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Myocardial scarring is a hallmark of hypertrophic cardiomyopathy (HCM) and a
major driver of adverse outcomes, including sudden cardiac death and heart
failure progression. The fibrotic substrate in HCM is complex, encompassing
both replacement and interstitial fibrosis, often accompanied by myocardial
disarray. Advanced cardiovascular imaging enables detailed scar
characterization, which is crucial for risk stratification and personalized
management. Cardiovascular magnetic resonance (CMR) is the gold standard
for non-invasive fibrosis assessment. Techniques such as late gadolinium
enhancement, myocardial mapping of T1 and T2 relaxation properties, and
diffusion tensor imaging provide complementary insights into scar burden
and architecture. Cardiac computed tomography (CT) is an emerging
modality with increasing clinical relevance. Delayed iodine enhancement and
CT-derived extracellular volume mapping offer a valuable alternative for scar
assessment, particularly when CMR is contraindicated. This review highlights
the role of multimodality imaging in assessing myocardial scar in HCM, with a
focus on CMR and CT, and explores their clinical implications.

KEYWORDS
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Myocardial scarring in hypertrophic
cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is a prevalent inherited myocardial disease,
affecting approximately 1 in 500 individuals in the general population (1, 2). It is
characterized by left ventricular (LV) hypertrophy that occurs in the absence of systemic or
cardiac conditions capable of inducing hemodynamic overload (3, 4). The hypertrophic
myocardium in HCM exhibits a wide spectrum of structural alterations, both at the
macroscopic and microscopic levels (5). In at least one-third of the myocardium,
cardiomyocytes are hypertrophic and disorganized, displaying structural abnormalities in
both shape and alignment, which is a phenomenon collectively referred to as myocardial
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disarray. While most pronounced in hypertrophic segments, disarray
may also affect regions with normal wall thickness (5). The
extracellular matrix in HCM is typically expanded and rich in
glycogen, with widespread interstitial fibrosis that, in advanced
stages, can lead to fibrotic replacement and the formation of
myocardial scars (6). Additionally, microvascular abnormalities are
a frequent histological finding, including medial hypertrophy,
disorganized elastic fibres, and endothelial hyperplasia of the
intramyocardial coronary arteries. These changes contribute to
vessel wall thickening and luminal narrowing, leading to
reserve.

microvascular dysfunction and impaired perfusion

The downstream consequences are myocardial ischemia, myocyte

necrosis, and replacement fibrosis (6-9). The combination
of myocyte disarray, extracellular matrix expansion, and
microvascular  dysfunction results in complex structural

remodelling, with fibrosis -either interstitial or replacement-
representing a pathological hallmark of the disease.

Myocardial scarring has been implicated in the most threatening
outcomes of HCM, namely sudden cardiac death (SCD) and adverse
LV remodelling (10). SCD is one of the most unpredictable and
devastating complication of HCM, and it may be the initial
manifestation of the disease. It occurs at an estimated annual
in unselected HCM cohorts (11) and
disproportionately affects younger individuals, with a cumulative

incidence of 0.7%

5-year risk of approximately 8%-10% in paediatric patients (12).
Ventricular arrhythmias, particularly ventricular tachycardia (VT)
and fibrillation (VF) are the primary mechanisms underlying SCD
(13), and myocardial scarring serves as a critical substrate for re-
entrant circuits (14). Re-entry arrhythmias require the presence of
a conduction barrier (anatomical or functional), two pathways with
differing conduction velocities, a unidirectional block, and
sufficient excitable myocardium. When these conditions are
satisfied, electrical impulses may circulate continuously along a
slow conduction pathway, reactivating previously recovered
myocardium and leading to sustained VT (15). Dense fibrotic
regions and anatomical structures act as non-conductive barriers,
while myocardial disarray and interstitial fibrosis create a non-
uniform conduction environment that promotes anisotropy and
(16-18).
microvascular dysfunction contributes to electrical instability by

slowed conduction Localized ischemia due to
creating zones of partial depolarization and further slowing of
conduction, fostering arrhythmogenesis (18-21).

Adverse LV remodelling is another major disease progression
pattern, occurring in approximately 15%-20% of HCM patients
(22-24). Tt is defined by the superimposition of unfavourable
structural changes upon the classic HCM phenotype (22). These
changes include reduced LV ejection fraction (25), wall thinning
(26), moderate-to-severe diastolic dysfunction (27, 28), marked left
atrial enlargement (29), significant microvascular dysfunction (30),
new-onset atrial fibrillation (31), spontaneous resolution of LV
outflow tract obstruction (26, 32), and formation of LV apical
aneurysms (33). Each of these features has been individually
associated with poor outcomes in HCM cohorts. From a
pathophysiological standpoint, adverse remodelling appears to
result from a combination of chronic microvascular ischemia,

cellular energy depletion, and myocyte apoptosis, ultimately
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leading to progressive myocyte loss and fibrotic replacement (24,
30, 34-38). The clinical manifestations of remodelling vary
considerably, ranging from mild functional impairment to
advanced heart failure (HF). End-stage HCM, the most extreme

form, develops in approximately 5% of patients and is
characterized by extensive fibrosis with either a hypokinetic-dilated
phenotype, when systolic dysfunction predominates, or a

hypokinetic-restrictive phenotype, marked by a small, stiff LV and
severe diastolic impairment (4, 6, 25, 26, 35).

SCD and HF
complications, constitute the principal contributors to HCM-

Together, alongside thromboembolic
related mortality (25). Importantly, these outcomes are directly
or indirectly related to the development of myocardial scar,
which is a central prognostic marker. Consequently, the
fibrosis has

importance in risk stratification and disease management.

assessment of myocardial gained increasing

Advances in cardiovascular imaging have greatly enhanced our
ability to noninvasively characterize myocardial fibrosis in HCM.
A multimodality approach including cardiovascular magnetic
resonance (CMR) and cardiac computed tomography (CT) allows
for comprehensive assessment of the extent, distribution, and
nature of myocardial scarring, thereby informing prevention

strategies and individualized risk stratification.

Cardiovascular magnetic resonance

CMR is the gold-standard non-invasive imaging modality for
the assessment of myocardial scar (39, 40). Owing to its excellent
spatial resolution and superior tissue contrast, CMR enables
comprehensive characterization of both replacement and
interstitial fibrosis. In recent years, significant technological
advancements have expanded the capabilities of CMR, allowing
for an even more detailed evaluation of myocardial scarring and
its prognostic implications.

This section will explore the main CMR techniques employed
for scar characterization in HCM, outlining their technical
principles, summarizing the current evidence in the literature,

and discussing their clinical relevance.

Late gadolinium enhancement

Late gadolinium enhancement (LGE) is the most established
CMR technique for detecting replacement myocardial fibrosis
(39). It
extracellular contrast agent (gadolinium), followed by the

involves the administration of a paramagnetic
acquisition of T1-weighted images approximately 10-20 min
after injection. This technique exploits the different kinetics of
gadolinium distribution in healthy myocardium vs. scar tissue.
Gadolinium accumulates in regions with expanded extracellular
space due to necrosis or fibrosis, appearing as hyperintense
areas on late-phase imaging, with signal intensity varying
according to scar architecture (39).

LGE can be evaluated both qualitatively and quantitatively
relative to total myocardial mass (39). Early investigations of
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LGE as a prognostic marker in HCM focused on total scar
burden, which emerged as a strong predictor of SCD, adverse
remodelling, and HF hospitalizations in several prospective
unselected cohorts (16, 41-47). The largest study to date
assessing the role of LGE in predicting SCD in HCM showed a
significant increase in SCD events among patients with a high
scar burden (>15% of total myocardial mass), whereas no
meaningful increase in SCD risk was observed in those with
minimal LGE (1%-5%) compared to patients without detectable
scar (16). Based on these findings, the American College of
Cardiology and American Heart Association (ACC/AHA)
included a scar burden threshold of 15% as a risk factor to be
considered, particularly in patients lacking conventional clinical
risk factors or when ICD implantation is uncertain (2).
However, the use of scar burden alone has limited sensitivity, as
numerous adverse events have been documented in patients
with LGE <15% (7, 44, 45).

In HCM, LGE patterns demonstrate substantial heterogeneity
in their extent, intensity, and distribution (48). A large prospective
registry provided novel insights into this variability, showing
that distinct LGE patterns are closely associated with specific
morphological subtypes and sarcomere mutation status (49).
This heterogeneity reflects the complex histopathological nature
of HCM fibrosis, which differs from post-ischemic scars by
comprising diffuse fibrosis interspersed with viable myocytes,
rather than dense, localized subendocardial fibrosis within a
specific coronary territory (7, 50-52). Such structural complexity
creates a highly arrhythmogenic substrate, ideal for rapid-rate
re-entrant VTs (15). These arrhythmias may progress to
polymorphic VT or VEF, driven by the distinct properties of
the HCM myocardium—marked by sarcomeric disarray and
CMR
have demonstrated that areas of mild-to-intermediate LGE

heterogeneous, anisotropic conduction (53). studies

10.3389/fcvm.2025.1649728

enhancement are more strongly associated with ventricular
arrhythmias than intensely enhanced regions (54, 55). Moreover,
in low- and intermediate-risk HCM patients, quantitative
assessment of LGE heterogeneity (such as signal dispersion) has
been shown to independently predict major arrhythmic events,
even beyond total scar burden (48).

These findings support the notion that a qualitative evaluation
of scar architecture, particularly LGE signal heterogeneity, may
arrhythmic
conventional 2D LGE imaging has limitations in capturing the

offer deeper insights into risk. However,
full complexity of the three-dimensional scar structure (48). To
address this, advanced post-processing software have been
developed to improve scar characterization (56, 57). These tools
segment signal intensity at the pixel level to differentiate dense
core fibrosis from diffuse border zone (BZ) fibrosis and
reconstruct the data into 3D images (Figure 1). They identify
corridors of BZ tissue surrounded by dense scars or anatomical
barriers, which connect regions of viable myocardium, referred
to as border zone channels (BZCs) (56). Functionally, BZCs
represent slow-conducting pathways composed of excitable
myocardium insulated by non-conductive fibrotic
serving as substrates for re-entrant VTs (56, 58). Recent CMR

data demonstrated that the presence of BZCs is a strong

tissue

independent predictor of ICD interventions for VI/VF in high-
risk HCM patients (59).

Myocardial mapping

Tissue characterization through myocardial mapping is a
relatively recent advancement in CMR. By applying specific
this
measurement of the longitudinal (T1) and transverse (T2 or

imaging  sequences, technique enables quantitative

nssue

FIGURE 1

myocardium is coded in blue.

The figure shows a short-axis view of a CMR of a patient with HCM, highlighting an extensive scar involving the interventricular septum. LGE-CMR
images were post-processed using ADAS 3D (Galgo Medical, Barcelona, Spain), creating nine concentric surface layers spanning from the
endocardium to the epicardium of the left ventricular wall thickness, resulting in a 3D shell for each layer. Color-coded pixel signal intensity (PSI)
maps were projected onto each shell. Hyper-enhanced areas were classified as the core zone, borderline zone (BZ), or healthy tissue using
thresholds of 40 + 5% and 60 + 5% of the maximum PSI. The scar-dense core is coded in red, BZ is coded in orange and white, and healthy
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T2*) relaxation times of each myocardial voxel (60). These
values are then visually represented as color-coded parametric
This
biochemical myocardial tissue properties that are invisible to

maps. allows the detection of microstructural and
the naked eye, including the quantification of extracellular
volume (ECV) (60). Both in vivo and in vitro studies have
shown that ECV and T1 mapping are reliable surrogate markers
of diffuse myocardial fibrosis, reflecting extracellular space
expansion due to interstitial collagen deposition (61). By
contrast, T2 mapping is a marker of myocardial oedema and
inflammation (62).

A recent study in a large cohort of HCM patients demonstrated
that interstitial fibrosis assessed via ECV and native T1 values was
independently associated with cardiac death and provided
incremental prognostic value beyond traditional clinical risk
markers (63). Additional studies have further confirmed the
adverse prognostic impact of interstitial fibrosis, linking it to
unfavourable clinical features such as adverse remodelling (64), left
ventricular diastolic dysfunction (65), and ventricular arrhythmias
(66). Notably, interstitial fibrosis detected by T1 mapping and ECV
is often present in myocardial segments without LGE and retains
significant independent prognostic value (67). These findings
suggest that interstitial fibrosis plays a central and independent role
in the prognosis of patients with HCM.

A recent single-centre observational study in a large cohort of
patients demonstrated that cardiovascular death or appropriate
implantable cardioverter-defibrillator therapies occurred more
frequently in individuals with elevated myocardial T2 values.
These findings suggest a role of myocardial oedema in the
pathophysiology of major adverse events and highlight T2
mapping as an additional parameter with potential value for
prognostic stratification in HCM (68).

As such, mapping techniques have provided deeper insights into
the role of interstitial fibrosis in HCM, particularly enhancing risk
stratification in patients without LGE, traditionally considered low-
risk (64, 69) However, combining mapping with LGE assessment
has proven more effective than using either method separately,
supporting the idea that LGE and mapping provide distinct but
complementary information for a comprehensive evaluation of
myocardial scar architecture (70).

Finally, a key advantage of tissue characterization by mapping
is the ability to detect myocardial fibrosis sensitively without the
need for contrast administration. Malek et al. demonstrated that
automated machine learning models based on native (pre-
contrast) T1 mapping can accurately identify myocardial fibrosis
and closely align with LGE in HCM patients (71).

Perfusion CMR

First-pass perfusion CMR during vasodilator stress is a well-
established technique for detecting myocardial ischemia due to
either ~obstructive epicardial coronary artery disease or
microvascular dysfunction (72). Images are acquired during the first
pass of an intravenous gadolinium bolus under pharmacological

stress (most commonly adenosine or regadenoson). Perfusion can
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be evaluated qualitatively by visual inspection or quantitatively
through the calculation of absolute myocardial blood flow (MBF,
ml/min/g) and myocardial perfusion reserve (MPR, stress-to-rest
MBEF ratio) (73).

In HCM, microvascular dysfunction typically manifests as
subendocardial perfusion defects with a near-circumferential
distribution, often extending beyond a single coronary territory, and
is associated with reduced MBF and MPR (74, 75). Several studies
have demonstrated that inducible ischemia identified by CMR
perfusion, whether assessed qualitatively or quantitatively, correlates
with a greater burden of LGE, underscoring the central role of
microvascular dysfunction in the development of replacement
fibrosis (47, 76, 77). Furthermore, perfusion abnormalities have
been associated with adverse clinical features, including ventricular
arrhythmias and the formation of apical aneurysms, even
independently of the overall fibrosis burden (76-79).

Diffusion tensor CMR

Diffusion Tensor Imaging (DTI) is an advanced CMR technique
that enables visualization of myocardial microstructure by mapping
the three-dimensional diffusion of water molecules within the
myocardium (80). By calculating fractional anisotropy (FA),
cardiac DTT quantifies the directional variability of water diffusion:
FA values approaching zero reflect isotropic diffusion (random,
unrestricted movement), while values closer to one represent
anisotropic diffusion (preferential movement along a single
direction). Consequently, high FA values are observed in
voxels with coherently aligned myocytes, whereas low FA values
indicate disorganized or misaligned fibres due to myocardial
disarray (18, 81).

DTI is currently the only non-invasive imaging modality
thus
significant diagnostic and prognostic potential in HCM (82-86).

capable of identifying myocardial disarray, offering
A recent study demonstrated that myocardial disarray detected
via cardiac DTI independently correlates with ventricular
arrhythmic risk, regardless of the degree of fibrosis or
hypertrophy, suggesting a direct pro-arrhythmic role (18).

In addition, diffusion-weighted imaging (DWI), a simplified
precursor of DTI, has emerged as a feasible alternative to native
T1 mapping and ECV for the identification of interstitial fibrosis
in HCM. A recent study demonstrated that the mean apparent
diffusion coefficient (ADC) measured by DWI can identify areas
of LGE with sensitivity and specificity comparable to that of T1
mapping and ECV quantification (87).

Despite its potential, DTI is still constrained by major
technical challenges. Image acquisition is highly vulnerable to
motion artifacts and requires complex, non-standardized
protocols, while signal-to-noise ratio and reproducibility across
vendors remain suboptimal (88, 89). Furthermore, the lack of
universally accepted reference values for DTI-derived metrics,
such as fractional anisotropy, limits clinical interpretation (90).
As a result, DTT remains largely confined to research settings,
and significant methodological refinements are needed before its

integration into routine risk stratification in HCM.
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Radiomics

Radiomics is an emerging field in cardiovascular imaging that
focuses on the extraction and analysis of high-dimensional
quantitative features from medical images, effectively transforming
visual data into mineable information (91, 92). The core principle
of radiomics is that biomedical images contain a wealth of
information that remains invisible to the human eye and is not
captured through traditional qualitative interpretation (93).
Radiomics seeks to uncover these hidden insights and derive novel
biomarkers to improve diagnostic and prognostic accuracy, while
reducing observer bias and subjectivity (94). Technically, radiomic
analysis consists of several interdependent steps: image acquisition,
raw data reconstruction, image pre-processing, segmentation,
feature extraction, feature selection, and predictive model
construction (95).

As previously discussed, scar heterogeneity in HCM is a
critical prognostic factor that goes beyond simple quantitative
assessment. Visual evaluation of scar heterogeneity, however, is
often challenging and subject to considerable interobserver
variability. Radiomics offers a promising solution by enabling a
more objective and reproducible analysis. Recent studies in
large, unselected cohorts of HCM patients have shown that
LGE-based radiomic features reflecting scar heterogeneity are
of SCD

prognostic value beyond current clinical risk models (96-98).

significant  predictors and provide incremental

In addition to assessing LGE texture, radiomics has broader

potential applications in scar characterization, including
integration with myocardial mapping techniques (99-101).
However, translation into clinical practice remains limited.
highly

acquisition, segmentation, and pre-processing, raising concerns

Radiomic features are sensitive to variations in
about reproducibility and generalizability (99, 102). The absence
of standardized pipelines or validated multicenter datasets
precludes routine use. At present, radiomics should be regarded
as a promising but experimental approach, with clinical
adoption contingent on methodological standardization and

large-scale prospective validation.

Serial CMR for monitoring scar evolution

Myocardial fibrosis in HCM is not a static phenomenon but a
dynamic process that progresses over time, driving adverse
ventricular remodeling and increasing arrhythmic risk (103).
Longitudinal studies have shown that both the extent and
heterogeneity of LGE frequently increase during follow-up, with
progression rates influenced by clinical phenotype and patient
profile (46, 47, 104). Importantly, fibrosis progression has been
independently associated with higher rates of ventricular
arrhythmias, sudden cardiac death, and the transition to end-
stage remodeling, underscoring the prognostic significance of
serial scar assessment (47).

In this context, repeat CMR examinations provide a unique
opportunity to monitor scar evolution and refine risk stratification
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over time, particularly in patients who may not initially
demonstrate extensive fibrosis. Serial CMR may be especially
warranted in younger individuals, in those with intermediate risk
profiles, or when clinical status changes. CMR thus emerges as a
sensitive longitudinal biomarker of disease progression, enabling
timely adjustment of preventive and therapeutic strategies in HCM.

Computed tomography

Cardiac CT has shown growing potential in the assessment of
myocardial fibrosis in recent years, driven by continuous
improvements in spatial resolution and advanced post-
processing techniques (105). As a result, CT has emerged as a
viable alternative to CMR, particularly in patients for whom

CMR is contraindicated or not available.

Delayed iodine enhancement

Delayed Iodine Enhancement (DIE) represents the CT-based
approach to direct assessment of myocardial fibrosis (106).
This technique is conceptually analogous to LGE in CMR:
gadolinium- and iodine-based contrast agents share similar
kinetics, accumulating in regions with expanded extracellular
space. Following the administration of iodinated contrast, late-
phase images (typically acquired 5-10 min post-injection) allow
for the identification of myocardial areas with altered contrast
kinetics, indicative of scar tissue (107).

In HCM, several preliminary studies have shown that
DIE enables the detection of late enhancement patterns
topographically similar to those seen with CMR, predominantly
located in the interventricular septum and at the ventricular
insertion points (108). Comparative studies have confirmed this
topographic concordance between DIE-CT and LGE-CMR,
suggesting good sensitivity of the technique, especially in the
presence of extensive or transmural scarring (109, 110).

However, DIE has several intrinsic limitations. CT offers
lower contrast resolution compared to CMR, making it more
challenging to detect subtle or patchy fibrosis. Moreover, fibrosis
quantification is less standardized, although some studies have
proposed attenuation thresholds in Hounsfield Units (HU)
approaches (111, 112). Additional
considerations include radiation exposure and the need for
relatively high doses of iodinated contrast, which may be a

and semi-quantitative

concern particularly in younger patients or those with impaired
renal function (106).

Despite these limitations, DIE-CT is an extremely valuable
technique in patients who are not eligible for CMR or as a
complementary tool when concurrent anatomical and coronary
assessment is required (110). An interesting study in a small
cohort of high-risk HCM patients with ICDs demonstrated that
the myocardial fibrosis burden assessed by CT predicted
ventricular fibrillation and ventricular tachycardia events (113).
These findings were corroborated in an unselected group of
HCM patients without coronary artery disease, where the
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presence of CT-detected scar was associated with higher rate of
major adverse cardiovascular events (114). Larger, prospective
studies are needed to validate the prognostic value of DIE
in HCM.

CT mapping

Contrast-enhanced CT techniques allow for the quantitative
estimation of ECV. Technically, the principle is analogous to
that of CMR, relying on HU attenuation measured before and
after contrast administration (115). More recent technological
advancements have further evolved CT mapping. Dual-energy
CT or spectral CT systems acquire images at different energy
levels, enabling the reconstruction of quantitative iodine
distribution maps within the myocardium. Notably, these
techniques do not require a pre-contrast scan, thereby reducing
radiation exposure (116-118).

Several studies have demonstrated a good correlation between
CT-derived and CMR-derived ECV in non-HCM patient cohorts
(119-121), validated this
histologically (122).

CT mapping potentially overcomes some limitations of

and Bandula et al approach

conventional DIE, such as the subjectivity of visual thresholding
for enhancement detection, particularly when integrated with
emerging radiomics and deep learning post-processing
techniques (115). However, clinical experience with CT mapping
in HCM remains limited. To date, only one study has
investigated the prognostic role of CT-derived ECV in a high-
risk cohort of HCM patients with ICDs, revealing no significant
association with the incidence of ventricular arrhythmias (123).
Overall, iodine mapping represents a promising frontier for
the quantitative assessment of myocardial fibrosis in HCM.
Further studies are needed to explore its clinical utility.
On the other hand, widespread clinical adoption may be
hindered by

increased post-processing complexity,

limited availability of dual-energy
and the

systems,
need for
optimized acquisition protocols.

Conclusions

Myocardial scarring is a hallmark of HCM and a major driver
of adverse outcomes, including SCD and HF progression. The
fibrotic substrate in HCM 1is complex, encompassing both
replacement and interstitial fibrosis, often accompanied by
myocardial disarray. CMR is the gold-standard non-invasive
Indeed,
techniques such as LGE, myocardial mapping, and DTI provide

imaging modality for myocardial scar evaluation.

complementary insights into scar burden and architecture. CT is
an emerging modality with increasing clinical relevance. DIE
and CT-derived ECV mapping offer a valuable alternative for
scar assessment, particularly when CMR is contraindicated.

Table 1 summarizes the applications of CMR and CT
techniques in scar assessment.
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TABLE 1 Applications of CMR and CT techniques in scar assessment.

Modality Imaging Scar Clinical
technique | characterization | significance

Cardiac Late Qualitative and Strong prognostic
magnetic gadolinium quantitative assessment of | marker for
resonance enhancement replacement fibrosis ventricular
(CMR) (LGE) arrhythmias,
sudden cardiac
death and adverse
remodelling (16)
Myocardial Detection of interstitial Marker of poor
mapping fibrosis not visible with | prognosis; useful
(native T1 and | LGE technique for risk
ECV) stratification in
low-risk patients
and when
gadolinium is
contraindicated
(63)
Diffusion Assessment of myocardial | Independent
tensor imaging | disarray arrhythmic
(DTI) prognostic role (18)
Radiomics Assessment of scar Additional
heterogeneity using arrhythmic

multi-step automated
quantitative analysis

prognostic value
beyond qualitative

visual assessment of
LGE (96)

Cardiac Delayed iodine | Qualitative assessment of | Marker of poor

computer enhancement replacement fibrosis prognosis. Useful

tomography | (DIE) alternative when

(CT) MRI is
contraindicated
(113)

CT myocardial | Assessment of interstitial

mapping

Emerging tool not
fibrosis yet specifically
studied in HCM

patients

LGE: Chan et al. (16).
Mapping: Wang et al. (63).
DTI: Ariga et al. (18).
Radiomics: Fahmy et al. (96).
DIE: Shiozaki et al. (113).

Cardiac CT and CMR offer complementary strengths in
the multimodality imaging assessment of myocardial scar, each
that
stratification and may inform individualized preventive strategies.

contributing  synergistic information enhances risk
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