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Introduction

Artificial intelligence (AI) is emerging as a major driver of clinical innovation, with

cardiovascular disease (CVD) prediction being one of its most active areas of application

(1, 2). In recent years, hospitals, research centers, and health-technology companies

have reported machine learning models achieving accuracy levels of 90%, 95%, or even

higher for predicting heart attacks, arrhythmias, and other cardiovascular events, with

concrete evidence shown in studies on AI-enabled ECG detection of left ventricular

dysfunction and machine learning-based outcome prediction in heart failure (3, 4).

These results highlight the significant technical progress made in the field. Despite

these encouraging statistics, adoption of AI tools in day-to-day cardiovascular practice

remains limited (5). This raises a central question: if AI models demonstrate such high

accuracy in controlled evaluations, why are they not widely used in clinical settings?

This study explores that question by moving beyond accuracy as the sole measure of

success. While many cardiovascular AI models are developed with strong technical

performance—demonstrating high discrimination, well-calibrated risk estimates,

robustness to data shifts, and external validation—their adoption in practice also

depends on how well their outputs integrate into clinicians’ established workflows and

support decision-making under real-world time constraints and uncertainty. Even

when demonstrating strong algorithmic performance—such as high discrimination

(e.g., AUC), well-calibrated risk estimates, robust external validation, and resilience to

moderate data shifts—many current AI models still fail to integrate with the way

clinicians gather, interpret, and apply information during patient care (6). These

shortcomings often arise from interface design gaps, limited explainability, lack of

EHR integration, and poor alignment with established clinical reasoning workflows.

We refer to this gap as a lack of cognitive calibration—the degree to which AI tools

reflect, augment, and support a clinician’s reasoning process. To address this, we

propose a Cognitive Alignment Index (CAI)—introduced here and detailed later—

which evaluates models not only on statistical accuracy but also on comprehensibility,

actionability, feedback receptivity, context awareness, and calibrated trust.

Addressing cognitive alignment requires a shift in focus. Instead of designing models

solely to outperform human performance on test datasets, the goal should be to create
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systems that enhance clinical reasoning in explainable,

interpretable, and contextually relevant ways (7, 8). For CVD

applications, this means moving from automation toward

augmentation—from opaque, black-box predictions to

collaborative, co-reasoned decision-making (9).

The missing link: cognitive alignment

Current debates regarding trustworthy AI tend to focus on

concepts like explainability, fairness, and robustness. These are

important, but they mainly address models’ extrinsic properties.

Cognitive alignment, instead, investigates an internally

compatible human- machine style of reasoning integration (10).

It asks: Do AI systems process and report information in such

modes that clinicians will be in a position to intuitively

comprehend, critique and act on?

We can define cognitive alignment as the degree to which

an AI system’s reasoning processes, information presentation,

and interaction patterns correspond to and enhance the

cognitive processes clinicians use in real-world decision-

making. This concept spans five core constructs—narrative

coherence, counterfactual reasoning, progressive disclosure,

uncertainty communication, and interactive collaboration—each

contributing to a shared human–AI decision framework. While

it overlaps with concepts such as explainability, usability, trust

calibration, and shared mental models, cognitive alignment is

distinct in its focus on mutual intelligibility and collaborative

reasoning between clinician and model.

Consider a 68-year-old with chest pain, discordant biomarkers

and imaging, chronic kidney disease, diabetes, prior stroke,

and limited access to follow-up care. The clinician must

reconcile conflicting evidence, weigh competing risks, and factor

in social constraints. A cognitively aligned AI could mirror

this reasoning—integrating multimodal data, generating

counterfactuals, and conveying calibrated uncertainty to guide a

patient-specific decision.

Contrast this with a typical CVD risk prediction model. It may

take in a static data set, calculate probabilistic risk, and provide an

output—e.g., 0.87 probability of cardiovascular event at 5 years.

The model reveals little regarding why this score is high, what

modifiable variables impacted it, or in what way it changes in

response to new interventions. Many static, black-box risk

scoring models—especially those trained on structured tabular

datasets—present outputs solely as numeric probabilities without

contextual explanation, making them less intuitive for clinical

reasoning (11). In contrast, well-designed systems, including

those using case-based reasoning, counterfactual analysis, or

natural-language generation, can produce narrative rationales

and patient-specific explanations that align more closely with

how clinicians synthesize information (12).

This mismatch is not abstract. It begets a disconnect in trust,

usability, and accountability (13). Where an output from an AI

raises doubt in a clinician’s intuition, and no middle ground

lies, the human decision-maker falls back to skepticism or

dismissal. Worse, if clinicians over-rely on an opaque model, the

result is over-reliance in faulty predictions—perilous in life-

critical decisions (14). Recent empirical work underscores

the importance of explainability and cognitive alignment.

A systematic review of XAI in clinical decision support

systems found that only a minority of applications formally

evaluated explanation quality, highlighting trust as a critical,

yet often underexamined, dimension (15, 16). Another study

demonstrated that cardiovascular event forecasting systems

augmented with XAI increased user comprehension and

decision—making confidence, achieving both high accuracy and

improved usability (17). These findings show that enhancements

to interpretability directly improve trust and adoption—

validating our argument that accuracy alone is not enough

without cognitive alignment.

Where current cardiovascular AI falls
short

The limitations discussed in this section refer primarily to

classes of cardiovascular AI models that are i. trained on static,

cross-sectional datasets, ii. optimized for predictive accuracy

rather than interpretability, and iii. deployed without advanced

temporal modeling, multimodal integration, or narrative

explanation capabilities. These constraints do not apply to all

cardiovascular AI architectures—many state-of-the-art models in

research settings already address some of these issues—but they

remain common in tools currently used in routine clinical

practice. In practice, widely deployed cardiovascular AI tools

include FDA-cleared ECG algorithms for LV dysfunction (18),

AI-guided echo acquisition (19), CT-FFR integrated into NHS

pathways (20), and EHR-based HF readmission models. In

contrast, research prototypes—such as multimodal transformers

combining ECG, echo, and EHR data (21, 22) or counterfactual

imaging interpreters—remain largely academic. Recent work has

demonstrated their potential, including improvements in

arrhythmia detection (23), development of patient digital-twin

frameworks (24), and transformer-based atrial fibrillation risk

prediction (25). Cognitive alignment gaps are most pronounced

in deployed models, not these cutting-edge prototypes. The

failure of many currently deployed cardiovascular AI models—

particularly static tabular classifiers trained on cross-sectional

datasets—to achieve cognitive alignment manifests in several

critical areas:

• Temporal Reasoning Deficiency: Clinicians reason over time,

comparing past trajectories to future projections. Many

cardiovascular AI tools currently deployed in clinical settings

—particularly static tabular classifiers trained on cross-

sectional snapshots of EHR data—lack temporal reasoning

capabilities. These models reduce patient history to single

time points, overlooking evolving physiological trends that

clinicians use for decision-making. This limitation does not

apply to temporal sequence models such as RNNs, LSTMs,

Transformers, temporal convolutional networks (TCNs),

survival analysis models like Cox/DeepSurv, or dynamical
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Bayesian/state-space approaches, which are explicitly designed

to learn from longitudinal data (26).

• Opaque Abstractions: Clinicians prefer causal or mechanistic

reasoning—“this patient’s sedentary lifestyle, combined with

family history, likely explains the elevated risk.” In contrast,

black-box models offer abstractions untethered from causal

understanding (27). A high risk score may be mathematically

correct, but without interpretive scaffolding, it remains

clinically inert.

• Disjointed Input and Output Modalities: Doctors process

multimodal data—lab results, imaging, voice tone, visual

signs. Most AI models require clean, structured inputs and

output a single prediction (28). This limits their ability to

integrate into the messy, multimodal ecosystem of real

clinical practice.

• Static Decision Boundaries: In some deployments, binary

classifiers are paired with fixed probability thresholds (e.g.,

intervene if risk > X%), which is often a policy choice rather

than an inherent model property. While such cut points can

simplify implementation, they may overlook trade-offs,

comorbidities, patient preferences, and evolving clinical

information. More flexible approaches—such as continuous

risk estimates, decision-curve analysis, and context-aware

policies that adapt thresholds to individual patient contexts—

better reflect the nuanced nature of cardiovascular decision-

making.

It is important to acknowledge that recent advances in AI research

have begun to address some of these limitations. Emerging models

now incorporate temporal reasoning, causal inference,

counterfactual simulation, and more sophisticated multimodal

integration, enabling them to analyze evolving patient

trajectories, draw connections between complex variables, and

provide richer explanations (29–31). These capabilities represent

a significant step forward and demonstrate the technical

feasibility of overcoming many past shortcomings. However,

their presence in cutting-edge research does not yet equate to

widespread adoption in clinical cardiovascular tools. Many AI

systems currently deployed in hospitals or available in

commercial products still operate with static inputs, limited

interpretability, and rigid decision boundaries (32, 33). Thus,

while technical progress is undeniable, the challenge remains in

translating these capabilities into routinely used systems that

align seamlessly with clinicians’ cognitive workflows and

decision-making processes.

Toward cognitively aligned
cardiovascular AI

Cognitive alignment demands that we reframe how CVD

prediction models are conceived, trained, and evaluated. Below

are key dimensions that define such alignment:

• Narrative Coherence: AI outputs should tell a story. Instead of

“risk = 0.87,” the model might say: “This patient’s risk is

elevated primarily due to high LDL, low physical activity, and

a recent increase in blood pressure. Reducing any of these

could lower the 5-year risk estimate.” This aligns with how

clinicians communicate risk to patients and among

themselves. Models must be able to generate semantically rich

explanations—preferably in natural language (34). For

example, reasoning-capable large language models can be

integrated with structured learners such as XGBoost, using

SHAP values or other feature attribution methods to generate

narrative rationales that combine quantitative predictions

with case-based, clinically meaningful explanations.

• Counterfactual Thinking: One hallmark of clinical reasoning is

asking “what if?” What if the patient starts statins? What if they

quit smoking? A cognitively aligned AI should support

counterfactual queries, allowing clinicians to explore

alternative scenarios. Some emerging models incorporate

causal inference and counterfactual simulation (35). These

should be further integrated into CVD AI to facilitate

planning, not just prediction.

• Progressive Disclosure: Rather than flooding users with all data

at once or hiding it entirely, models should offer layered

explanations. An initial summary could be followed by

options to “drill down” into data weights, feature

contributions, or example-based analogies. This mirrors the

way clinicians seek different levels of information depending

on the urgency, context, and confidence level.

• Uncertainty as a Feature, not a Bug: Human decision-making

in medicine is riddled with uncertainty. Some AI models—

particularly those without proper calibration—may display

high predicted probabilities even in cases of misclassification

or when encountering out-of-distribution inputs. In contrast,

well-calibrated models, such as logistic regression or modern

neural architectures with calibration layers, can align

predicted probabilities with actual likelihoods. A cognitively

aligned model should quantify and communicate uncertainty,

and offer calibrated risk intervals or confidence distributions

(36). This enables clinicians to factor in model hesitancy into

their broader clinical judgment.

• Interactive Collaboration: The future of CVD AI lies in

interactive systems—not static dashboards, but conversational

agents or co-pilot interfaces that let clinicians query,

challenge, and modify model outputs in real time. These

tools should learn not only from data, but from dialogue

with human users.

• Measurement Framework: Each dimension of cognitive

alignment can be operationalized through observable indicators

that allow for systematic evaluation in both simulated and real-

world clinical contexts. Narrative coherence can be assessed

through comprehension scores, accuracy in summarizing

reasoning chains, and retention of key factors. Counterfactual

reasoning may be measured by the accuracy and clinical

relevance of “what-if” scenarios and the frequency with which

they lead to actionable plan adjustments. Progressive disclosure

can be evaluated by reductions in decision latency without loss

of accuracy and the successful retrieval of deeper model details

on demand. Uncertainty communication may be gauged

through the appropriateness of decision adjustments based on
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model confidence intervals and the reduction in over-reliance on

low-certainty predictions. Finally, interactive collaboration can be

quantified by the rate of appropriate overrides, the proportion of

outputs refined through clinician feedback, and the interception

of potential errors when human–AI disagreements occur.

Framework for the cognitive
alignment index (CAI)

The Cognitive Alignment Index (CAI) measures how well an AI

system aligns with clinicians’ reasoning across five dimensions:

comprehensibility, actionability, feedback receptivity, context

awareness, and trust calibration. Each dimension is linked

to measurable indicators, enabling consistent evaluation

and benchmarking.

Cardiovascular AI often integrates heterogeneous inputs—

such as imaging, electronic health records (EHR), and wearable

data—that are vulnerable to temporal misalignment, incomplete

provenance tracking, and biased missingness. These multimodal

integration challenges can be mitigated through alignment

strategies, including progressive disclosure of modality-specific

findings and saliency maps tailored to each data type.

Failures can originate from data (e.g., out-of-distribution

inputs), model (e.g., overfitting, uncalibrated uncertainty),

interface (e.g., unclear explanations), or workflow (e.g., poorly

timed alerts). Mitigation measures include out-of-distribution

detection, decision guardrails, and clinician override

mechanisms with mandatory rationale capture.

For transparency and medico-legal defensibility, CAI

recommends audit trails that log explanations shown,

uncertainty estimates, and clinician actions or overrides with

accompanying rationale. Finally, the framework distinguishes

trust—belief in the system’s competence—from reliance—acting

on its output—and emphasizes calibrated trust, ensuring reliance

remains proportional to the system’s demonstrated capabilities,

thereby supporting safe and effective clinical adoption.

Clinical implications: trust, ethics, and
impact

The cognitive alignment design implications extend well

beyond usability. They resonate in ethics, safety, and fairness in

healthcare. Trust follows once AI is aligned to human cognition.

Trust is not blind faith in a machine; it’s an interactive,

reciprocal engagement (37). Trustworthy AI gains a place in the

clinician’s work flow not only because it’s accurate, but because

it’s clear, explainable, and responsive to clinician input.

Interpretability at the cognitive level can enhance collective

accountability. Clinicians who understand how and why a model

makes a prediction will be more likely to use it responsibly. This

is valuable in medico-legal contexts where accountability for

decisions made in an AI system remains ambiguous (38, 39).

Additionally, cognitively compatible AI can be applied to

eradicate health inequities (40). Vulnerable populations tend to

be served poorly by opaque, one-size-fits-all models that

disregard context. Where AI systems can explain to people in

natural language and learn to respond to user input, they

become fairer and more attentive to diverse populations.

Beyond trust and interpretability, AI in cardiovascular care

must navigate complex ethical and legal obligations, particularly

around patient confidentiality and data protection. Compliance

with frameworks such as Health Insurance Portability and

Accountability Act (HIPAA) in the United States or General

Data Protection Regulation (GDPR) in Europe requires that AI

tools not only safeguard identifiable health information but also

ensure secure data transmission, storage, and processing (41).

A key challenge lies in balancing the need for rich, multimodal

datasets with the principle of data minimization (42). Potential

avenues for overcoming these hurdles include the adoption of

privacy-preserving techniques such as federated learning,

homomorphic encryption, and differential privacy, which allow

model training without exposing raw patient data (43).

Embedding these safeguards into the design of AI tools can

mitigate confidentiality risks while maintaining clinical utility,

thereby fostering both ethical integrity and regulatory compliance.

Discussion: reimagining
cardiovascular AI as a cognitive
partner

If AI is to earn its rightful place in cardiovascular medicine, it

will have to shift from computational oracle to trusted cognitive

counterpart—one that thinks alongside clinicians, not instead of

them. That will require something other than additional data or

deeper models; it will require a fundamental reimagining of AI’s

role in clinical reasoning (44).

Alignment of cognition is not an option—it’s a medical

necessity. Medicine, and especially where failure is calamitous,

like in cardiology, is part interpretive art, part predictive science.

Decisions aren’t ever really made in vacuo; they’re informed by

accretive knowledge, real-time intuitions, and moral

responsibility. Current systems, however accurate, will not

succeed if they ignore this cognitive ecosystem (45).

This redescription upends several typical assumptions. As a

first point, it challenges the typical assumption that accuracy is

the be-all and end-all measure of AI quality. While accuracy

may be a prerequisite condition, it’s not at all sufficient (46).

A model that performs well on retrospective data sets but is

illegible or incompatible with day-to-day clinic practice is, in

actuality, unusable. Practical utility depends on whether or not

clinicians can interpret, question, and respond to the output of

a model—rather than whether or not the model is predictive (47).

Second, it disrupts the automation narrative that still pervades

much of AI discourse. Many clinical tasks should not—and cannot

—be fully automated. Cardiovascular care involves empathy,

dialogue, and deliberation—facets that no model can replicate.

Instead of aspiring to replace human expertise, AI should aim to

enrich it. It should enhance diagnostic confidence, reveal

overlooked correlations, and support counterfactual reasoning
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(48). Recent evaluations of multimodal cardiovascular AI systems

have shown that such capabilities are technically feasible,

integrating imaging, physiological signals, and clinical data into

unified, interpretable frameworks that improve both diagnostic

accuracy and clinician trust (49). In short, it should amplify

clinical cognition, not bypass it.

Third, it calls for an interdisciplinary design ethos. Cognitive

alignment cannot be engineered in isolation by data scientists or

AI specialists alone (36). Evidence from large-scale deployments

in cardiovascular imaging supports this imperative, showing that

the most successful implementations involve co-design between

AI developers, cardiologists, and workflow specialists (50). It

demands the collaborative insight of clinicians, behavioral

scientists, cognitive psychologists, ethicists, and UX designers.

The goal is not to make AI more “intelligent” in the abstract,

but to make it more clinically intelligible in the real.

Cognitive alignment requires humility—recognizing that even

advanced models are fallible and clinical expertise remains

essential (51). This humility must be embedded into both design

and deployment—through uncertainty quantification, contextual

disclaimers, and mechanisms for clinician override.

Importantly, we must also recognize that cognitive alignment

is not a static endpoint. It is an ongoing, iterative process—one

that evolves with new data, new users, and new clinical realities

(52). As AI systems are deployed across diverse settings—from

tertiary hospitals to rural clinics—their ability to adapt to

varying cognitive expectations will determine their impact and

longevity. The development of structured evaluation frameworks

for such adaptability has begun, with recent cardiology-focused

AI research outlining domain-specific cognitive performance

indicators and multi-level validation strategies (53).

To move forward, institutions and developers must embed

alignment principles into every stage of the AI lifecycle. This means:

• Integrating cognitive walkthroughs into model validation;

• Designing user-centered interfaces that respond to differing

cognitive loads and decision styles;

• Establishing feedback loops where clinicians can critique and

correct model outputs;

• Creating metrics that measure usability, trust, and

comprehension, not just performance curves.

These shifts are not peripheral. They are central to the ethical

deployment of AI in cardiovascular care. When clinicians and

machines share a common cognitive ground, AI becomes more

than a tool—it becomes a teammate. And in the complex, often

ambiguous terrain of human health, that partnership may be the

very thing that enables AI to finally deliver on its promise.

Table 1 summarizes the main limitations identified in current

cardiovascular AI, the proposed cognitive alignment approaches

to address them, and the expected benefits of implementing

these solutions. Figure 1 visually complements Table 1 by

illustrating the transformation from current cardiovascular AI

limitations to proposed cognitively aligned solutions,

highlighting the direct mapping between gaps and targeted

design improvements.

The reality gap: models in the lab,
decisions in the clinic

Despite rapid advances in machine learning, the realities of

clinical life are often absent from the AI development cycle.

Most CVD models are trained in sanitized, structured

environments—data is clean, outcomes are well-labeled, and

populations are homogeneous (54). Yet hospitals are chaotic.

Patients arrive late, symptoms evolve dynamically, data is often

missing or conflicting, and clinicians must make fast, high-

stakes decisions with imperfect knowledge.

This reality gap—between model assumptions and clinical

conditions—is a key driver of cognitive misalignment (55). For

example, a model may identify a patient as high-risk for heart

failure based on elevated BNP and imaging data. However, in

practice, the physician also notices signs of medication

nonadherence, sleep apnea, or social factors like food insecurity

—all of which are absent from the model’s dataset, but critically

affect outcomes and management (56).

A cognitively aligned model would flag its contextual

limitations and allow space for human override, acknowledging

that medicine is a narrative as much as it is a numeric

function. Clinicians must not only predict events but also

explain, persuade, and personalize care (57). AI models that

ignore this context are not just incomplete—they’re

clinically unusable.

Human factors and the design of
cardiovascular AI

Borrowing from human factors engineering, AI systems

should be evaluated not only for what they do, but for how

humans interact with them under pressure, fatigue, and

cognitive load. Studies in aviation and critical care show that

even perfectly engineered tools fail when they misalign with

human mental models.

In the context of CVD, this means designing interfaces and

outputs that align with clinical thought processes. A risk

prediction model embedded in an EHR should do more than

just flag “elevated risk”—it should provide progressive

disclosure, showing key contributing features, comparative

examples (e.g., similar past patients), and options for simulation

(e.g., “risk if blood pressure drops by 10 mmHg”).

Moreover, explanations must be tailored to user expertise.

A cardiology fellow may want deep dive access to SHAP values

and time-series feature trajectories, while a general practitioner

may prefer high-level causal summaries. One-size-fits-all

interpretability is neither effective nor scalable.

Learning from failures: when
alignment breaks down

There is growing evidence that even well-intentioned AI can

mislead when cognitive alignment is lacking. In 2019, a large
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FIGURE 1

From current cardiovascular AI to cognitively aligned AI, illustrating the transformation from existing limitations to targeted solutions.

TABLE 1 Summary of current limitations in cardiovascular AI, proposed cognitive alignment strategies, and expected clinical benefits.

Theme Current
Limitation

Proposed
Cognitive
Alignment
Solution

Model Scope Concrete
Method

Evaluation
Metrics

Cardiology
Use Case

Expected
Benefit

Temporal

Reasoning

Models trained on

snapshot data

ignore patient

history and

evolving trends

Integrate temporal

reasoning and

trajectory-based

modeling

Longitudinal sequence

models (RNN/LSTM/

Transformer)

Rolling-origin

evaluation,

survival models

(DeepSurv),

temporal

convolutional

networks

Calibration/ECE,

time-dependent

AUC, missing-data

robustness

HF progression

monitoring

Aligns with

clinicians’

longitudinal

reasoning;

improves

relevance

Opaque

Abstractions

Black-box outputs

lack causal

explanations

Provide narrative,

causal, and

counterfactual

insights in natural

language

Static tabular

classifier + LLM

SHAP with

summary

plots + case-based

exemplars,

counterfactual

generation

Clinician

comprehension

score, override

appropriateness,

decision-change rate

ACS triage Enhances

interpretability

and trust

Disjointed

Modalities

Limited ability to

process

multimodal, real-

world clinical data

Support integration

of structured,

unstructured, and

sensory inputs

Multimodal fusion models

(tabular + imaging + text)

CLIP-style vision–

language model,

late-fusion neural

architecture

Decision-curve net

benefit, multimodal

feature attribution

AF stroke risk

prediction

Reflects the

holistic data used

in practice

Static

Decision

Boundaries

Fixed thresholds

may ignore trade-

offs, comorbidities,

preferences, and

changing context

Incorporate flexible,

context-aware risk

assessments

Probabilistic graphical

models, calibrated

classifiers

Conformal

prediction

intervals, Bayesian

risk models

Calibration/ECE,

net reclassification

index

HF medication

titration

Supports

personalized and

context-sensitive

care

Lack of

Interaction

AI tools operate as

one-way output

systems

Develop interactive,

communicative AI

that learns from

user feedback

Interactive decision-

support system

Active learning

with clinician-in-

the-loop feedback

Override

appropriateness,

learning curve slope,

feedback

incorporation rate

Post-PCI

antiplatelet

therapy planning

Promotes co-

reasoning and

shared decision-

making

Gap in

Deployment

Research advances

not widely

implemented in

practice

Bridge research–

practice gap

through design

focused on clinical

workflow alignment

EHR-integrated CDS tool SMART-on-FHIR

integration,

HL7-based audit

logging

Time-to-decision,

adoption rate,

NASA-TLX

workload score

AF

anticoagulation

initiation

Ensures real-

world utility and

adoption
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hospital system deployed a sepsis alert algorithm that was highly

accurate in retrospective validation but triggered excessive false

positives in real-time use. Clinicians quickly developed “alert

fatigue,” leading to underuse—even in true positives. In other

cases, such as cancer diagnostics or heart disease risk

stratification, black-box tools have overemphasized non-clinical

features (e.g., hospital location or scanner brand) because

they correlate in training data, not because they matter

pathophysiologically (58–60).

These failures are not purely technical—they reflect a cognitive

design flaw. The models were not built to communicate

uncertainty, adapt to clinician feedback, or explain themselves in

actionable terms. When misalignment accumulates, trust erodes,

and clinicians opt out of AI altogether (61).

This is not a rejection of AI—it is a plea for better design.

When AI augments intuition rather than replacing it, clinicians

feel empowered. When AI contradicts judgment without

justification, clinicians resist. The success of cardiovascular AI

hinges on this distinction.

Beyond explainability: toward
communicative AI

Explainability has become a buzzword, but too often it’s

reduced to technical jargon—“this feature had X impact on

Y output” (8). True cognitive alignment requires more: not just

explanation, but communication.

Communicative AI models engage users in a dialogue.

They allow questions: “Why did you predict this?” “What

would change your output?” “How does this compare to a

similar patient last week?” This interactive paradigm

transforms the model from a monologue machine into a

clinical collaborator.

Such systems must also learn from users. When a clinician

overrides a model repeatedly in similar cases, the system should

learn to recalibrate or seek clarification. This is the foundation

of human-in-the-loop learning, where models improve through

shared judgment, not isolated optimization.

Imagine a scenario in a rural clinic. A junior physician uses a

CVD risk model that suggests urgent referral. But the doctor

knows this patient can’t afford the trip, and instead opts for

medication and monitoring. A communicative AI would register

this decision, allow annotation, and use it to inform future

outputs in similar contexts. This is not just personalization—it’s

localization of intelligence.

Training for alignment: education and
mindset

Creating cognitively aligned AI is only half the challenge.

Clinicians must also be trained to interact with AI critically and

constructively. This means embedding AI literacy into medical

curricula—not just the mechanics of models, but the psychology

of machine decision-making.

Clinicians must learn to ask:

• What assumptions does this model make?

• Is the data used representative of my patient?

• What happens when I disagree with the prediction?

• How do I explain this output to the patient?

These questions are not tangential—they are core to ethical

clinical practice in the AI era. In cardiovascular care, where

decisions often involve weighing long-term risks against

immediate discomforts, these discussions are vital.

Moreover, institutions must cultivate a culture of dialogic AI

use. Peer discussions, feedback loops, and governance structures

should normalize the critique of model outputs and create

shared accountability across teams. AI is not infallible—but used

wisely, it can extend human capabilities.

Cognitive alignment as a metric of
success

Currently, most models are judged by technical metrics: AUC,

precision, recall. But what about comprehension, adaptability, and

user confidence?

We propose that AI models—especially in cardiovascular care

—should be evaluated on a Cognitive Alignment Index (CAI),

incorporating:

• Comprehensibility: Do clinicians understand why the model

predicted this?

• Actionability: Does the output translate to a real-world clinical

choice?

• Feedback receptivity: Can the model incorporate user feedback?

• Context awareness: Does the model recognize its own limits?

• Trust shift: Does use of the model increase, decrease, or

recalibrate clinical trust?

Such metrics complement statistical ones, creating a more human-

centered evaluation framework. Regulators, journals, and funders

must expand their criteria to reward alignment, not just abstraction.

Operationalizing the cognitive
alignment index (CAI)

To enable systematic measurement, we propose a five-

component CAI scoring framework (0–5 points per dimension;

total range: 0–25, with higher scores indicating stronger

cognitive alignment):

• Comprehensibility—accuracy of clinician responses to

structured “explanation quizzes” with an answer key, testing

understanding of why the model predicted X.

• Actionability—percentage of AI-driven recommendations

resulting in guideline-concordant actions, attributable to the tool.

• Feedback Receptivity—measurable degree of model adaptation

or refinement following structured clinician feedback during

simulation or pilot deployment.

• Context Awareness—accuracy and frequency of self-reported

out-of-distribution or uncertainty flags in live use.
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• Trust Shift—change in clinician trust scores, measured pre/post

using a validated trust-in-automation scale.

CAI validation plan includes:

• Construct validity: Correlate CAI scores with independent

expert panel ratings of human–AI reasoning alignment in

standardized case reviews.

• Predictive validity: Test whether higher CAI scores are

associated with improved clinical endpoints (e.g., diagnostic

accuracy, treatment appropriateness) and enhanced human–

AI team performance (e.g., reduced decision latency, error

interception rate).

• Reliability: Assess test–retest stability over repeated evaluations

and inter-rater agreement when multiple evaluators score the

same AI system.

This operationalization ensures CAI is not just a conceptual

measure, but a reproducible, psychometrically robust index that

can guide both research evaluation and real-world

cardiovascular AI deployment.

To transition from conceptual framing to an actionable study

design, we propose an evaluation blueprint incorporating both

cognitive alignment and traditional performance metrics. In this

design, clinicians interact with either simulated patient vignettes

representing diverse cardiovascular scenarios or retrospective chart

reviews from longitudinal EHR datasets, making decisions with

and without AI support. Primary outcomes will include net

clinical benefit via decision-curve analysis, calibrated Brier score

for probabilistic accuracy, time-to-decision as an efficiency

measure, and override appropriateness (beneficial vs. harmful

overrides). Secondary outcomes will assess cognitive load using

NASA-TLX, usability through SUS or UMUX-Lite, and trust

calibration using validated pre/post trust-in-automation scales. For

temporal reasoning, we will adopt explicit benchmarks: rolling-

origin evaluation on longitudinal EHR data, robustness testing

with controlled missing-data omissions, and distribution shift

analyses across sites and time periods. This approach provides a

structured, reproducible framework for evaluating cardiovascular

AI on both technical merit and cognitive alignment.

Broader systems implications: from
product to policy

The call for cognitively aligned AI is not just a technical

challenge—it is a policy imperative. Hospitals investing in AI must

audit not only performance but adoption and experience. Health

systems must ask: Are clinicians using this tool as intended? Are

outcomes improving not just quantitatively, but qualitatively?

Medical liability frameworks must evolve to acknowledge

shared agency between humans and machines. Who is

accountable when an aligned AI tool offers sound advice, but

it’s ignored—or blindly accepted? Legal and ethical frameworks

must reflect the co-decision nature of AI-supported care.

Further, equitable AI development demands diversity not only

in data, but in design teams. Models aligned to one cultural or

epistemic framework may alienate others. Cognitive alignment

must extend to linguistic, regional, and professional diversity to

avoid digital colonialism in global health.

While cognitively aligned cardiovascular AI can help mitigate

rather than eradicate health inequities, risks such as automation

bias, clinician deskilling, fairness–performance trade-offs, and

distribution shift must be addressed. Counterfactuals and causal

simulations offer value but face identification and

transportability limits. Practical uncertainty methods—

distributional calibration, conformal prediction, ensembles—are

useful only if clinicians are guided on acting upon them in real

decisions. Balancing benefits with these trade-offs is essential for

safe and equitable adoption.

Cognitive alignment should also be embedded within

regulatory, privacy, and adoption frameworks. Alignment metrics

can complement existing Software as a Medical Device (SaMD)

regulatory pathways by meeting transparency expectations,

supporting post-market surveillance, and enabling auditability

through EHR logging of AI-influenced decisions. Privacy-

preserving training methods such as federated learning, differential

privacy, and homomorphic encryption can protect patient data, but

carry utility–privacy trade-offs, including potential accuracy loss,

increased latency, and additional governance requirements. Lessons

from early deployments underscore the importance of clear data-

use agreements, integration into existing clinical workflows, and

governance structures that maintain both technical performance

and clinician trust. Practical uncertainty handling—through

calibrated probabilities, conformal prediction intervals, or Bayesian

credible intervals—can further ensure that AI outputs are

communicated with appropriate confidence to support nuanced

clinical decisions.

Conclusion

The future of cardiovascular AI lies not in accumulating more

data or building deeper neural networks, but in fostering greater

understanding—between models and users, engineers and

clinicians, prediction and meaning. Cognitive alignment is not a

limitation; it is a catalyst for creating AI that is safe, trusted, and

ethically grounded. When AI systems reason with us—

narratively, temporally, and causally—they transcend the role of

mere tools and become genuine partners in care. Achieving this

vision requires designing models that reflect human reasoning,

developing interfaces that encourage interaction, training

clinicians to question rather than blindly follow AI, and

evaluating systems based on their capacity for comprehension,

not just calibration. In doing so, we shift AI from a silent oracle

to an engaged collaborator, from a black-box enigma to an

intelligible co-pilot. In the nuanced and high-stakes landscape of

cardiovascular care, this shift could mean the difference between

rejection and adoption, prediction and prevention, or even

between a risk score and a saved life. Rather than asking only

how accurate our models are, we must ask how well they think

with us—because in medicine, success depends not just on what

we know, but on how we think.

Joseph and Kartheeban 10.3389/fcvm.2025.1651324

Frontiers in Cardiovascular Medicine 08 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1651324
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Author contributions

JJ: Conceptualization, Writing – original draft, Writing –

review & editing. KK: Conceptualization, Writing – original

draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received

for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of

artificial intelligence and reasonable efforts have been made to

ensure accuracy, including review by the authors wherever

possible. If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

1. Karatzia L, Aung N, Aksentijevic D. Artificial intelligence in cardiology: hope for
the future and power for the present. Front Cardiovasc Med. (2022) 9:945726. doi: 10.
3389/fcvm.2022.945726

2. Ashraf T, Sultana R. Artificial intelligence the future of cardiology. Pak Heart J.
(2024) 57:77–8. doi: 10.47144/phj.v57i2.2798

3. Yao X, Rushlow DR, Inselman JW, McCoy RG, Thacher TD, Behnken EM, et al.
Artificial intelligence–enabled electrocardiograms for identification of patients with
low ejection fraction: a pragmatic, randomized clinical trial. Nat Med. (2021)
27:815–9. doi: 10.1038/s41591-021-01335-4

4. Pavlov M, Barić D, Novak A, Manola Š, Jurin I. From statistical inference to
machine learning: a paradigm shift in contemporary cardiovascular
pharmacotherapy. Br J Clin Pharmacol. (2024) 90:691–9. doi: 10.1111/bcp.15927

5. Bomfim V, Carvalho M, Santos A, Pires M, Magalhães M. The use of artificial
intelligence in predicting cardiovascular events in high-risk patients. Med Res Arch.
(2023) 11. doi: 10.18103/mra.v11i5.3860

6. Reddy S, Shaikh S. The long road ahead: navigating obstacles and building
bridges for clinical integration of artificial intelligence technologies. J Med Artif
Intell. (2025) 8:7. doi: 10.21037/jmai-24-148

7. Di Martino F, Delmastro F. Explainable AI for clinical and remote health
applications: a survey on tabular and time series data. Artif Intell Rev. (2023)
56:5261–315. doi: 10.1007/s10462-022-10304-3

8. Moreno-Sánchez PA. Improvement of a prediction model for heart failure
survival through explainable artificial intelligence. Front Cardiovasc Med. (2023)
10:1219586. doi: 10.3389/fcvm.2023.1219586

9. Youssef A, Fronk D, Grimes JN, Cheuy L, Larson DB. Beyond the black box:
avenues for transparency in regulating radiological AI/ML-enabled SaMD via the
FDA 510(k) pathway (2024). doi: 10.1101/2024.07.12.24309602

10. Szabo L, Raisi-Estabragh Z, Salih A, McCracken C, Ruiz Pujadas E, Gkontra P,
et al. Clinician’s guide to trustworthy and responsible artificial intelligence in
cardiovascular imaging. Front Cardiovasc Med. (2022) 9:1016032. doi: 10.3389/
fcvm.2022.1016032

11. DeGrave AJ, Cai ZR, Janizek JD, Daneshjou R, Lee S-I. Dissection of medical AI
reasoning processes via physician and generative-AI collaboration (2023). doi: 10.
1101/2023.05.12.23289878

12. Pradeep P, Caro-Martínez M, Wijekoon A. A practical exploration of the
convergence of case-based reasoning and explainable artificial intelligence. Expert
Syst Appl. (2024) 255:124733. doi: 10.1016/j.eswa.2024.124733

13. Alharbi Y. Artificial intelligence in cardiology: present state and prospective
directions. J Radiat Res Appl Sci. (2024) 17:101012. doi: 10.1016/j.jrras.2024.101012

14. Mooghali M, Stroud AM, Yoo DW, Barry BA, Grimshaw AA, Ross JS, et al.
Barriers and facilitators to trustworthy and ethical ai-enabled medical care from
patient’s and healthcare provider’s perspectives: a literature review (2023). doi: 10.
1101/2023.10.02.23296447

15. Salih A, Boscolo Galazzo I, Gkontra P, Lee AM, Lekadir K, Raisi-Estabragh Z,
et al. Explainable artificial intelligence and cardiac imaging: toward more
interpretable models. Circ Cardiovasc Imaging. (2023) 16:e014519. doi: 10.1161/
CIRCIMAGING.122.014519

16. Shah P, Shukla M, Dholakia NH, Gupta H. Predicting cardiovascular risk with
hybrid ensemble learning and explainable AI. Sci Rep. (2025) 15:17927. doi: 10.1038/
s41598-025-01650-7

17. Bilal A, Alzahrani A, Almohammadi K, Saleem M, Farooq MS, Sarwar R.
Explainable AI-driven intelligent system for precision forecasting in cardiovascular
disease. Front Med. (2025) 12:1596335. doi: 10.3389/fmed.2025.1596335

18. Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, et al.
Screening for cardiac contractile dysfunction using an artificial intelligence–enabled
electrocardiogram. Nat Med. (2019) 25:70–4. doi: 10.1038/s41591-018-0240-2

19. Narang A, Bae R, Hong H, Thomas Y, Surette S, Cadieu C, et al. Utility of a
deep-learning algorithm to guide novices to acquire echocardiograms for limited
diagnostic use. JAMA Cardiol. (2021) 6:624. doi: 10.1001/jamacardio.2021.0185

20. Fairbairn TA, Mullen L, Nicol E, Lip GYH, Schmitt M, Shaw M, et al.
Implementation of a national AI technology program on cardiovascular outcomes
and the health system. Nat Med. (2025) 31:1903–10. doi: 10.1038/s41591-025-03620-y

21. Mittal TK, Hothi SS, Venugopal V, Taleyratne J, O’Brien D, Adnan K, et al.
The use and efficacy of FFR-CT. JACC Cardiovasc Imaging. (2023) 16:1056–65.
doi: 10.1016/j.jcmg.2023.02.005

22. Poterucha TJ, Jing L, Ricart RP, Adjei-Mosi M, Finer J, Hartzel D, et al.
Detecting structural heart disease from electrocardiograms using AI. Nature. (2025)
644:221–30. doi: 10.1038/s41586-025-09227-0

23. Zeljkovic I, Novak A, Lisicic A, Jordan A, Serman A, Jurin I, et al. Beyond text:
the impact of clinical context on GPT-4’s 12-lead electrocardiogram interpretation
accuracy. Can J Cardiol. (2025) 41:1406–14. doi: 10.1016/j.cjca.2025.01.036

24. Anisuzzaman DM, Malins JG, Friedman PA, Attia ZI. Fine-tuning large
language models for specialized use cases. Mayo Clin Proc Digit Health. (2025)
3:100184. doi: 10.1016/j.mcpdig.2024.11.005

25. Lisicic A, Serman A, Jordan A, Jurin I, Novak A, Benko I, et al. Does ChatGPT-
4 succeed in the ECG interpretation: friend or foe to cardiologists? Europace. (2024)
26:euae102.655. doi: 10.1093/europace/euae102.655

26. Kagiyama N, Shrestha S, Farjo PD, Sengupta PP. Artificial intelligence: practical
primer for clinical research in cardiovascular disease. J Am Heart Assoc. (2019) 8:
e012788. doi: 10.1161/JAHA.119.012788

27. Vishwarupe V, Joshi PM, Mathias N, Maheshwari S, Mhaisalkar S, Pawar V.
Explainable AI and interpretable machine learning: a case study in perspective.
Procedia Comput Sci. (2022) 204:869–76. doi: 10.1016/j.procs.2022.08.105

28. Van Der Vegt AH, Scott IA, Dermawan K, Schnetler RJ, Kalke VR, Lane PJ.
Implementation frameworks for end-to-end clinical AI: derivation of the SALIENT
framework. J Am Med Inform Assoc. (2023) 30:1503–15. doi: 10.1093/jamia/ocad088

Joseph and Kartheeban 10.3389/fcvm.2025.1651324

Frontiers in Cardiovascular Medicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2022.945726
https://doi.org/10.3389/fcvm.2022.945726
https://doi.org/10.47144/phj.v57i2.2798
https://doi.org/10.1038/s41591-021-01335-4
https://doi.org/10.1111/bcp.15927
https://doi.org/10.18103/mra.v11i5.3860
https://doi.org/10.21037/jmai-24-148
https://doi.org/10.1007/s10462-022-10304-3
https://doi.org/10.3389/fcvm.2023.1219586
https://doi.org/10.1101/2024.07.12.24309602
https://doi.org/10.3389/fcvm.2022.1016032
https://doi.org/10.3389/fcvm.2022.1016032
https://doi.org/10.1101/2023.05.12.23289878
https://doi.org/10.1101/2023.05.12.23289878
https://doi.org/10.1016/j.eswa.2024.124733
https://doi.org/10.1016/j.jrras.2024.101012
https://doi.org/10.1101/2023.10.02.23296447
https://doi.org/10.1101/2023.10.02.23296447
https://doi.org/10.1161/CIRCIMAGING.122.014519
https://doi.org/10.1161/CIRCIMAGING.122.014519
https://doi.org/10.1038/s41598-025-01650-7
https://doi.org/10.1038/s41598-025-01650-7
https://doi.org/10.3389/fmed.2025.1596335
https://doi.org/10.1038/s41591-018-0240-2
https://doi.org/10.1001/jamacardio.2021.0185
https://doi.org/10.1038/s41591-025-03620-y
https://doi.org/10.1016/j.jcmg.2023.02.005
https://doi.org/10.1038/s41586-025-09227-0
https://doi.org/10.1016/j.cjca.2025.01.036
https://doi.org/10.1016/j.mcpdig.2024.11.005
https://doi.org/10.1093/europace/euae102.655
https://doi.org/10.1161/JAHA.119.012788
https://doi.org/10.1016/j.procs.2022.08.105
https://doi.org/10.1093/jamia/ocad088
https://doi.org/10.3389/fcvm.2025.1651324
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


29. Yang G, Zhang H, Firmin D, Li S. Recent advances in artificial intelligence for
cardiac imaging. Comput Med Imaging Graph. (2021) 90:101928. doi: 10.1016/j.
compmedimag.2021.101928

30. Engelhardt S, Dar SUH, Sharan L, André F, Nagel E, Thomas S. Artificial
intelligence in cardiovascular imaging and intervention. Herz. (2024) 49:327–34.
doi: 10.1007/s00059-024-05264-z

31. Lin M, Guo J, Gu Z, Tang W, Tao H, You S, et al. Machine learning and multi-
omics integration: advancing cardiovascular translational research and clinical
practice. J Transl Med. (2025) 23:388. doi: 10.1186/s12967-025-06425-2

32. Schepart A, Burton A, Durkin L, Fuller A, Charap E, Bhambri R, et al. Artificial
intelligence–enabled tools in cardiovascular medicine: a survey of current use,
perceptions, and challenges. Cardiovasc Digit Health J. (2023) 4:101–10. doi: 10.
1016/j.cvdhj.2023.04.003

33. Fortuni F, Ciliberti G, De Chiara B, Conte E, Franchin L, Musella F, et al.
Advancements and applications of artificial intelligence in cardiovascular imaging:
a comprehensive review. Eur Heart J Imaging Methods Pract. (2024) 2:qyae136.
doi: 10.1093/ehjimp/qyae136

34. Rane S, Bruna PJ, Sucholutsky I, Kello C, Griffiths TL. Concept alignment
(2024). doi: 10.48550/ARXIV.2401.08672

35. Holtman K. Demanding and designing aligned cognitive architectures (2021).
doi: 10.48550/ARXIV.2112.10190

36. Shen H, Knearem T, Ghosh R, Alkiek K, Krishna K, Liu Y, et al. Towards
bidirectional human-AI alignment: a systematic review for clarifications,
framework, and future directions (2024). doi: 10.48550/ARXIV.2406.09264

37. Sethi T, Kalia A, Sharma A, Nagori A. Interpretable artificial intelligence:
closing the adoption gap in healthcare. In: Barh D, editor. Artificial Intelligence in
Precision Health. Cambridge, MA: Elsevier Academic Press (2020). p. 3–29.
doi: 10.1016/B978-0-12-817133-2.00001-X

38. RoundtreeAK.AI Explainability, interpretability, fairness, andprivacy: an integrative
review of reviews. In: Degen H, Ntoa S, editors. Artificial Intelligence in HCI. Cham:
Springer Nature Switzerland (2023). p. 305–17. doi: 10.1007/978-3-031-35891-3_19

39. Chudasama Y, Huang H, Purohit D, Vidal M-E. Toward interpretable hybrid
AI: integrating knowledge graphs and symbolic reasoning in medicine. IEEE
Access. (2025) 13:39489–509. doi: 10.1109/ACCESS.2025.3529133

40. Walker SA, Pham A, Nizzero S, Kim M-G, Riter B, Bletz JA, et al. Education
and outreach in physical sciences in oncology. Trends Cancer. (2020) 7(1):3–9.
doi: 10.1016/j.trecan.2020.10.007

41. Patel D, Chetarajupalli C, Khan S, Khan S, Patel T, Joshua S, et al. A narrative
review on ethical considerations and challenges in AI-driven cardiology. Ann Med
Surg. (2025) 87:4152–64. doi: 10.1097/MS9.0000000000003349

42. Williamson SM, Prybutok V. Balancing privacy and progress: a review of
privacy challenges, systemic oversight, and patient perceptions in AI-driven
healthcare. Appl Sci. (2024) 14:675. doi: 10.3390/app14020675

43. Wang B, Li H, Guo Y, Wang J. PPFLHE: a privacy-preserving federated
learning scheme with homomorphic encryption for healthcare data. Appl Soft
Comput. (2023) 146:110677. doi: 10.1016/j.asoc.2023.110677

44. Sandeep B, Liu X, Huang X, Wang X, Mao L, Xiao Z. Feasibility of artificial
intelligence its current status, clinical applications, and future direction in
cardiovascular disease. Curr Probl Cardiol. (2024) 49:102349. doi: 10.1016/j.
cpcardiol.2023.102349

45. Thieme A, Hanratty M, Lyons M, Palacios J, Marques RF, Morrison C, et al.
Designing human-centered AI for mental health: developing clinically relevant

applications for online CBT treatment. ACM Trans Comput Hum Interact. (2023)
30:1–50. doi: 10.1145/3564752

46. Ennab M, Mcheick H. Enhancing interpretability and accuracy of AI models in
healthcare: a comprehensive review on challenges and future directions. Front Robot
AI. (2024) 11:1444763. doi: 10.3389/frobt.2024.1444763

47. Gruson D, Bernardini S, Dabla PK, Gouget B, Stankovic S. Collaborative AI and
laboratory medicine integration in precision cardiovascular medicine. Clin Chim
Acta. (2020) 509:67–71. doi: 10.1016/j.cca.2020.06.001

48. Kahraman F, Aktas A, Bayrakceken S, Çakar T, Tarcan HS, Bayram B, et al.
Physicians’ ethical concerns about artificial intelligence in medicine: a qualitative
study: “the final decision should rest with a human.”. Front Public Health. (2024)
12:1428396. doi: 10.3389/fpubh.2024.1428396

49. Pantelidis P, Dilaveris P, Ruipérez-Campillo S, Goliopoulou A, Giannakodimos
A, Theofilis P, et al. Hearts, data, and artificial intelligence wizardry: from imitation
to innovation in cardiovascular care. Biomedicines. (2025a) 13:1019. doi: 10.3390/
biomedicines13051019

50. Quer G, Topol EJ. The potential for large language models to transform
cardiovascular medicine. Lancet Digit Health. (2024) 6:e767–71. doi: 10.1016/
S2589-7500(24)00151-1

51. Seshia SS, Makhinson M, Phillips DF, Young GB. Evidence-informed person-
centered healthcare part I: do ‘cognitive biases plus’ at organizational levels
influence quality of evidence? J Eval Clin Pract. (2014) 20:734–47. doi: 10.1111/jep.
12280

52. Shamsuddin R, Tabrizi HB, Gottimukkula PR. Towards responsible AI: an
implementable blueprint for integrating explainability and social-cognitive
frameworks in AI systems. AI Perspect Adv. (2025) 7:1. doi: 10.1186/s42467-024-
00016-5

53. Pantelidis P, Oikonomou E, Gialamas I, Goliopoulou A, Sarantos S,
Zakynthinos GE, et al. Decoding the heart: how artificial intelligence is
transforming cardiology. J Med Artif Intell. (2025b) 8:9. doi: 10.21037/jmai-24-139

54. Ahmed S, Shaikh S, Ikram F, Fayaz M, Alwageed HS, Khan F, et al.
Prediction of cardiovascular disease on self-augmented datasets of heart patients
using multiple machine learning models. J Sens. (2022) 2022:3730303. doi: 10.1155/
2022/3730303

55. Chowdhury MA, Rizk R, Chiu C, Zhang JJ, Scholl JL, Bosch TJ, et al. The heart
of transformation: exploring artificial intelligence in cardiovascular disease.
Biomedicines. (2025) 13:427. doi: 10.3390/biomedicines13020427

56. Sun M, Liang C, Lin H, Chen Z, Wang M, Fang S, et al. Association between
the atherogenic index of plasma and left ventricular hypertrophy in patients with
obstructive sleep apnea: a retrospective cross-sectional study. Lipids Health Dis.
(2024) 23:185. doi: 10.1186/s12944-024-02170-5

57. Schneider-Kamp A, Askegaard S. The limits of artificial intelligence: prospects
and challenges in the clinical workplace. Curr Opin Epidemiol Public Health. (2025)
4:7–12. doi: 10.1097/PXH.0000000000000046

58. Poon AIF, Sung JJY. Opening the black box of AI-medicine. J Gastroenterol
Hepatol. (2021) 36:581–4. doi: 10.1111/jgh.15384

59. Von Eschenbach WJ. Transparency and the black box problem: why we do not
trust AI. Philos Technol. (2021) 34:1607–22. doi: 10.1007/s13347-021-00477-0

60. Raposo VL. The fifty shades of black: about black box AI and explainability in
healthcare. Med Law Rev. (2025) 33:fwaf005. doi: 10.1093/medlaw/fwaf005

61. Fritz Z. When the frameworks don’t work: data protection, trust and artificial
intelligence. J Med Ethics. (2022) 48:213–4. doi: 10.1136/medethics-2022-108263

Joseph and Kartheeban 10.3389/fcvm.2025.1651324

Frontiers in Cardiovascular Medicine 10 frontiersin.org

https://doi.org/10.1016/j.compmedimag.2021.101928
https://doi.org/10.1016/j.compmedimag.2021.101928
https://doi.org/10.1007/s00059-024-05264-z
https://doi.org/10.1186/s12967-025-06425-2
https://doi.org/10.1016/j.cvdhj.2023.04.003
https://doi.org/10.1016/j.cvdhj.2023.04.003
https://doi.org/10.1093/ehjimp/qyae136
https://doi.org/10.48550/ARXIV.2401.08672
https://doi.org/10.48550/ARXIV.2112.10190
https://doi.org/10.48550/ARXIV.2406.09264
https://doi.org/10.1016/B978-0-12-817133-2.00001-X
https://doi.org/10.1007/978-3-031-35891-3_19
https://doi.org/10.1109/ACCESS.2025.3529133
https://doi.org/10.1016/j.trecan.2020.10.007
https://doi.org/10.1097/MS9.0000000000003349
https://doi.org/10.3390/app14020675
https://doi.org/10.1016/j.asoc.2023.110677
https://doi.org/10.1016/j.cpcardiol.2023.102349
https://doi.org/10.1016/j.cpcardiol.2023.102349
https://doi.org/10.1145/3564752
https://doi.org/10.3389/frobt.2024.1444763
https://doi.org/10.1016/j.cca.2020.06.001
https://doi.org/10.3389/fpubh.2024.1428396
https://doi.org/10.3390/biomedicines13051019
https://doi.org/10.3390/biomedicines13051019
https://doi.org/10.1016/S2589-7500(24)00151-1
https://doi.org/10.1016/S2589-7500(24)00151-1
https://doi.org/10.1111/jep.12280
https://doi.org/10.1111/jep.12280
https://doi.org/10.1186/s42467-024-00016-5
https://doi.org/10.1186/s42467-024-00016-5
https://doi.org/10.21037/jmai-24-139
https://doi.org/10.1155/2022/3730303
https://doi.org/10.1155/2022/3730303
https://doi.org/10.3390/biomedicines13020427
https://doi.org/10.1186/s12944-024-02170-5
https://doi.org/10.1097/PXH.0000000000000046
https://doi.org/10.1111/jgh.15384
https://doi.org/10.1007/s13347-021-00477-0
https://doi.org/10.1093/medlaw/fwaf005
https://doi.org/10.1136/medethics-2022-108263
https://doi.org/10.3389/fcvm.2025.1651324
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

	Cognitive alignment in cardiovascular AI: designing predictive models that think with, not just for, clinicians
	Introduction
	The missing link: cognitive alignment
	Where current cardiovascular AI falls short
	Toward cognitively aligned cardiovascular AI
	Framework for the cognitive alignment index (CAI)
	Clinical implications: trust, ethics, and impact
	Discussion: reimagining cardiovascular AI as a cognitive partner
	The reality gap: models in the lab, decisions in the clinic
	Human factors and the design of cardiovascular AI
	Learning from failures: when alignment breaks down
	Beyond explainability: toward communicative AI
	Training for alignment: education and mindset
	Cognitive alignment as a metric of success
	Operationalizing the cognitive alignment index (CAI)
	Broader systems implications: from product to policy
	Conclusion
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


