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Cardiogenic shock (CS) is a state of decreased cardiac output leading to 

systemic hemodynamic collapse and potential end-organ damage with an 

elevated risk of mortality. CS represents a heterogenous disease state with 

varying etiologies, severities, and hemodynamics. Several attempts have been 

made to characterize CS, including the Society of Cardiovascular 

Angiography & Interventions shock classification (SCAI), the American Heart 

Association (AHA) hemodynamic phenotypes, as well as other groups 

defining shock by underlying clinical factors and pathophysiology. Here, we 

review cardiometabolic shock, a complex and severe form of CS 

characterized by severe lactic acidosis and metabolic derangement, systemic 

inflammation with ischemia/reperfusion injury, persistent vasodilation despite 

hemodynamic support, and right heart failure, culminating in progressive 

end-organ failure and a downward spiral of cardiovascular instability. 

Understanding the components of pathophysiology underlying 

cardiometabolic shock may help to establish more accurate diagnosis and 

instituting prompt therapy in the management of this grave cardiac illness. 

The emerging roles of nitric oxide synthase inhibition, antioxidants, anti- 

inflammatory agents, proteomics, and artificial intelligence are discussed. 

Further studies are needed to fully understand cardiometabolic shock and to 

develop specific effective therapeutic targets.

KEYWORDS

cardiometabolic shock, cardiogenic shock, inflammation, lactic acidosis, mechanical 

circulatory support

Introduction

Cardiogenic shock (CS) is a complex hemodynamic state of diminished cardiac 

output and end-organ hypoperfusion, as a result of an acute insult to the heart, such 

as myocardial infarction (MI), myocarditis, or decompensated heart failure, often 

associated with hypoxia (1, 2). CS is typically thought of as a mechanical failure 

manifesting as decreased contractility of the myocardium, leading to decreased cardiac 

output and subsequent end-organ malperfusion. This form of shock has been typically 

thought of as mechanistically distinct from other forms of shock, such as obstructive 

or distributive shock. One of the hallmarks of all shock states includes systemic 

ischemia which overwhelms tissue ability to compensate via metabolic and vascular 

modulations. Once these systems are overwhelmed, homeostatic capacity is 

overwhelmed and typically leads to a rapid decline in organ function and subsequent 

worsening shock (3). However, growing evidence suggests that there is a large 
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metabolic and in)ammatory component of CS, particularly as the 

disease progresses (2, 4). Classically CS is characterized as having a 

“cold and wet” presentation with peripheral vasoconstriction 

leading to increased systemic vascular resistance (SVR) (1). 

Although re)ex vasoconstriction may temporarily improve 

coronary and systemic perfusion, the increased afterload 

eventually leads to further cardiac dysfunction through 

decreased cardiac output, decreased coronary perfusion and 

subsequent myocardial ischemia.

Despite the classical paradigm of depressed cardiac output 

leading to compensatory vasoconstriction with an elevated SVR, 

it is well established that the SVR may vary widely in patients 

with CS. Patients may exhibit a “warm and wet” profile with a 

paradoxically low or inappropriately normal SVR, which 

portends a greater mortality than CS with a high SVR (5). 

Hypotension and subsequent hypoperfusion may lead to 

significant lactic acidosis, which also has been associated with 

higher mortality in patients with CS (6, 7). These processes are 

a direct result from ischemia/reperfusion (I/R) injury from CS 

and are caused by the systemic oxidative stress and immune 

response (8). I/R occurs when cells undergo hypoxia which 

leads to impaired energy production, causing cell death and 

release of pro in)ammatory mediators (9). Evidence suggests 

that the inappropriately low SVR in CS may be mediated by 

cytokine release such as interleukin (IL)-6, IL-8, tumor necrosis 

factor-α (TNF-α), C-reactive protein (CRP), and other 

vasodilatory mediators such as nitric oxide (NO) (10, 11). These 

molecules have further been shown to have prognostic value 

regarding mortality in patients with CS (2). The prominent 

features of severe acidosis and metabolic derangement, profound 

hypotension without the compensatory rise in SVR, and 

activation of the in)ammatory signaling pathways found in cases 

of CS has led to the use of the terms “hemometabolic shock,” 

conveying the hemodynamic and metabolic components, and 

“cardiometabolic shock” signifying the cardiac etiology and 

subsequent metabolic consequences of shock. These two terms 

have been used interchangeably in current literature. For the 

remainder of the current document, we will be using the term 

“cardiometabolic shock” as this review will be limited to 

shock secondary to cardiac etiology. The cardiometabolic shock 

phenotype often represents a state of treatment-resistant shock, 

in which patients continue to deteriorate clinically despite 

mechanical and pharmacologic support. Cardiometabolic shock 

is a state that is currently poorly understood, as it has only 

recently been defined. Treatment options specific to this 

classification of shock remain unclear; however, early 

recognition and prevention of further deterioration of 

hemodynamic instability and end-organ dysfunction may lead to 

improved outcomes. The goal of this review is to further delve 

into cardiometabolic shock and discuss its unique 

pathophysiology and contributing characteristics through 

existing contemporary literature.

What defines cardiometabolic shock?

There have been multiple trials and guidelines to define and 

classify CS (12). Recently, the Society of Cardiovascular 

Angiography & Interventions (SCAI) proposed a staging system 

of CS from A to E, classifying CS into progressive stages based 

on clinical and hemodynamic criteria (13). According to the 

SCAI staging, stage A is an at-risk group, stage B “beginning” 

shock, and stage C the classic CS, with hemodynamic instability 

defined as hypotension with tachycardia that requires 

pharmacologic or mechanical support to aid in end-organ 

perfusion. Stage D is deterioration from stage C, needing 

multiple inotropes, vasopressors, or addition of mechanical 

circulatory support devices, while stage E represents the patient 

being in extremis with unstable hemodynamic status and 

cardiovascular collapse despite all instituted therapies. The 2017 

American Heart Association (AHA) Scientific Statement on 

Contemporary Management of Cardiogenic Shock describes 3 

hemodynamic phenotypes of CS in terms of peripheral 

circulation and volume status (12). In the AHA statement, 

patients who are “cold and wet” with increased SVR and 

pulmonary capillary wedge pressure (PCWP) are denoted as 

classic CS. “Cold and dry” CS (increased SVR and normal 

PCWP) represents an euvolemic patient with subacute 

decompensation of chronic heart failure. “Warm and wet” CS 

with low to normal SVR and elevated PCWP is described as 

mixed or vasodilatory CS. “Warm and dry” is not considered 

cardiogenic shock. Cardiometabolic shock (Figure 1) is best 

represented by the AHA “warm and wet” vasodilatory CS given 

its association with systemic in)ammatory response syndrome 

(SIRS), elevated nitric oxide synthase (NOS) expression, 

decreased SVR, and elevated mortality.

The CS subtypes were further stratified by Zweck et al. who 

used machine learning algorithms to identify and characterize 

clusters of patients within CS cohorts [Cardiogenic Shock Work 

Group Registry for both MI and heart failure (CSWG-MI and 

CSWG-HF respectively), and the Danish Retroshock MI 

Registry (DRR)] based on predictive variables. The authors 

described three CS phenotype clusters: non-congested CS, 

cardiorenal CS, and cardiometabolic shock (14). While the SCAI 

staging system re)ects disease severity throughout the duration 

of a hospitalization, the phenotype clusters characterize patients 

based on demographic and clinical characteristics as well as 

metabolic and hemodynamic variables at the time of initial 

presentation. Non-congested CS represented a relatively stable 

profile with lower heart rate and cardiac filling pressures, and 

relatively higher blood pressure. Cardiorenal CS was more 
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common in older patients with more comorbidities and higher 

pulmonary artery pressure and PCWP, as well as worse renal 

function secondary to shock. The cardiometabolic phenotype had 

substantially higher levels of lactate as well as end organ 

dysfunction and in)ammation. These patients had much more 

profound shock with lower mean arterial pressures (MAP), lower 

cardiac index (CI), and higher heart rate, when compared to 

those with non-congested or cardiorenal CS. The cardiometabolic 

shock profile also had higher rates of right ventricular (RV) 

failure with higher right atrial pressures and lower pulmonary 

artery pulsatility indices (14). Cardiometabolic shock had an 

elevated PCWP similar to other phenotypes of cardiogenic CS. 

Findings by Jentzer et al. added to further characterization of 

cardiometabolic shock, confirming higher levels of lactate, 

acidemia, transaminitis, poor renal function, and neutrophil- 

predominant leukocytosis in those with cardiometabolic shock. 

Though mean left ventricular (LV) ejection fraction did not differ 

between these subgroups of shock, the cardiometabolic phenotype 

was found to have highest rates of moderate or severe RV 

dysfunction, highest right atrial pressure, and lowest stroke 

volume/index, cardiac output/index, cardiac power output, and 

LV stroke work index. Another recent study by Soussi et al. 

differentiated four biomarker-driven CS phenotypes from two 

prospective CS cohorts and found an independent association 

between endothelial dysfunction and in)ammatory biomarkers 

with higher mortality (15). Comparison of the discussed CS 

phenotypes are summarized in Table 1.

Prognosis of cardiometabolic shock

Cardiometabolic shock is predominantly comprised of SCAI 

shock stages D and E, re)ecting the disease severity of this 

phenotype in the spectrum of CS. In the retrospective study by 

Zweck, the cardiometabolic shock cluster exhibited a higher 

mortality rate than the other CS subtypes, with a mortality of 

52%–56%, 10%–28% for non-congested CS, 32%–45% for 

cardiorenal CS, and 30%–50% for classic CS (12, 14, 16). The 

variation in mortality is accounted for by the range of 

mortalities for the respective CS subtypes in each of the used 

registries (CSWG-MI, CSWG-HF, and DRR) for the study. 

When stratified by each SCAI stage, the cardiometabolic shock 

phenotype had the highest mortality compared with the other 

phenotypes. This suggests that the increased mortality in 

cardiometabolic shock may be largely driven by the high 

prevalence of SCAI stage E among these cases. In addition, 

studies have consistently shown that the cardiometabolic shock 

phenotype has the highest mortality rates among all types of 

shock, cardiac or noncardiac (17–19). A study by Jentzer et al. 

demonstrated cardiometabolic shock to have an elevated one- 

year mortality compared to other forms of CS; with odds ratio 

2.6 vs. non-congested CS and 2.0 vs. cardiorenal CS (20). 

The elevated risk of mortality may be attributed to the complex 

and systemic pathophysiology associated with cardiometabolic 

shock (6, 21).

Pathophysiology of cardiometabolic shock

Distinguishing features of cardiometabolic shock is 

summarized in Figure 1 and include: (1) profound 

hemodynamic instability with persistent hypotension despite 

vasopressor support, (2) marked lactic acidosis and metabolic 

derangement, (3) evidence of systemic in)ammation, (4) 

development of right heart dysfunction, and (5) end organ 

damage involving renal and hepatic injury. While one unifying 

mechanism behind the pathophysiology of cardiometabolic 

shock has not been identified, and the presence of one or more 

of these factors may trigger each other in a vicious cycle, it 

would be important to understand these abnormal components 

within the context of CS for better risk stratification 

and management.

Profound hypotension and tachycardia

CS is a state of decreased cardiac output from an insult to the 

myocardium, leading to hypotension and hypoperfusion. In 

cardiometabolic shock, significant lactic acidosis and SIRS result 

in worsening vasodilation and decreased SVR, in contrast to 

compensatory vasoconstriction seen in the other CS subtypes 

(22). In classic CS, early I/R leads to the activation of the renin- 

angiogensin-aldosterone system (RAAS), which leads to 

vasoconstriction (9). However, unopposed systemic tissue 

damage from prolonged I/R injury can lead to inappropriate 

vasodilation (3). One of the mechanisms behind paradoxical 

vasodilation is thought to be due to the release of NO via 

inducible NOS (iNOS). Compared to other predominant 

constitutively expressed isoforms of NOS, neuronal NOS 

FIGURE 1 

Schematic illustrating the interconnected processes driving 

cardiometabolic shock including profound hypotension, lactic 

acidosis, systemic inflammation, right ventricular dysfunction, and 

multiorgan injury.
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(nNOS) and endothelial NOS (eNOS), iNOS is induced by 

in)ammation, infection, and endothelial damage. Another 

isoform of NOS and proposed subunit of nNOS, mitochondrial 

NOS (mtNOS), is constitutively present on mitochondrial 

matrix and inner membrane involved in oxidative 

phosphorylation. mtNOS been shown to also play a significant 

role in development of reactive oxygen species and apoptotic 

pathways under circumstances of physiological stress and 

in)ammation (23, 24). Following iNOS induction, the 

supraphysiological amount of NO generated by iNOS mediates 

massive arteriolar vasodilation and hypotension, as seen in 

septic shock (25). In the context of coronary ischemia, it has 

been shown that the NO production by the infarcted heart 

accounted for the increase of NO concentration in circulation 

(26). eNOS, by contrast, is mainly expressed in endothelial cells 

and cardiomyocytes, and regulates physiological actions of NO 

in several key aspects of cardiovascular homeostasis (27). 

Normal NO production from eNOS causes vascular smooth 

muscle relaxation, reduces oxidative stress, and inhibits platelet 

aggregation in a manner that is cardioprotective (28, 29). 

However, in patients with refractory CS, elevated levels of NO 

generated by iNOS are thought to lead to inappropriate 

vasodilation and coronary hypoperfusion, further exacerbating 

hemodynamic instability and treatment resistance. Thus, 

inhibiting iNOS action has been a subject of interest among 

those involved in the care of patients with refractory CS (30, 

31). In animal models, deleting iNOS genes improved coronary 

)ow and survival after MI (30). NO-derived agents, such as 

peroxynitrites, were also shown to decrease myocardial 

contractility, increase in)ammation, and induce further systemic 

vasodilation (29, 32). However, a randomized clinical trial 

testing the efficacy of NOS inhibition in patients with CS, the 

TRIUMPH (Tilarginine Acetate Injection in a Randomized 

International Study in Unstable Acute Myocardial Infarction 

Patients/Cardiogenic Shock) trial, demonstrated that tilarginine, 

a nonselective NOS inhibitor, did not alter mortality following 

MI (33). Whether the failure of the TRIUMPH trial to show 

benefit, in contrast to earlier smaller clinical studies with 

positive results, is due to the nonselective nature of NOS 

inhibition of tilarginine and concurrent suppression of 

cardioprotective eNOS activity, is unknown. The concept of 

phenotypes of CS with possible varying degrees of iNOS 

activity may also confound results as each phenotype may 

respond differently to these agents. Similarly, subgroup 

analysis of the stages of CS studies may provide further 

guidance as to the optimal timing and severity in which these 

agents are beneficial.

Higher heart rate is found in cardiometabolic shock, 

compared to other phenotypes of CS (14). All forms of shock 

lead to initial compensatory tachycardia via sympathetic 

activation to maintain cardiac output and SVR in the setting 

of global hypoperfusion (34). However, in cardiometabolic 

shock, tachycardia may be maladaptive, increasing myocardial 

demand and worsening the already poor cardiac function (5). 

While the exaggerated response of tachycardia may be in part 

due to the drop in stroke volume, significant metabolic and 

in)ammatory components may contribute to the pronounced 

tachycardia and the worse hemodynamic profile of 

cardiometabolic shock (35).

Lactic acidosis

Lactic acidosis has been identified as one of the defining 

features of cardiometabolic shock (14, 20, 21). Lactic acid is a 

well-established marker of hypoperfusion and tissue hypoxia, as 

its level rises with the extent of anaerobic metabolism in the 

setting of hypoxia or demand-ischemia and I/R, and its 

clearance hampered by poor perfusion (36). Metabolic acidosis, 

including lactic acidosis, has also been shown to decrease 

cardiac contractility and blunt vascular response to 

pharmacologic vasopressors (37). Acidosis itself has significant 

TABLE 1 Clinical, hemodynamic, and metabolic characteristics of cardiogenic shock phenotypes.

Classic/Vasoconstricted 
CSa

Non-congested/ 
Euvolemic CS

Cardio- 
renal 

CS

Cardiometabolic/ 
Vasodilatory CS

Profound hypotension and 

tachycardia

– ↔ ↑ ↑↑

Elevated lactic acid – ↔/↑ ↑ ↑↑

In)ammation – ↔ ↔ ↑↑

Right heart dysfunction – ↔ ↔ ↑↑

End organ dysfunction – ↔ ↑↑ ↑↑↑

Elevated pulmonary capillary wedge 

pressure

↑↑ ↔ ↑↑ ↑

Systemic vascular resistance/mean 

arterial pressure

↑ ↑ ↔ ↓↓

Cardiac output ↓ ↓ ↓ ↓↓

Mortality (in hospital 30-day) 30–50% 10–30% 30–50% 50–60%

Comparison of American Heart Association (AHA) hemodynamic phenotypes and machine learning derived clusters described by Zweck et al. The cardiometabolic phenotype, 

corresponding to vasodilatory/mixed CS, demonstrates the most profound acidosis, systemic in)ammation, right ventricular dysfunction, multiorgan injury, and the highest mortality 

when compared to other phenotypes.
aThe AHA definition of classic CS includes only hemodynamic parameters.
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effects on action potential and excitation-contraction coupling of 

myocytes, including desensitization of the ryanodine receptor, 

decreased calcium release from the sarcoplasmic reticulum, and 

subsequent attenuation of myocyte contractility (38). In 

addition, an acidic extracellular pH has been shown to decrease 

myocardial β-adrenergic receptor expression, a form of 

G-protein coupled receptors (GPCR), resulting in a lack of 

response to both endogenous and exogenous catecholamine 

stimulation (39). Normal receptor function signaling requires 

these GPCRs to interact with identical or non-identical 

receptors (homodimerization and heterodimerization, 

respectively) (40, 41). Changes in pH significantly affect the 

ability for GPCRs to dimerize, which helps to explain in part 

why cardiometabolic shock is more resistant to vasopressor and 

inotropic support (42). Similarly, lactic acidosis disrupts the 

intracellular calcium homeostasis of vascular smooth muscle 

cells and internalization of adrenoreceptors from the cell 

surface. This, in turn, causes vascular smooth muscle cell 

relaxation and vasodilation. Furthermore, lactic acidosis induces 

the expression of iNOS in vascular smooth muscle cells, adding 

to the vasodilatory effect (37). An elevated level of intracellular 

lactic acid also triggers a mitochondrial release of pro-apoptotic 

factors, such as cytochrome c. Increased cardiac myocyte 

apoptosis may worsen the ventricular dysfunction at the organ 

level. Indeed, acidosis has been shown to impact RV dysfunction 

as well as electrophysiologic abnormalities (43, 44). Hepatic 

injury caused by cardiometabolic shock impairs lactate clearance 

which acts to further impair myocyte function and lead to 

worsening shock.

Among patients with CS, the level of acidosis is associated 

with severity of shock and increased mortality (14). 

Cardiometabolic shock is most strongly associated with 

elevated lactate than with other metabolic variables examined, 

including elevated transaminases, electrolyte abnormalities, 

abnormal bicarbonate, and hematologic markers. This contrasts 

with the other phenotypes of CS which lack a robust 

correlation with lactate. Lactic acidosis and severe acidosis have 

also been shown to be independent predictors of mortality in 

cardiometabolic shock with an overall mortality of 64.8% vs. 

37.6% in patients without severe acidosis (6). An elevated 

admission lactate (>5 mmol/L) or acidemia (pH <7.2) were 

both independently associated with unadjusted in-hospital and 

30-day mortality (21). Treatment specific to resolve severe 

lactic acidosis is limited. Current literature suggests the benefit 

of bicarbonate treatment of severe metabolic acidosis as 

defined as pH <7.1 or serum bicarbonate <6 mEq/L (45). 

Specifically, 30-day mortality of patients with severe acidosis 

with concomitant acute kidney injury (AKI) was improved 

with bicarbonate infusion, along with decreased rates of renal- 

replacement therapy and vasopressor use (63% vs. 46% 

survival). In addition to bicarbonate therapy, renal replacement 

therapy (e.g., continuous renal replacement therapy, 

hemodialysis) can help alleviate metabolic acidosis. However, 

there is not enough evidence to date to suggest renal 

replacement therapy improves CS or mortality in intensive care 

unit patients (46, 47).

Systemic inflammatory processes

The landmark Should We Emergently Revascularize Occluded 

Coronaries for Cardiogenic Shock (SHOCK) trial investigated 

early revascularization vs. medical treatment in patients with LV 

failure following an acute MI and demonstrated a lower 

6-month mortality rate in patients with early revascularization 

compared to those with early medical stabilization. One-fifth of 

the patients with CS in the SHOCK trial demonstrated clinical 

signs consistent with SIRS (4). In such patients, the median SVR 

was lower compared to patients without SIRS independent of 

vasopressor use. Many of these patients remained culture- 

negative and free of culpable infection to explain the 

inappropriate response to CS, as decreased cardiac output 

should lead to compensatory systemic vasoconstriction and 

elevated SVR (12). Individuals with CS and signs of severe 

in)ammation were shown to have a higher mortality rate when 

compared to patients with CS without in)ammation or culture- 

negative sepsis (4, 6). This suggests a separate and compounding 

pathophysiology when CS is associated with severe 

in)ammation, with or without infection. During an acute MI, 

the normal immune response includes both a pro-in)ammatory 

phase as well as a reparative phase with tissue remodeling. 

Normal physiology has natural regulatory processes to suppress 

in)ammation, including by suppressing antigen presentation 

and T-cell deactivation in a process known as Compensatory 

Anti-In)ammatory Response Syndrome (CARS) (3). As this 

regulatory process interacts with SIRS, there is coexistence of 

both pro and anti-in)ammatory states, which can lead to more 

immune dysregulation in a period also referred to as Mixed 

Antagonistic Response Syndrome (MARS). MARS can exist as 

an equilibrium between these two forces but often represents a 

tenuous metabolic state which has the tendency to deteriorate 

once the system surpasses its compensatory capacity. This leads 

to deleterious processes including worsening ischemia/ 

reperfusion injury. In some circumstances, this can lead to 

increased susceptibility to infections despite a systemwide 

immune response, and also to vasodilation.

I/R injury cause cardiomyocyte death, leading to the release of 

intracellular contents and activating the innate immune system to 

promote in)ammation via complement and damage-associated 

molecular patterns (DAMPs) (48, 49). Cardiac fibroblasts release 

an array of in)ammatory cytokines and chemokines including 

IL-1 (α and β), IL-6, and TNF-α. IL-1 has been shown to be a 

major mediator of the in)ammatory response (50). IL-1α is seen 

to predominate the acute pro-in)ammatory phase, whereas IL- 

1β has been shown to reduce in)ammation and subsequent 

infarct size. IL-6 has been shown to have both pro- and anti- 

in)ammatory roles in acute MI and is a predominant circulating 

cytokine in patients with CS (20, 51, 52). It has early prognostic 

value to clinical outcome, including elevated mortality (11, 53). 

Patients with higher levels of IL-6 (>307 pg/ml) on admission 

are more refractory to mechanical circulatory support with 

worse clinical outcomes. Following implant of mechanical 

circulatory support, survivors of CS tended to have reduced IL-6 

levels while subsequent levels in non-survivors continued to rise 
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(54). Animal studies have shown that therapies antagonizing IL-6 

actions reduced cardiac dysfunction by decreasing systemic 

in)ammation (55). Overall, these data suggest IL-6 to be a 

promising potential therapeutic target in cardiometabolic shock 

in the setting of inappropriate systemic in)ammation.

The proin)ammatory state of cardiometabolic shock is 

regulated by multiple immune cell lines. Neutrophils as part of 

the innate immune system clear debris and dead tissue (56). 

There is a well-established post-injury neutrophil surge during 

the pro-in)ammatory state after an acute MI; however, 

prolonged neutrophil activity has been shown to lead to poorer 

prognosis after MI in animal models (22). Neutrophil to 

lymphocyte ratio (NLR) is a marker for systemic in)ammation, 

and higher NLRs have been shown to be associated with poorer 

survival in a variety of pro-in)ammatory states (57, 58). NLRs 

>3.36 after undergoing coronary artery bypass grafting was 

strongly associated with higher mortality (57). Lower NLR, on 

the other hand, suggests a clinically favorable trajectory. It was 

associated with earlier stages of SCAI, and patients on 

mechanical assist device support who had lower NLRs had 

lower mortality rates (59, 60). Monocytes also play a key role in 

in)ammation through their interactions with other cells via 

release of cytokines (e.g., IL-10, TNF-α) and reacting to 

in)ammatory markers by differentiating into terminal 

macrophages (61). The release of pro-in)ammatory cytokines 

such as TNF-α, IL-1, and IL-6 by neutrophils and monocytes 

have been shown to lead to the release of reactive nitrogen 

species, nitric oxide, and reactive oxygen species (ROS) during 

the process of phagocytosis (61, 62).

Another immune cell line relevant in the context of 

cardiometabolic shock is eosinophils whose functions involve 

tissue repair and remodeling (10). Eosinophils are recruited 

from the bone marrow and regulate the actions of IL-4 and IL- 

5, which help transition immune response to a reparative phase 

(63). Eosinophil levels increase in the serum post-MI and 

decrease after revascularization (10, 64). Severe eosinopenia 

following the initial spike in the serum level has been associated 

with higher rates of cardiac events and poor myocardial repair, 

while a delayed eosinophil surge has been suggested as a sign of 

dysregulated immune response associated with higher rates of 

re-infarction and death (64).

Regulatory T cells (Tregs) and differentiated macrophages are 

key to the resolution of in)ammation (22). Recruited by anti- 

in)ammatory mediators such as IL-10 and transforming growth 

factor beta (TGF-β), Tregs provide mechanisms for physiologic 

attempts of immune self-regulation and promote revascularization. 

Tregs have been shown to reduce myocyte apoptosis, contribute to 

cardiac regeneration in zebrafish, and facilitate cardiac repair by 

limiting negative remodeling in mice (65, 66). While limited 

clinical data exist on the role of Tregs in CS, a small observational 

study demonstrated that CS-non-survivors had the lowest levels of 

Treg cells and that the ratio between Treg and the pro- 

in)ammatory T cell subset, helper T type 17 (Th17) cells, was 

prognostic of mortality in patients with CS (67).

In sum, experimental and human studies in aggregate suggest 

a strong line of evidence that the exaggerated or dysregulated 

in)ammatory response plays a critical role in severe CS. While 

much research is needed to fully understand the role of 

in)ammation in cardiometabolic shock, the data to date opens a 

promising possibility of novel treatments in the modern era of 

rapidly advancing immunotherapy.

Reactive oxygen species

In)ammation and I/R injury contributes to the formation of 

ROS due to membrane destabilization (3). ROS have an 

important role in the cellular repair mechanisms, and participate 

in intracellular homeostasis and cell fate by triggering apoptosis 

in cells with significant damage (68). However, excessive 

oxidative stress from ROS generation can lead to severe and 

irreversible harm to cardiomyocytes. ROS production in 

cardiomyocyte mitochondria has been strongly associated with 

post-MI I/R injury and heart failure, with loss of viable 

cardiomyocytes via apoptosis, extracellular fibrosis, decreased 

myocyte contractility, and the eventual progression to heart 

failure (69, 70). Abnormalities in mitochondrial homeostasis 

have been implicated in various cardiac diseases, including 

ischemic heart disease (71). As lactate is actively oxidized in a 

hypoperfused state of cardiometabolic shock, high levels of ROS 

are produced in mitochondria, leading to oxidative damage (72). 

In CS patients, peak values of oxidized guanine species (OGS), a 

surrogate marker of ROS, were found within the first 24 h of 

CS. Non-survivors of CS were found to have OGS peak earlier 

and significantly higher levels of other surrogates of ROS, such 

as Cu/Zn-superoxide dismutase and total antioxidant capacity, 

compared to survivors (73). Inhibiting oxidative stress may 

result in improved outcomes in CS and a potential target for 

therapy in cardiometabolic shock. A pilot study by Guariento 

et al. evaluated autologous mitochondrial transplantation in 

pediatric patients with CS undergoing veno-arterial 

extracorporeal life support (VA ECLS) (74). Although a small 

study (24 patients), the authors demonstrated that 

cardiovascular events were lower in the mitochondrial 

transplantation group (20% vs. 79%; P < .01) in patients with 

severe refractory CS after ischemic reperfusion injury. Further 

studies are needed to delineate the role of oxidative stress in CS 

and cardiometabolic shock.

Occult infection

Infection may lead to further in)ammation and worsen the 

degree of shock, but early identification of infection in patients 

with cardiometabolic shock may be difficult. The clinical 

picture, laboratory values, and hemodynamic profile of patients 

with cardiometabolic shock share similarities with septic shock, 

including fever, leukocytosis with neutrophil predominance, and 

vasodilation with low SVR. In)ammatory biomarkers to support 

early suspicion of sepsis, such as CRP and procalcitonin, may 

lack clinical utility and further confound the diagnosis as 

patients with CS have similar peak values with or without 
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confirmed concomitant infection (75). Patients with CS are subject 

to multiple complications and undergo interventions that 

increase the risk of developing concomitant infection, such as 

pulmonary congestion, cardiac arrest requiring cardiopulmonary 

resuscitation, acute respiratory failure requiring mechanical 

ventilation, invasive access site and indwelling urinary catheter 

insertion. Clinical signs of SIRS may be present in as high as 

53.8% of patients with CS, likely higher in patients with 

cardiometabolic shock (75). In the SHOCK trial, culture positive 

sepsis was reported in 13.3% of patients (4, 76), and they 

represented the majority of SIRS-positive patients (74%); 

however, other studies have shown much lower rates of culture 

positivity, with only 4.1% of CS patients with SIRS having 

positive blood cultures (77). In a prospective observational study 

of 80 patients with CS, 37 (46.3%) were found to have infection 

(75). The median time to onset of infection was 48 h, with 

respiratory tract being the most common source of infection.

Not only is it difficult to determine if early stages of concomitant 

infection may be present, but the poor perfusion of cardiometabolic 

shock may contribute to the elevated risk of infection. Lower SVR in 

cardiometabolic shock has been associated with greater likelihood of 

culture-positive sepsis (4). Poor perfusion may lead to thinning of 

intestinal mucosa increasing intestinal permeability and translocation 

of bacterial endotoxin from intestinal )ora, further exacerbating 

hypotension (78–80). Likewise, sepsis may further exacerbate cardiac 

dysfunction and lead to worse outcomes. In septic shock, the RV has 

been noted to have increasing levels of dysfunction associated with 

higher mortality (81–83). While )uid resuscitation is a key aspect of 

overall management of patients with septic shock, it is likely to 

worsen cardiometabolic shock due to poor pump function, with 

greater preload further exacerbating myocyte dysfunction. Thus, 

although differentiating occult or frank infection in the presence 

of cardiometabolic shock can be confounding, it is a critical 

consideration in management of patients with CS.

The most critically ill patients being supported with VA-ECLS 

have been shown to have an increased risk of infection. Two thirds 

of patients supported by VA-ECLS develop a nosocomial infection, 

which may result in delayed cardiac transplantation or ventricular 

assist device implantation, facing increased risk of mortality (84, 

85). In comparison to patients in CS treated with medical therapy, 

initiation of VA-ECLS has been associated with immune system 

alterations, including increased immature circulating neutrophils, 

decreased C5a receptor expression, increased expansion of myeloid 

suppressive cells, T cell dysfunction, and increased pro- 

in)ammatory cytokines including IL-6, IL-8, TNF-α, and anti- 

in)ammatory cytokine IL-10 (86). Such changes in immune 

function result in immunosuppression and may contribute to the 

high rate of nosocomial infections in this already complex patient 

population. Additionally, this may help explain the refractory 

nature of cardiometabolic shock to mechanical support. It is 

unclear whether such alterations to the immune system are present 

with other forms of temporary mechanical support, and whether it 

would be of clinical relevance. Larger studies with a multimodal 

approach are needed to expand current understanding of the 

relationship between bacteremia, circulating endotoxin, and long- 

term outcomes in patients with CS.

Right heart failure

The decreased cardiac output in CS often leads to 

cardiovascular pulmonary congestion and subsequent elevation 

in right heart pressures. Such elevations in pressure and 

congestion worsen renal and hepatic injury, further exacerbate 

acidosis and in)ammation, and contribute to the vicious cycle 

underlying cardiometabolic shock. Among patients with CS 

receiving mechanical circulatory support, right ventricular 

congestion correlated with greater risk of mortality (87). 

Cardiometabolic shock more prominently exhibits right 

ventricular congestion and elevated right atrial pressures 

(RAP) > 15 mmHg, compared to other phenotypes of CS (14, 

88). The mechanism behind the propensity for development of 

right heart failure in cardiometabolic shock is multifactorial. RV 

dysfunction may be induced by elevated pulmonary pressures, 

metabolic derangements, and acidosis (43, 44). Elevated PCWP 

and pulmonary artery (PA) pressures are not the sole 

contributors to RV failure in cardiometabolic shock as the 

PCWP and PA pressures were not significantly higher compared 

to other CS phenotypes without associated RV failure (14). As 

described above, lactic acidosis, pro-in)ammatory state, and 

ROS may independently contribute to the subsequent RV failure 

associated with cardiometabolic shock.

Supporting patients with biventricular failure is expectedly 

more complex than patients solely with LV dysfunction. The 

presence of biventricular dysfunction is likely to contribute to 

the increased mortality in cardiometabolic shock (83). Regarding 

mechanical support, VA-ECLS is commonly utilized for patients 

with biventricular failure allowing for interventions and possible 

recovery (89). The use of VA-ECLS may be limited by several 

factors, including patient characteristics and comorbid 

conditions, vascular access, left ventricular dysfunction without 

a sufficient left ventricular venting strategy, and its elevated risk 

of complications. CS patients at risk of developing right heart or 

biventricular failure, such as those with cardiometabolic shock, 

may benefit from early pulmonary artery catheter placement, to 

provide continuous hemodynamic data and surveillance to 

prevent further deterioration, as well as provide a tailored 

approach to mechanical and pharmacologic support (90).

Hepatic injury

Hepatic injury in CS can be secondary to congestive 

hepatopathy and decreased end-organ perfusion from decreased 

cardiac output (91, 92). Hypoxic hepatitis and resultant acute 

liver failure from CS can lead to passive congestion, resulting in 

further hepatic dysfunction as well as renal failure. The presence 

of hepatic injury as part of multiorgan failure is an independent 

predictor of mortality (91, 93). Hepatic dysfunction predicts 

worsening CS and an increased need for the use of mechanical 

and inotropic support, as well as higher mortality as synthetic 

function of the liver drastically decreases (88, 94, 95). Patients in 

CS with hypoxic hepatitis have been shown to have 2.5 times 

higher mortality (96). RV failure commonly seen in 
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cardiometabolic shock worsens congestive hepatopathy, re)ected 

by transaminitis and coagulopathy. Oxidative stress from 

ischemic hepatitis and reperfusion injury further worsens 

hepatic function, and this added metabolic component of CS 

portends poor prognosis (92).

As stated above, hepatic dysfunction has been shown to reduce 

lactate clearance and prolong lactate normalization in septic shock, 

but the role of hepatic dysfunction in lactate clearance has not been 

adequately studied in cardiometabolic shock (97). Early hepatic 

dysfunction has been associated with higher absolute lactate levels 

(98). Additionally, acute liver failure can lead to worsening 

hypotension from splanchnic vasodilation, associated with 

development of cardiometabolic shock (95, 99, 100). To what 

degree the metabolic and coagulopathic abnormalities of hepatic 

dysfunction contribute to the distinct phenotype and increased 

mortality of cardiometabolic shock is unclear.

Acute renal injury

As with hepatic injury, AKI is seen in all forms of shock, 

including CS, primarily due to type 1 cardiorenal syndrome. In 

CS, decreased renal afferent )ow leads to subsequent activation of 

RAAS to increase volume retention and blood pressure via 

increasing preload (101). This in turn worsens CS further, as poor 

pump function makes increased preload maladaptive, often 

resulting in severe heart failure and impending hemodynamic 

collapse (101). Studies have demonstrated worsening of SCAI CS 

stage to be associated with worse renal and hepatic function as 

above, which may be worsened by metabolic dysfunction (102). 

While the cardiorenal phenotype of CS is seen with severely 

reduced glomerular filtration rate (GFR), cardiometabolic shock is 

associated with more moderately decreased renal function (14, 

103). Non-hemodynamic causes of cardiorenal syndrome have 

been shown to be due to in)ammation, sympathetic nervous 

system overactivation, and effect of cytokines such as TNF-α, IL-1, 

and IL-6 (101). These additional components may play a role in 

the progression of cardiometabolic shock and subsequent 

worsening of renal and cardiac function. Chronic renal 

replacement therapy has been shown to be beneficial in 

cardiorenal syndrome (104). Evidence is also emerging that the 

early use of continuous renal replacement therapy (CRRT) may 

improve mortality in cardiogenic shock with AKI, as shown in 

post-operative population (105). Further research is needed to 

confirm and expand the benefit of CRRT in initial stages of 

cardiogenic shock prior to the onset of metabolic derangements 

that may lead to cardiometabolic shock.

Future directions

Cardiometabolic shock represents a more severe type of CS, 

marked by treatment-resistant cardiovascular deterioration, 

maladaptive hemodynamic profile, profound lactic acidosis, 

systemic and vascular in)ammation, and multi-organ dysfunction. 

It has a high mortality rate, and interventions must include both 

pharmacologic and mechanical support to counter the complex 

underlying pathophysiology. The prominent features of lactic 

acidosis and in)ammation may in fact serve as possible targets for 

additional therapeutics for cardiometabolic shock (33). Further 

characterization of CS with biomarkers and proteomics may allow 

for an early identification of those at risk for developing 

cardiometabolic shock prior to decompensation. Specific molecular 

inhibitors of in)ammation and vasodilation may also be a 

potential future target. Redefining CS as a spectrum of disease that 

includes the cardiometabolic phenotype, and addressing the 

underlying pathophysiology allows for a more targeted approach to 

treatment for CS and may impact prognosis. Currently, many 

studies of CS are conducted using the SCAI staging designation 

and do not separate CS phenotypes in data collection or analysis. 

This limits data validity and applicability in studying and treating 

individual CS subtypes. The recent retrospective study by Zweck 

et al. demonstrates a machine learning algorithm identifying 

phenotypes that correlates with expert SCAI classification (106). 

Such promising further directions further stress the importance of 

dedicated prospective studies with delineated CS subtypes are 

needed to shed light on cardiometabolic shock. Additionally, larger 

studies dedicated to comparing CS with SIRS becoming culture 

positive compared to culture negative CS would be beneficial to 

differentiate CS with sepsis from cardiometabolic shock.

Proteomics also brings the discussion of further treatment 

options against various protein complexes with potential to 

reduce poor outcomes in cardiometabolic shock, with the use of 

artificial intelligence (AI) to determine which proteomes are 

more likely to have deleterious effects in CS pathophysiology. In 

one such example, a protein-based CS patient classifier, CS4P, 

was created for mortality risk assessment, using a large 

prospective European registry of patients with CS compared to 

IABP-SHOCK II trials (107). It includes 2,654 proteins 

identified by spectrometry proteomics, which are further 

analyzed using enzyme-linked immunosorbent assay (ELISA) 

and patient database for correlation with outcomes. Several 

protein complexes have been implicated in poor mortality in 

CS, including liver-type fatty acid-binding protein (L-FABP), 

fructose-bisphosphonate aldolase B (ALDOB), β-2 microglobulin 

(B2MG), and SerpinG1 protein (IC1). L-FABP is a cytosolic 

protein that participates in fatty acid transport to mitochondria 

and up-regulated in the setting of cellular damage. ALDOB is an 

enzyme involved in glucose metabolism in the liver and kidneys 

and upregulated in multisystem organ failure. B2MG is a 

protein expressed in all nucleated cells and involved in immune 

recognition with antigen presentation and is elevated in 

coronary artery disease (CAD) and atherosclerosis (108). IC1 is 

a protein involved with inhibition of the complement system, 

and has been shown to be cardioprotective after myocardial 

damage, and is inversely related to mortality in CS (109). In 

fact, IC1 has been investigated as a possible therapeutic target in 

patients with acute ST elevation MI to reduce reperfusion injury 

(107). Separate studies have included dipeptidyl peptidase 3 

(DPP3), which modulates cardiac contractility (110). DPP3 has 

been shown to be elevated in patients in refractory CS, 

including lower cardiac index, lower renal function, and higher 
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severity of CS (111, 112). Other studies have shown DPP3 to be an 

early predictor of outcome, with early clearance associated with 

improved outcomes (113). In this translational study, the hazard 

ratio of early mortality was 1.4 for mice with CS with poor 

clearance of DPP3. Recent studies have demonstrated a unique 

proteomic profile in patients with CS compared with patients 

with heart failure without CS (114, 115).

As seen with the identification and characterization of the CS 

phenotypes by Zweck et al., machine learning and AI will continue 

to provide further understanding and assist in the treatment of 

cardiogenic shock. As stated earlier, subsequent retrospective 

analysis using machine learning to classify cardiogenic shock 

phenotypes demonstrate consistency with the CSWG registry. AI 

allows mass data interpretation and analyses and can also help 

predict effects of peptide sequences in the field of advancing 

structural proteomics (116). Machine learning can also be used 

to interpret clinical and hemodynamic data to predict patient 

outcomes more effectively (117). In dynamic clinical settings 

involving critically ill patients, this type of tool will help tailor 

treatment strategies for patients with CS who may deteriorate to 

cardiometabolic shock with distinct pathophysiology. While AI 

can help us further understand disease processes as well as find 

novel therapeutics, it is currently limited by a need for a large 

set of data for accuracy and difficulty with widespread access.

Therapeutic targets

The unique pathophysiology of cardiometabolic shock allows 

possible therapeutic targets against its various components. 

Figure 2 illustrates a general framework of the development of 

cardiometabolic shock and potential therapeutics targeting 

specific aspects of its pathophysiology. Table 2 summarizes 

pathophysiology and potential therapeutic targets. Tachycardia 

and profound hypotension with congestion can be addressed with 

pharmacologic vasopressors (e.g., norepinephrine) or inotropes 

such as dobutamine or milrinone and mechanical circulatory 

support. The DanGer Shock trial demonstrated that use of a 

microaxial )ow pump in patients with cardiogenic shock from 

myocardial infarction (ST segment elevated) had improved 

mortality from all causes than standard care alone (118). 

However, the ECLS-Shock Trial did not demonstrate improved 

FIGURE 2 

Pathophysiologic framework and potential therapeutic targets in cardiometabolic shock. Acute insult to the myocardium (e.g., MI, myocarditis, acute 

heart failure, etc.) triggers myocyte necrosis, systemic inflammation, and subsequent hemodynamic collapse. Damage associated molecular patterns 

(DAMPs), complement activation, and pro-inflammatory cytokines drive this systemic inflammation, which act to further worsen myocardial 

dysfunction and end-organ damage. This worsening cardiac output leads to hypotension, poor perfusion, lactic acidosis, and ischemia/ 

reperfusion injury which reflect and exacerbate shock. Reactive oxygen species (ROS, inducible nitric oxide synthase (iNOS)-mediated 

vasodilation, and hepatic/renal injury reinforce the downward spiral through worsening metabolic and lactic acidosis, impaired lactate clearance, 

and metabolic derangement. Increased intracardiac pressure from myocardial dysfunction and subsequent systemic congestion further 

compromise end-organ function. Potential therapeutic interventions are highlighted, targeting inflammation (canakinumab, tocilizumab, 

corticosteroids, colchicine), oxidative stress (antioxidant therapy), nitric oxide signaling (tilarginine, L-NMMA), metabolic acidosis (Bicarbonate 

therapy, renal replacement therapy, and hemodynamic instability (mechanical circulator support). These strategies aim to interrupt the downward 

spiral of cardiometabolic shock and mitigate multiorgan failure.
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mortality with use of ECLS in patients with infarct-related CS who 

underwent early revascularization compared with patients without 

ECLS (119). Additionally, the use of vasopressors and inotropes 

have lacked evidence to suggest they improve outcomes (120). 

Profound hypotension is largely caused by massive vasodilation 

caused by cytokine and in)ammatory dysregulation. Several 

targets may include IL-6, IL-1B actions, and nonspecific anti- 

in)ammatory medications such as steroids or colchicine.

Tocilizumab is a monoclonal antibody targeting IL-6 and used 

in a variety of systemic in)ammatory states, including cytokine 

storm (121). Given acute MI is followed by vascular and 

myocardial in)ammation, recent studies have investigated 

outcomes with anti-in)ammatory therapies following MI (122). 

Further investigation of patients at risk for CS with dobutamine 

and tocilizumab [Low-Dose Dobutamine and Single-Dose 

Tocilizumab in Acute Myocardial Infarction with High Risk of 

Cardiogenic Shock (DOBERMANN Trial)] is targeting IL-6 to 

mitigate potential in)ammatory or neurohormonal effects on 

hemodynamic instability that may arise after acute MI. The 

Assessing the Effect of Anti-IL-6 Treatment in Myocardial 

Infarction (ASSAIL MI) Trial revealed that tocilizumab 

increased myocardial salvage as seen on magnetic resonance 

imaging (MRI) 3–7 days post MI compared to control in 

patients with acute MI (123). Canakinumab, a monoclonal 

antibody targeting IL-1B, has been studied in the Cantos Trial, 

in which patients with previous MI with a high CRP were 

treated with canakinumab, and has been shown to decrease the 

rate of recurrent cardiovascular events when compared to 

control groups (124). These agents have yet to be studied 

specifically in cardiometabolic shock or CS at large.

Low-dose steroid therapy is currently being studied in CS in the 

Low-Dose Corticosteroid Therapy for Cardiogenic Shock in Adults 

(COCCA) trial, as steroids demonstrated improved vasopressor 

sensitivity and improvement of arterial pressure (125). Similarly, 

colchicine, an anti-in)ammatory medication, has been studied after 

recent MI in the Colchicine Cardiovascular Outcomes Trial 

(COLCOT), which reported decreased risk of further 

cardiovascular events in the colchicine group when compared to 

placebo (126). L-NMMA, a selective NOS inhibitor, was studied in 

the treatment of CS and showed that arterial pressure increased 

within 10 min of administration, the increase sustained, and had 

increased urine output after 24 h of treatment (127). Such 

therapies may be of greater benefit to patients with CS in which 

in)ammatory and vasodilatory mediators play a significant role in 

poor outcomes. Early application of such therapies at the onset 

with early identification of cardiometabolic shock may ameliorate 

the potential for decompensation. As previously mentioned, 

hepatic and renal dysfunction may be improved by treating 

congestion. It would be beneficial to study the use of early renal 

replacement therapy to improve lactic acid clearance and renal 

dysfunction as a potential treatment for cardiometabolic shock. 

This may alleviate the progression of right heart dysfunction.

There has been ongoing investigation into antioxidant therapy, 

including α-lipoic acid, N-acetyl cysteine, )avonoids, quinones, and 

electrophiles to reduce oxidative stress on vascular and cardiac cells 

(128). Nanoparticles have been investigated as mechanisms for 

delivery of these antioxidants using liposomes, polymeric micelles, 

and conjugated polymers. Targets include activated endothelium 

and atherosclerotic arteries. Nanoparticle technology may open 

the door for targeted therapy in patients who are undergoing 

severe cardiac in)ammation and oxidative stress. Anti-oxidative 

treatments may warrant further investigation, given the role of 

ROS in the cardiometabolic shock profile, and the promise of 

nanotechnology delivering anti-oxidative molecules to decrease 

ROS damage to cardiac tissue. Additionally, there are potential 

proteome targets which have been associated with CS phenotypes. 

Consideration for CS phenotype should be evaluated in the 

outcomes of future CS trials at large.

TABLE 2 Therapeutic strategies in cardiometabolic shock: A comparison of pathophysiology, therapeutic targets, mechanisms, and outcomes.

Pathophysiology 
component

Therapeutic examples Mechanism of 
therapy

Reported outcomes Key 
references

Profound Hypotension/Low 

Cardiac Output

Vasopressors (norepinephrine), 

inotropes (dobutamine, milrinone); 

mechanical circulatory support (VA- 

ECMO, Impella)

↑Vasoconstriction, 

↑contractility, hemodynamic 

support

Hemodynamic improvement; no proven 

mortality benefit; DanGer trial showed 

reduced mortality with Impella; ECMO trial 

(ECLS-Shock) trial without improved 

mortality

(118–120)

Systemic In)ammation Tocilizumab (IL-6 inhibitor), 

Canakinumab (IL-1β inhibitor), 

corticosteroids, colchicine

Cytokine inhibition; anti- 

in)ammatory

Reduced in)ammation post-MI; mixed overall 

cardiovascular outcomes, not studied in 

cardiometabolic shock specifically

(121–126)

Nitric Oxide Dysregulation L-NMMA (selective NOS inhibitor), 

Tilarginine (nonselective NOS 

inhibitor

Inhibition of NO production: ↑ 

vascular tone

Improved BP hemodynamics but no mortality 

benefit for Tilarginine, L-NMMA showed 

improved MAP and UOP within 24 h

(127)

Metabolic/Lactic Acidosis IV bicarbonate, renal replacement 

therapy

Buffer acidosis, improve lactate 

clearance and improve response 

to vasopressor therapy

Improved survival in severe acidosis using 

bicarbonate; renal replacement therapy may 

improve acidosis but there is no clear mortality 

benefit in cardiogenic shock

(36, 45–47)

Oxidative Stress/ROS Antioxidants including α-lipoic acid, 

N-acetylcysteine, )avonoids, delivered 

nanoparticles, mitochondrial 

transplantation

Scavenge ROS, reduce oxidative 

damage

Early data for mitochondrial transplantation 

suggests clinical benefit in pilot studies, 

antioxidants show early/preclinical evidence of 

improved myocardial function

(74, 128)

Multiorgan Failure Early renal replacement therapy, 

decongestion with diuretics and renal 

replacement, supportive care

Reduce myocardial demand and 

congestive organ damage

Improved outcomes noted in select 

populations, limited evidence in 

cardiometabolic shock

(91, 93, 95, 105)
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Summary

This review delves into phenotypes of CS with a focus on 

cardiometabolic shock and demonstrates the high degree of 

heterogeneity in its spectrum of disease beyond cardiac 

hemodynamics. The profound hemodynamic instability of 

cardiometabolic shock is refractory to pharmacologic and 

mechanical support, which is largely contributed to by I/R injury 

characterized by metabolic dysfunction, in)ammation, excessive 

oxidative stress, and lactic acidosis which acts both as a marker of 

malperfusion as well as a deleterious agent on cardiac myocyte 

function. This myocyte dysfunction leads to right heart failure 

out of proportion to left heart failure, which further exacerbates 

metabolic dysfunction seen in renal and hepatic injury, which 

both are secondary and contribute to metabolic dysfunction. The 

cardiometabolic phenotype portends the highest mortality of 

subtypes of CS, and current practices do not properly identify or 

treat this subtype. Future and ongoing randomized trials that 

disregard this heterogeneity in phenotype and severity are likely 

to result in a null hypothesis, not identifying the patient subtype 

a specific intervention may benefit. Therefore, further randomized 

trials that control for CS phenotypes are necessary to investigate 

diagnostic criteria for cardiometabolic shock and novel therapies, 

which could potentially lead to improved mortality in these 

patients. Subcategories of contributing disease process should be 

investigated as it pertains to definitions or as approaches for 

therapeutic targets. Potential interventions include anti- 

in)ammatory medications like steroids, nitric oxide synthase 

inhibitors, and antioxidant therapy including nanoparticles as 

delivery devices to reactive oxygen species. Some tools (including 

proteomics, AI, etc.) being investigated have the potential to help 

differentiate therapeutic targets which can be individualized based 

on patient disease characteristics and manifestations, and to help 

identify patients with variant phenotypes.
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