cardiac CT and CMR offer complementary strengths in 

the multimodality imaging assessment of myocardial scar, each 

contributing synergistic information that enhances risk 

stratification and may inform individualized preventive strategies.
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TABLE 1 Applications of CMR and CT techniques in scar assessment.

Modality Imaging 
technique

Scar 
characterization

Clinical 
significance

Cardiac 

magnetic 

resonance 

(CMR)

Late 

gadolinium 

enhancement 

(LGE)

Qualitative and 

quantitative assessment of 

replacement fibrosis

Strong prognostic 

marker for 

ventricular 

arrhythmias, 

sudden cardiac 

death and adverse 

remodelling (16)

Myocardial 

mapping 

(native T1 and 

ECV)

Detection of interstitial 

fibrosis not visible with 

LGE technique

Marker of poor 

prognosis; useful 

for risk 

stratification in 

low-risk patients 

and when 

gadolinium is 

contraindicated 

(63)

Diffusion 

tensor imaging 

(DTI)

Assessment of myocardial 

disarray

Independent 

arrhythmic 

prognostic role (18)

Radiomics Assessment of scar 

heterogeneity using 

multi-step automated 

quantitative analysis

Additional 

arrhythmic 

prognostic value 

beyond qualitative 

visual assessment of 

LGE (96)

Cardiac 

computer 

tomography 

(CT)

Delayed iodine 

enhancement 

(DIE)

Qualitative assessment of 

replacement fibrosis

Marker of poor 

prognosis. Useful 

alternative when 

MRI is 

contraindicated 

(113)

CT myocardial 

mapping

Assessment of interstitial 

fibrosis

Emerging tool not 

yet specifically 

studied in HCM 

patients

LGE: Chan et al. (16).

Mapping: Wang et al. (63).

DTI: Ariga et al. (18).

Radiomics: Fahmy et al. (96).

DIE: Shiozaki et al. (113).
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