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Atherosclerosis is a chronic vascular disorder characterized by the pathological
accumulation of lipids, inflammatory cells, and extracellular matrix within arterial
walls. With the escalating global incidence of atherosclerosis, the development
of more effective therapeutic interventions has emerged as a critical priority in
biomedical research. Conventional treatment modalities, encompassing
pharmacological agents and, endovascular interventions, have demonstrated
partial efficacy in disease management. However, their clinical utility remains
constrained by suboptimal therapeutic outcomes, treatment-related adverse
effects, and instances of therapeutic failure. In response to these limitations,
contemporary research has shifted focus toward novel therapeutic strategies
targeting molecular pathways and immunomodulatory mechanisms, aiming to
achieve enhanced precision and efficacy. This review synthesizes recent
innovations in atherosclerosis therapeutics. Notable advancements include
PCSK9 inhibitors and next-generation lipid-modulating agents, which have
shown significant promise in clinical trials by achieving substantial reductions in
atherogenic lipoprotein levels. Gene-editing technologies, particularly CRISPR-
based approaches, exhibit potential for halting disease progression through
targeted modulation of pro-atherogenic genes. Furthermore, emerging insights
into the regulatory role of microRNAs in atherosclerotic plaque formation and
instability have positioned miRNA-based therapeutics as a compelling frontier in
precision medicine for cardiovascular diseases.
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1 Introduction

Atherosclerosis is a chronic cardiovascular disease characterized by the convergence
of endothelial injury, lipid deposition, and chronic inflammatory response, manifesting as
multifocal changes that predominantly affect large and medium-sized arteries (1). The
World Health Organization (WHO) reports that atherosclerosis contributes to
approximately 1.7 million annual fatalities globally, representing nearly one-third of
all-cause mortality worldwide (2). As a leading contributor to cardiovascular morbidity
and mortality, atherosclerosis has emerged as a paradigmatic disease entity within the
spectrum of cardiovascular pathologies (3).
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The hallmark pathological manifestations of atherosclerosis
encompass lipid deposition within the arterial intima, focal
fibrotic proliferation, plaque formation, vascular wall stiffening,
and luminal stenosis, collectively resulting in end-organ ischemic
injury (4, 5). These pathophysiological processes are mediated
through dynamic interactions among low-density lipoprotein
(LDL), oxidized LDL (ox-LDL), endothelial cells, vascular smooth
muscle cells (VSMCs), and associated molecular mediators.

LDL and its oxidized derivatives constitute principal drivers of
atherosclerotic progression. Under pathological conditions, ApoB-
infiltrate
endothelium into the subendothelial space, where reactive oxygen
species (ROS) mediate their oxidative modification (6, 7). This
transformation generates ox-LDL, which accumulates within the

containing  lipoproteins compromised  vascular

arterial wall and initiates monocyte recruitment to the intimal
These
macrophages, perpetuating inflammatory cascades (8). Crucially,

layer. monocytes  subsequently  differentiate  into
ox-LDL exhibits high affinity for macrophage scavenger receptors
(e.g., CD36, LOX-1), enabling receptor-mediated internalization
(9). Progressive phagocytosis of ox-LDL drives macrophage foam
cell transformation, thereby facilitating necrotic core formation
and atherosclerotic plaque expansion (10, 11).

Endothelial cells maintain vascular homeostasis through dual
regulatory functions: (i) secretion of anti-angiogenic factors (e.g.,
nitric oxide) to suppress cellular proliferation, and (ii) production of
vasoconstrictive mediators (e.g., endothelin-1) to modulate vascular
tone (12-14). Concurrently, VSMCs and their synthesized collagen-
rich extracellular matrix confer structural stability to advanced
plaques, mitigating risks of plaque rupture and thrombotic
complications (15). These mechanistic insights have directly
informed current therapeutic paradigms targeting
vascular remodeling.

Statins, as competitive inhibitors of 3-hydroxy-3-methylglutaryl-
coenzyme. It is a (HMG-CoA) reductase, remain the cornerstone of
pharmacological management for atherosclerosis in clinical practice.
While the emergence of monoclonal antibody-based PCSK9
inhibitors has introduced a paradigm-shifting therapeutic strategy
(16), contemporary pharmacological interventions continue to face
significant clinical constraints.

Statin therapy is frequently complicated by dose-dependent
musculoskeletal toxicity, encompassing a spectrum from mild
myalgia (60%-70% of cases) to life-threatening rhabdomyolysis
(<0.1% incidence). Severe manifestations may precipitate acute
kidney injury, disseminated
mortality, with
definitive management approach for statin-associated muscle
symptoms (SAMS) (17). Although PCSK9 inhibitors demonstrate

favorable safety profiles

intravascular ~ coagulation, and

statin  discontinuation representing the sole

in clinical trials, their therapeutic
application is associated with transient adverse effects including
nasopharyngitis (10%-15%), injection-site reactions (5%-7%), and
upper respiratory infections (18-20). Furthermore, the cost of
PCSK9 inhibitors remains prohibitively high. Therefore, the
aforementioned deficiencies have largely restricted its wide
application in clinical practice. At present, the comprehensive
analysis systematically evaluates of intervention and therapy for
conventional

atherosclerosis: (1) Optimization protocols for
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pharmacotherapies; (2) Structural refinement strategies for next-
inhibitors;  (3)
currently under preclinical/clinical investigation. Therefore, through

generation Emerging therapeutic ~modalities
this tripartite evaluation, we aim to delineate actionable strategies
for overcoming current therapeutic limitations and inform future

translational research directions in atherosclerosis management.

2 Therapeutic challenges of traditional
therapies

Atherosclerosis is characterized by the formation of
atherosclerotic plaques. Targeting this pathologically character,
current clinical management primarily involves lifestyle
modifications and pharmacological interventions, including
statins, proprotein convertase subtilisin/kexin type 9 (PCSK9)
inhibitors, anti-inflammatory agents, and antiplatelet medications.

As a commonly used traditional medicine for atherosclerosis,
statins demonstrates therapeutic efficacy through significant
reduction of serum low-density lipoprotein cholesterol (LDL-C)
concentrations, thereby attenuating plaque development (21).
However, current pharmacotherapeutic approaches present several
clinical limitations: restricted cellular permeability, suboptimal
aqueous solubility, and diminished bioavailability significantly
compromise treatment outcomes (22). Furthermore, high-dose statin
regimens are associated with adverse effects including drug
intolerance, fatigue manifestations, and statin-associated muscle
symptoms (SAMS), while alternative non-statin therapies frequently
prove inadequate in halting disease progression (23).

These

need for

therapeutic challenges underscore the critical

developing novel strategies to enhance statin
pharmacokinetic profiles and optimize therapeutic outcomes in

atherosclerotic management.

3 Application of nanotechnology in
the optimization of traditional
interventions

3.1 The optimization of traditional statin
drugs by nanotechnology

The progressive evolution of nanotechnology has established
engineered nanoparticles as a promising platform in cardiovascular
therapeutics, leveraging their enhanced delivery efficiency, precise
target selectivity, and reduced off-target effects (24). To augment the
anti-atherosclerotic performance of statins, specialized nanocarrier
systems engineered for atherosclerotic microenvironments have
demonstrated superior therapeutic outcomes compared to
conventional free drug formulations (25, 26) (Figure 1).

Building on these developments, researchers pioneered a co-
delivery system integrating statins with nucleic acid therapeutics, and
revealed that anti-miR-33 exhibits dual functionality as both an
atheroprotective nucleic acid and a modulator of macrophage
phenotypic polarization (27, 28). Through covalent conjugation of
hydrophobic atorvastatin with synthetic tri-glucosyl-methyl chitosan

(TMC) via amide and ester linkages, the team achieved spontaneous

frontiersin.org



Wang et al. 10.3389/fcvm.2025.1652933
|
I
' .
| R rosmpeeir s miRNA-Target
|
P b e e e e - - = o 1
| o |
| I
les |
| |
. 1 Stain . _ _ BloodVessel Blood Vessel JI
_______________ 4
|
o I / l '
|
______ HDL _'_ _ oxiIDL' ,
FIGURE 1

Figdraw.

The anti-atherosclerotic performance of statins, specialized nanocarrier systems engineered for atherosclerotic microenvironments. Created using

self-assembly of cationic nanoparticles (GTANPs) in aqueous media.
enabled
encapsulation of anionic nucleic acid payloads (siBaf60a and anti-
miR-33 pDNA), yielding GTANPs/siBaf60a and GTANPs/pAnti-
miR-33 nanocomposites (29).

Subsequent electrostatic ~ complexation efficient

This innovative methodology provides valuable mechanistic
insights for advancing statin-based therapeutic strategies in
atherosclerosis through nanotechnology-enabled drug optimization.

3.2 Nanotechnology and atherosclerosis
imaging diagnosis

Molecular imaging technology enables high spatiotemporal
resolution visualization of rupture-prone or erosion-susceptible
atherosclerotic plaques, serving as a critical tool for both disease
discovery and diagnostic evaluation (30). Beyond their established
delivery efficiency, engineered nanoparticles exhibit nanoscale
dimensions and enhanced tissue penetrability (31). These intrinsic
properties empower nanoparticle-modified therapeutics to exploit
the unique vascular permeability of atherosclerotic lesions,
facilitating passive or ligand-directed active transport across
endothelial barriers for targeted accumulation at pathological sites
(31). Integration of these platforms synergistically enhances
diagnostic precision in atherosclerosis management.
clinical for atherosclerosis

Current imaging modalities

primarily encompass two paradigms: structural imaging (e.g.,
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MRI, CT) and functional imaging (e.g., PET, SPECT) utilizing
radiotracer-based techniques. However, these approaches exhibit
persistent limitations in differentiating vulnerable plaques from
stable (32-34).
Emerging strategies focusing on molecular engineering of contrast
agents their  plaque-specific
demonstrate potential for achieving superior diagnostic specificity.

lesions, particularly in early-stage disease

and enhancing accumulation

Iron oxide nanoparticles (IONPs), characterized by their
superparamagnetic properties, align their magnetic domains under
external fields and serve as potent MRI contrast enhancers. Recent
advancements confirm that surface functionalization of IONPs
with inorganic coatings significantly enhances biocompatibility
profiles while maintaining imaging efficacy (35). Such optimized
nanocomposites exhibit exceptional performance as theranostic
agents when integrated with MRI for atherosclerotic plaque
detection. Notably, ferumoxytol, currently the sole FDA-approved
nanoparticle for clinical imaging applications, has demonstrated
remarkable translational potential in this domain (36).

4 Therapeutic integration and future
perspectives of PCSK9 inhibitors in
atherosclerosis management

Since the beginning of the 21st century, scientific research
on atherosclerosis treatment has faced persistent challenges in
developing novel therapeutic interventions that combine

03 frontiersin.org
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enhanced efficacy with improved safety profiles and cost-
effectiveness (37, 38) (Table 1). Notably, the pandemic era has
accelerated interest in nucleic acid-based therapies, with
emerging research focusing on diverse non-coding RNA
species, including microRNAs, IncRNAs, circular RNAs, si-
RNAs, and tRNA-derived fragments, as promising therapeutic
targets (39).

4.1 Gene structure and functional
mechanisms of PCSK9

4.1.1 Gene structure of PCSK9

As a member of the proprotein convertase family, PCSK9
plays a pivotal role in protein hydrolysis activation, post-
translational modification, and regulation of secreted protein
degradation (40). Its structural architecture comprises three
distinct domains: an N-terminal signal peptide (SP, residues
1-30), a propeptide domain (PD, residues 31-152), and a
catalytic domain (CD, residues 153-426) (41).

The propeptide domain facilitates PCSK9 synthesis and
secretion through autocleavage-mediated maturation, while
maintaining post-secretion autoinhibition via non-covalent
binding to the catalytic domain. Functionally, the catalytic
domain features a conserved serine protease fold housing the
catalytic triad (His226, Asp374, Ser386), which is essential for

low-density lipoprotein receptor (LDL-R) binding (42).

4.1.2 Low-density lipoprotein receptor (LDL-R)
biology and pathogenic significance

The LDL-R, a transmembrane glycoprotein, is critically
involved in lipoprotein metabolism, with its genetic mutations
the of
hypercholesterolemia (FH) (43). Structurally, it consists of an

recognized  as principal  etiology familial
extracellular ligand-binding domain, an epidermal growth factor
precursor homology domain, and an O-linked glycosylation
region proximal to the transmembrane helix.

The transcriptional regulation of the LDL-R gene relies on two
TATA-like sequences and three conserved 16-bp direct repeats
Mechanistically, LDL-R

mediates circulatory lipoprotein clearance through -clathrin-

within its promoter region (44).

coated pit endocytosis. At physiological pH, its extracellular

domain adopts an extended conformation to capture

apolipoprotein B-containing lipoproteins (45).

10.3389/fcvm.2025.1652933

4.1.3 PCSK9-LDL-R interaction dynamics on
atherosclerosis management

Predominantly expressed in hepatic, intestinal, renal, and
neural tissues (46), PCSK9 exerts its primary lipid-modulating
by regulating LDL-R
membranes (47). Upon secretion, circulating PCSK9 engages
LDL-R at the
interactions (48). Under neutral plasma membrane conditions,
the catalytic domain of PCSK9 binds the EGF-A domain of
LDL-R with moderate affinity (Kd = 170-750 nM), forming a 1:1
stoichiometric complex (49, 50).

effects expression on hepatocyte

hepatocyte surface through pH-dependent

Following internalization, acidic endosomal conditions
enhance binding avidity by 150-fold through electrostatic
interactions between the positively charged C-terminal histidine-
rich domain (CHRD) of PCSK9 and the negatively charged
LDL-R (51). This
conformational shift disrupts receptor recycling, diverting the
PCSK9-LDL-R complex to lysosomal degradation (40, 52).

Recent advances in PCSK9 inhibitor development, particularly

ligand-binding  domain pH-driven

through integration with emerging biotechnologies, have
substantially expanded therapeutic strategies for atherosclerosis

management (Figure 2).

4.1.4 Nucleic acid drugs and gene editing drugs
Inclisiran, a first-in-class siRNA-based inhibitor, targets
PCSK9 mRNA for degradation, thereby mimicking natural
PCSK9 loss-of-function (LOF) and reducing PCSK9 levels (53).
Approved by the FDA in December 2021, inclisiran’s impact on
major adverse cardiovascular events is currently being evaluated
in the ORION-9, ORION-10, and ORION-11 clinical trials
with  established
cardiovascular disease (ASCVD), with primary completion
anticipated in July 2026. Meanwhile, Verve-101, the first
PCSK9-targeted gene-editing drug developed by
Therapeutics, is in Phase I clinical trials. In the FOURIER trial,
over three-quarters of enrolled patients had a history of

involving  individuals atherosclerotic

Verve

myocardial infarction (with the indicator event occurring a
median of 3.4 years prior), 19% had a history of non-
hemorrhagic stroke, and 13% had peripheral artery disease
(PAD). In contrast, the ODYSSEY OUTCOMES trial targeted a
more acute population, enrolling patients who had recently
experienced acute coronary syndrome. Despite this difference in
patient acuity, the average baseline LDL-C levels were similar
between the two trials: 92 mg/dl in FOURIER and 87 mg/dl in
ODYSSEY OUTCOMES (54-56). This single-course treatment

TABLE 1 Recent completed clinical trials with nucleic acid-based therapeutics.

Drug Trial Molecular Outcome metrics
phase target
Evolocumab | Phase IV PCSK9 Reduce low-density lipoprotein cholesterol levels to a median of 30 mg/dl (0.78 mmol/L) and lower the | Completed
risk of cardiovascular events.
Rosuvastatin | Phase IV HMG-CoA - Completed
Semantine | Phase III NMDA - On going
Alirocumab | Phase I PCSK9 There was a significant decrease in LDL-C and other related indices, and fewer adverse major events | Completed

occurred.
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Recent advances in PCSK9 inhibitor development, particularly through integration with emerging biotechnologies, have substantially expanded
therapeutic strategies for atherosclerosis management. Created using Figdraw.
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permanently silences the PCSK9 gene in the liver using a CRISPR-
Cas9-derived editing tool that introduces A-to-G base edits at
specific PCSK9 loci to disable gene function (57).

4.2 mRNA-based therapeutic strategies
targeting PCSK9

As an emerging therapeutic modality, mRNA technology has
demonstrated revolutionary potential across diverse disease
domains (58). The rapid clinical translation of highly efficacious
mRNA-based COVID-19 vaccines during the pandemic era has
particularly highlighted its therapeutic versatility.

Of particular interest in atherosclerosis management is
(IL-10), a potent
predominantly secreted by macrophages. This cytokine exerts

interleukin-10 immunomodulator

critical regulatory effects on inflaimmatory responses and
promotes tissue repair within atherosclerotic plaques (59, 60).
Capitalizing on these properties, predecessors pioneered a
macrophage-targeted nanoparticle delivery system for anti-
inflammatory mRNA therapeutics. Their innovative approach
utilizes pH-responsive, charge-switching polymeric nanoparticles
capable of precise delivery of IL-10-encoding mRNA to plaque-
associated macrophages.

Through comprehensive evaluation in a HFD model, this
platform addressed two key pharmacological challenges: (1)
overcoming the inherent instability and rapid systemic clearance
of naked mRNA, and (2) achieving sustained therapeutic effects

Frontiers in Cardiovascular Medicine

within the complex plaque microenvironment. These findings
hold dual significance—they not only establish a robust
mRNA-based
inflammatory processes but also provide a strategic framework

methodology  for modulation of local
for combining anti-inflammatory therapies with conventional

LDL-C-lowering interventions (61).

4.3 Efficacy and safety considerations of
optimizing long-term outcomes of PCSK9
inhibitors

The development of extended-action PCSK9 inhibitor

formulations aims to improve therapeutic adherence by
minimizing dosing frequency. Clinical surveillance data reveal
characteristic adverse event profiles, with musculoskeletal pain
(27.2%), nasopharyngitis (9.3%), transaminase elevation (6%),
and influenza-like symptoms (7.5%) representing the most
(62-64).

underscore the imperative for optimizing both pharmacological

frequently reported complications These findings

durability and safety parameters in PCSK9-targeted therapies.

4.3.1 Precision medicine approaches
Advancements in mechanistic understanding enable tailored
therapeutic strategies to bridge guideline-practice disparities.

Integrative ~ multi-omics  platforms, spanning  genomics,

transcriptomics, proteomics, and metabolomics, facilitate

comprehensive biomarker discovery and systems-level analysis of

frontiersin.org
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drug response heterogeneity (65). Such approaches empower: (1)
2

Prediction of protein-drug interactions and off-target effects; (3)

Identification of phenotype-specific therapeutic targets;

Stratification of patients for personalized dosing regimens (66-68).

4.3.2 Robust clinical validation frameworks
Large-scale multicenter trials are critical for wvalidating

therapeutic outcomes across diverse populations.

implementation strategies include: (1) Population diversification:

Key

Expanding enrollment to wunderstudied cohorts (geriatric,
gestational, high-comorbidity patients) to characterize long-term
safety profiles; (2) Geographic generalizability: Incorporating
multi-regional clinical practice data to ensure therapeutic
consistency across ethnicities and healthcare systems. This dual
focus on molecular precision and epidemiological rigor
establishes a sustainable paradigm for next-generation PCSK9

inhibitor development (Figure 3).

4.3.3 Clinical promise for lipid management of
PCSK9 inhibitor MK-0616

The current clinical strategy encompasses FDA-approved
monoclonal antibodies (evolocumab, alirocumab, bococizumab)

10.3389/fcvm.2025.1652933

and liver-targeted PCSK9 synthesis inhibitors (69). Among
emerging therapies, MK-0616, a potent oral macrocyclic peptide
PCSK9 inhibitor, demonstrates dual efficacy in reducing LDL-
cholesterol, non-HDL-cholesterol, apoB, and Lp(a), while offering
potential ~advantages alternatives
simplified dosing, enhanced patient adherence, and cost efficiency
(70). Preclinically, MK-0616 exhibited high PCSK9-binding
affinity (K;=5pM), safety,

bioavailability to support clinical translation. Phase 1 trials in

over injectable through

favorable and sufficient oral
healthy adults revealed that single oral doses achieved >93%
geometric mean reduction (95% CI: 84-103) in free plasma
PCSK9; notably, statin-treated participants receiving 20 mg MK-
0616 daily for 14 days showed a maximal 61% geometric mean

reduction (95% CI: 43-85) in LDL-cholesterol from baseline (71).

4.4 Pharmacological research on
trodusquemine

Vascular smooth muscle cells (VSMCs) have been extensively
studied as the primary cellular component implicated in the
vulnerability of carotid atherosclerotic plaques (72). The platelet-
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The development of molecular biology and the rigor of epidemiology
PCSK9 inhibitors. Created using Figdraw.
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derived growth factor receptor (PDGFR) family comprises two
principal isoforms, PDGFR-a and PDGFR-B, with studies
indicating that both PDGF ligands and their corresponding
receptors demonstrate significantly higher expression levels in
atherosclerotic vessels compared to normal controls (73-75).

4.4.1 PTP1B mediates dual pathogenic roles in
vascular pathophysiology

Protein tyrosine phosphatase 1B (PTP1B), a key regulatory
enzyme in tyrosine phosphorylation processes, has been shown
to critically modulate PDGF receptor signaling pathways.
Mechanistic studies reveal that PTP1B mediates PDGF/PDGFR
signal regulation in VSMCs through endocytic processing,
thereby suppressing PDGF-induced hyperactivation of VSMC
biological functions (76-78).

The elevated systemic PTP1B activity promotes macrophage
uptake of oxidized cholesterol through scavenger receptors,
facilitating their transformation into lipid-laden foam cells. This
cellular transformation accelerates arterial lipid accumulation and
potentiates pro-inflammatory responses within vascular tissues.

4.4.2 PTP1B targeting from molecular inhibition
to clinical atherosclerosis therapy

Experimental investigations using animal models, researchers
that PTP1B
apoptosis and suppresses smooth muscle cell migratory capacity

demonstrated upregulation induces cellular
in carotid arteries. Notably, KY266-treated mice (a selective
PTP1B inhibitor) exhibited significant reductions in pathology-
associated protein expression levels, correlating with attenuated
atherosclerotic progression. These findings collectively indicate
PTP1B’s critical regulatory role in atherogenesis and its potential
as a molecular target for therapeutic intervention (79, 80).

that binds
specifically to the primary binding site formed by a-helices 7
and 9 of PTPIB. This

reorganization of a-helices 7, 3, and 6, generating a secondary

Structural analyses reveal trodusquemine

interaction triggers structural
pocket with partial overlap to the exosite. The resultant
allosteric inhibition stabilizes the WPD loop in an open
conformation, effectively locking PTP1B in an inactive state
through dynamic domain rearrangements (80).

Recent translational research demonstrated trodusquemine’s
therapeutic efficacy. The compound is systematically evaluated
using peripheral blood leukocytes from 30 atherosclerotic
patients with confirmed coronary artery disease and 30 age-
matched healthy controls, showing consistent pharmacological
activity across disease states.

4.4.3 Phase status or translational challenges of
PTP1B

In current research, numerous novel PTP1B inhibitors
have emerged, including compounds such as BDB [3-bromo-
4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1], derivatives  of
2-(naphthalen-2-yl)-1,2,5-thiadiazolidin-3-1,1-dioxide, MSI-1436
PMM-1001, and 5-(naphthalen-2-yl)-
1,2,5-thiadiazolidin-3-one. However, despite their potential as

analogues  like
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therapeutic agents, these inhibitors remain at the experimental
stage, with no clinical trial data currently available (81-83).
However, a major limitation of PTP1B is its lack of specificity
and cellular permeability, posing significant challenges to clinical
translation (84). Most inhibitors target the catalytic active site,
resulting in non-specific inhibition across all protein tyrosine
phosphatases (PTPs). Consequently, developing novel strategies
to overcome these limitations, such as designing inhibitors with
enhanced membrane permeability and bioavailability, or
optimizing administration routes, is critically important (85, 86).
Future advances are expected to resolve these challenges,
enabling safer and more effective therapeutic applications of

PTP1B inhibitors in atherosclerosis treatment.

5 CRISPR-Cas systems as novel
therapeutic platforms for
atherosclerosis management

The CRISPR/Cas9 (Clustered Regularly Interspaced Short
Palindromic Repeats) genome editing platform has revolutionized
genetic engineering through its precision in manipulating
mammalian genomes. This technology has enabled unprecedented
capabilities in functional genomics research and therapeutic
development for monogenic disorders, positioning it as a
transformative modality in cardiovascular pathobiology (87, 88).

Although CRISPR/Cas9 technology demonstrates significant
therapeutic promise for atherosclerosis, associated risks,
including off-target effects, toxicity of delivery vectors, and
limited editing efficiency, require further investigation (89).

Among various CRISPR-Cas variants, the Type II CRISPR-
Cas system from Streptococcus pyogenes (SpCas9) remains the
most extensively characterized and widely utilized in biomedical
applications due to its high editing efficiency and programmable
specificity (87, 90). In a mouse model receiving AAV-CRISPR/
Cas9-mediated Ldlr gene correction, partial restoration of Ldlr
expression effectively improved the atherosclerotic phenotype,
resulting in reduced total cholesterol, low-density lipoprotein
cholesterol, and triglyceride levels, diminished macrophage
infiltration, and smaller plaques, with no significant off-target
effects detected (91).

In the presence of iron, hepatic kupffer cells (KCs) have been
shown to mediate critical metabolic processes under iron-replete
conditions, particularly through ABCAl-dependent transfer of
low-density lipoprotein-derived cholesterol to hepatocytes - a
key pathway in systemic lipid homeostasis (92). Complementing
these findings, mechanistic studies using the Huh7 human
that MFGES

mediated through its conserved FV/FVIII domains, significantly

hepatocyte model revealed overexpression,
correlates with enhanced coronary artery disease susceptibility
and atherogenesis progression (93).

Of vparticular clinical relevance, VERVE-101 represents a
breakthrough CRISPR-based therapeutic candidate utilizing
adenine base-edited mRNA combined with PCSK9-targeting
siRNA, delivered via an optimized lipid nanoparticle (LNP)
intravenous administration. This

system for single-dose
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innovative approach enables durable modulation of cholesterol
metabolism through precision genome editing (57).
Building on these findings, predecessors developed an AAV-

compatible ~ dCas9  repressor  system  (dSaCas9KRAB)
demonstrating efficient PCSK9 silencing in vivo, establishing
proof-of-concept for CRISPR interference strategies in

cardiovascular disease management (94). Further validation
comes from ANGPTL3 gene silencing experiments in murine
models, achieved significant reductions in atherogenic lipid
parameters including LDL-C and triglycerides (95, 96). These
collective advances underscore the transformative potential of
CRISPR/Cas9 systems in developing targeted therapies for
atherosclerosis (97).

6 MSC-based therapeutic strategies
for atherosclerosis management

Inflammation, a fundamental host defense mechanism against
pathogenic invasion, plays paradoxical roles in atherosclerosis
progression by mediating both protective and pathological responses
(88). Atherogenesis is intrinsically regulated through inflammatory
endothelial
dysfunction, and metabolic dysregulation across all disease stages
(98). Central to this process is endothelial cell (EC) dysfunction,
which manifests as impaired nitric oxide (NO) bioavailability due to

cascades that orchestrate immune cell activation,

eNOS (endothelial nitric oxide synthase) uncoupling - a hallmark
mechanism linking hemodynamic stress and lipid metabolic
disorders to atherosclerotic plaque development (13).

This pathophysiological continuum creates a self-perpetuating
cycle where chronic endothelial inflammation promotes plaque
vulnerability through matrix metalloproteinase activation and
necrotic core expansion. Therapeutic interventions targeting this
therefore critical

inflammatory-endothelial ~ axis represent

strategies for atherosclerotic plaque stabilization.

6.1 Therapeutic efficacy of mesenchymal
stem cells (MSCs)

Mesenchymal stem cells (MSCs), defined as multipotent
stromal cells with tri-lineage differentiation capacity and
immunomodulatory properties, have emerged as promising
biotherapeutic agents for atherosclerosis intervention (99, 100).
Their therapeutic efficacy stems from multimodal mechanisms:
(1) Anti-inflammatory reprogramming: MSC-secreted paracrine
factors (TSG-6, IL-10, TGF-B) induce macrophage polarization
toward the
cytokine storms in atherosclerotic lesions (101). (2) Plaque

M2 phenotype, attenuating pro-inflammatory
microenvironment modulation: Through dynamic crosstalk with
plaque-resident cells, MSCs regulate immune cell infiltration
profiles, reducing CD68+ macrophage density while increasing

regulatory T-cell populations (102-104). (3) Endothelial
homeostasis restoration: MSC-derived extracellular vesicles
enhance eNOS recoupling via miR-126-3p  delivery,

counteracting oxidative stress-induced EC apoptosis (105).
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These pleiotropic actions collectively stabilize vulnerable
plaques by increasing fibrous cap thickness (>65% vs. controls)
and reducing lipid core size (41.2% decrease, p<0.01), as
demonstrated in recent clinical-phase trials (102-105).

6.2 Functional mechanisms of MSCs

Emerging evidence has established an intricate link between
small extracellular vesicles (sEVs) and the functional properties
of mesenchymal stem cells (MSCs) (105, 106). These nanoscale
through the
bodies with the plasma membrane, serve as critical intercellular

vesicles, generated fusion of multivesicular

messengers containing bioactive cargo including mRNAs,
microRNAs, proteins, and organelle components. Experimental
evidence demonstrates that when MSCs are co-cultured with ox-
LDL-stimulated endothelial cells, they significantly upregulate
interleukin-8 (IL-8) and macrophage inflammatory protein-2
(MIP-2) expression, subsequently activating the endothelial
nitric oxide synthase (eNOS) system. This activation cascade
enhances nitric oxide (NO)

endothelial cell functionality (107).

Furthermore, MSC-derived Wnt proteins have been shown

production and improves

to activate the P-catenin-dependent Wnt signaling pathway,
endothelial cell through
reduction of oxidative stress (108). Notably, mechanistic

effectively mitigating apoptosis

studies utilizing MSCs derived from patients with
atherosclerosis and type 2 diabetes mellitus (T2DM)
have provided crucial insights into NF-kB-mediated

immunoregulatory pathways (109).

While current research in stem cell therapy continues to reveal
complex regulatory networks requiring further investigation,
particularly regarding factors modulating stem cell biological
MSC-based
therapeutic strategy for atherosclerosis management.

functions, approaches remain a promising

6.3 Key risks and limitations of MSCs

A major meta-analysis on MSC safety, integrating 62
randomized clinical trials (N =3,546 participants), revealed
significant risks including transient fever within 48 h post-
administration (OR 3.65, 95% CI 2.05-6.49, p<0.01) and
increased incidence of administration-site adverse events such
as bleeding, swelling, pruritus, pain, or local infection (OR
1.98, 95% CI 1.01-3.87, p=0.05) (110). Furthermore, MSCs’
high proliferative capacity and tumor-homing potential enable
recruitment into tumor microenvironments in response to
hypoxia or pro-inflammatory cytokines (e.g., IL-1B, TNF-a,
IFN-y). These
cancer-associated fibroblasts

tumor-associated MSCs differentiate into
(CAFs), which
angiogenic and immunosuppressive factors, including PDGF,
FGF, VEGF, IL-6, and IL-8, that promote cancer cell survival,

growth,

secrete pro-

angiogenesis, immunosuppression, tumor and

(111).
assessment of MSC therapy requires further clinical evaluation.

metastasis Consequently, comprehensive  risk
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7 Conclusion

As a
cerebrovascular

predominant pathology in cardiovascular and

systems, atherosclerosis manifests through

With
advancing insights into its etiological complexity, contemporary

intricate and multifactorial pathogenic mechanisms.

research has yielded novel therapeutic strategies demonstrating
superior efficacy to conventional approaches. These innovations
encompass three primary domains: (1) optimization of existing
treatment protocols, (2) development of next-generation
pharmacological agents, and (3) exploration of cutting-edge
interventions in gene therapy and regenerative medicine.

The

pharmaceutical development through its capacity for site-specific

advent of nanotechnology has revolutionized
drug delivery, significantly enhancing therapeutic targeting and
microRNAs

(miRNAs) have emerged as promising therapeutic targets, given

bioavailability at lesion sites. Concurrently,
their regulatory functions in critical atherogenic processes
including lipid homeostasis modulation, immunoinflammatory
response coordination, and vascular endothelial remodeling.
This paradigm shift in atherosclerosis management reflects a
progressive  transition from traditional pharmacological
interventions toward an integrated multidisciplinary therapeutic
framework. Future clinical approaches will likely emphasize the
synergistic integration of diverse treatment modalities,
potentially offering optimized therapeutic outcomes through

personalized combination therapies.
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