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Background: Neonatal bradycardia often triggers transient escape rhythms that
challenge clinical diagnosis, with current methods lacking dynamic biomarkers
for risk stratification.

Objective: To validate the A pattern, a heart rate dynamic signature on time-RR
interval scatter plot, for distinguishing escape rhythms from transient sinus
bradycardia and predicting recovery timelines in neonates.

Methods: Retrospective analysis of 36 neonates (<28 days) with 24h
electrocardiogram (ECG) monitoring. Holter data identified A patterns (abrupt
>20% RR prolongation and >3s gradual recovery). Reverse-engineering ECG
validated rhythm origins. Survival models assessed A burden-prognosis correlations.
Results: 487 )\ patterns (15.5 + 3.2/neonate) were detected: 80.3% escape
rhythms, 19.7% sinus bradycardia. High A burden (>21/24 h) predicted delayed
recovery vs. low burden (<10/24h) [HR=4.22 (95% CI. 1.98-9.01),
p <0.0001]. All cases resolved spontaneously within 6 months.

Conclusion: The A pattern shows promise as a noninvasive biomarker for
stratifying neonatal bradycardia and shows potential to guide recovery
timeline prediction. Integration of this approach could optimize neonatal
arrhythmia management.
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1 Introduction

Bradycardia represents a relatively common arrhythmia in neonates (1). Neonatal
bradycardia is diagnosed when the heart rate falls below 100 beats per minute (BPM), with
etiologies broadly categorized into two mechanistic pathways: (1) suppression of normal
sinus node activity due to autonomic instability (non-cardiac factors), and (2) intrinsic
sinus node dysfunction caused by congenital structural anomalies, reversible perinatal
insults like hypoxia, severe infection or metabolic disturbances or sinoatrial conduction
block (2, 3).

When bradycardia or sinus arrest occurs, the most frequent compensatory mechanism is
escape rhythm (ER), a passive arrhythmia originating from the atrioventricular junction,
atrium or ventricle to maintain hemodynamic stability (4). In neonates, junctional ER
(JER) emerges as the predominant cardiac rhythm disturbance, typically demonstrating a
characteristic rate range of 80-120 BPM. This rhythm exhibits electrocardiographic
features including narrow QRS complexes (<80 ms duration) with regular RR intervals.
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While JER may transiently reflect physiological sinus node
immaturity, its persistence often signals underlying pathology
requiring clinical vigilance (5).

Conventional 12 lead ECG, limited by brief recording periods
(seconds to minutes), frequently fails to capture paroxysmal
JER episodes (6). This modality cannot assess circadian rhythm
variations or transient sinus node junctional pacemaker transitions.
Ambulatory ECG (AECG) monitoring resolves these limitations
through extended continuous recording (7, 8). Modern AECG
software further enhances diagnostic precision through analytical
tools including t-RR scatter plot, RR interval histograms, and heart
rate variability analysis (9). The t-RR scatter plots were constructed
by plotting RR intervals (the duration between consecutive
heartbeats) on the vertical axis against corresponding time points
on the horizontal axis, forming a sequential scatter plot
representation of cardiac rhythm dynamics (10, 11). The A pattern,
a novel electrophysiological signature observed on t-RR scatter
plots, reflects dynamic interactions between sinus node suppression
and compensatory escape rhythms.

Our preliminary investigations revealed a distinctive A shaped
signature on t-RR scatter plots in neonates with bradycardia,
reflecting dynamic interplay between suppressed sinus node activity
and the emergence of dominant escape rhythms from subsidiary
pacemakers. In this study, we integrated t-RR plot analysis with
reverse-engineering techniques. This approach enables targeted
retrieval and quantification of ECG segments that correspond to
specific scatter plot regions, particularly characteristic A patterns.
Such integration facilitates rapid and accurate clinical diagnosis. We
identified the 4 pattern in bradycardic neonates, defined by abrupt
heart rate reduction (manifested as RR interval prolongation)
followed by gradual rhythm normalization (sinus node recovery), as
a consistent electrophysiological signature across atrial ER (AER),
JER, and ventricular ER (VER) subtypes. Subsequently, we
conducted comprehensive analysis of clinical characteristics and
prognostic outcomes, establishing predictive value guiding clinical
management. By bridging transient arrhythmia phenomena with
actionable clinical insights, this work transforms A pattern analysis
from an observational curiosity into an effective diagnostic-
prognostic tool in neonatal cardiology.

2 Materials and methods
2.1 Population

This retrospective cohort study analyzed AECG recordings from
neonates (<28 days old) admitted to a tertiary neonatal intensive care
unit (NICU) between January 2018 and December 2022. Inclusion
criteria comprised: (1) >24h AECG monitoring for suspected
bradycardia or sinus arrest, and (2) availability of raw rhythm data
for t-RR scatter plot generation. Screening identified 52 eligible
neonates, with 16 excluded due to insufficient ECG data (n=9) or

Abbreviations
T-RR, time-RR interval; ECG, electrocardiogram; ER, escape rhythm; JER,
junctional escape rhythm; AECG, ambulatory ECG; BPM, beats per minute.
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monitoring <24 h (n =7), leaving 36 for analysis. AECG recordings
were initiated within 48 h of NICU admission. At the time of
recording, all neonates were hemodynamically stable (defined as no
requirement for vasoactive/inotropic agents). As detailed in Results
3.1, common indications included prematurity-related apnea,
suspected infection, and metabolic disorders. No patients received
(e.g.
monitoring. Retrospective consent was obtained via structured

autonomic modulators atropine, theophylline) during
telephone interviews with legal guardians using IRB-approved
scripts. All participants provided verbal consent documented in

medical records, with written confirmation mailed.

2.2 T-RR plot and reverse-engineering

AECG recordings were obtained using Holter monitors (CT-082,
Baihui Company Ltd. Hangzhou, China) and t-RR scatter plots were
generated using Holter analysis software (versionl.2, Baihui
Company Ltd. Hangzhou, China), with each point representing an
RR interval plotted against time (x-axis: elapsed time in hours;
y-axis: RR interval). Baseline was defined as the mean RR interval
during stable, non-bradycardic periods. The 4 pattern was defined
as a triangular cluster of points showing abrupt RR interval
prolongation [>20% above baseline (12)] indicating heart rate
deceleration followed by gradual gradual RR interval shortening
indicating rhythm recovery [>3s: based on sinus node recovery
time thresholds (13)]. The A patterns were reverse-engineered to
raw ECG segments through this workflow: Upon identifying A
coordinates within t-RR scatter plots using Holter analysis
software,

synchronized playback functionality —automatically

extracted corresponding ECG segments containing QRS
complexes. Two board-certified electrophysiologists subsequently
performed blinded, independent evaluation of these waveform

rhythm

classification was ultimately determined through consensus

segments using dual-monitor verification. Cardiac

adjudication applying established electrophysiological criteria.

2.3 Statistical analysis

Statistical analysis was performed using SPSS 26.0. Numerical
data were expressed as mean+SD, and categorical data were
expressed as percentages. A p-value <0.05 was considered
statistically significant.

3 Results
3.1 Cohort characteristic

The cohort comprised 36 neonates (male: 58.3%) with mean
gestational age 35.4 + 3.8 weeks (range: 28-41 weeks) and birth
weight 2.8 +0.7 kg. Critical comorbidities included: Respiratory
support: CPAP (n=11, 30.6%), mechanical ventilation (n=>5,
13.9%). Metabolic disturbances: hypoglycemia (n=7, 19.4%),
hypocalcemia (n=3, 8.3%). Hemodynamic status: 31 (86.1%)
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were asymptomatic; 5 (13.9%) had feeding intolerance. No
patients required vasoactive agents.

3.2 Rhythm characterization

The AECG showed that all infants exhibited transient
bradycardia, with a mean heart rate of 123 +30 BPM and a
nadir heart rate of 55 BPM. T-RR scatter plot analysis identified
487 )\ patterns (mean 15.5%3.2 per neonate). Reverse-
confirmed 391 (80.3%) ERs
(predominantly junctional origin) and 96 (19.7%) as transient

engineering A patterns as

sinus bradycardia (Figure 1).

3.3 Clinical outcome

Among 36 neonates with confirmed bradycardia, 8 cases
(22.2%) exhibited I to II degree atrioventricular block or
prolongation of the QT interval (I degree: 3, II degree: 2,
prolonged QT interval: 3), all resolving spontaneously within 6
months post-discharge (median recovery time 98 days). We

10.3389/fcvm.2025.1663243

constructed a scatter plot with A pattern counts as the x-axis
(using the maximum count from multiple Holter recordings
when applicable) and recovery duration as the y-axis. The
analysis revealed a significant positive correlation (Figure 2).

Following tertile-based stratification of neonates into A-pattern
burden groups [low (<10 episodes/24h), moderate (10-20
episodes/24 h), and high (>21 episodes/24 h)], Kaplan-Meier
analysis demonstrated a significant association between A-pattern
burden and delayed rhythm normalization (log-rank y*=22.39,
p <0.0001). Neonates in the high-burden group (>21 episodes/
24 h) showed a 4.22-fold increased risk of delayed recovery
compared to those in the low-burden group (<10 episodes/24 h;
Figure 3). Median recovery time differed substantially between
groups: 62 days (IQR 45-78) in the low-burden cohort vs. 121
days (IQR 89-152) in the high-burden cohort.

4 Discussion

Neonatal bradycardia, defined as a heart rate <100 bpm,
primarily stems from autonomic nervous system immaturity
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FIGURE 1
L pattern of neonatal bradycardia. The upper section displays the A pattern on the T-RR scatter plot, while the lower section shows the detailed
electrocardiogram corresponding to the A pattern obtained through reverse-engineering technology, and the numbers above the ECG represent
the instantaneous heart rate and the RR interval, respectively. Representative examples of 4 patterns from study cohort: (A) Transient sinus
bradycardia (Patient #12); (B) Junctional escape rhythm (Patient #27). 1RR interval = |Heart rate (Bradycardia), |RR interval = tHeart rate (Recovery).
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FIGURE 2
Association between A pattern counts and rhythm normalization
time. Each point represents an individual patient.
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FIGURE 3

Kaplan—Meier survival analysis of rhythm normalization time across

L pattern groups. The survival curve represents the probability of

patients remaining in arrhythmia over time. Groups are stratified

by A pattern: low (green line), moderate (blue line), and high (red

line).

during the perinatal period (2, 14). Characterized by heightened
vagal tone, this condition manifests through clinically observable
triggers including apneic episodes, feeding, and defecation (15).
While most instances exhibit benign self-limiting behavior,
recurrent bradycardic events warrant thorough investigation for
potential systemic stressors such as infection, sepsis or hypoxic-
ischemic injury (5, 16). ERs act as critical physiological
safeguards against severe bradyarrhythmias (17). Our study
introduces A-wave morphology, derived from T-RR scatter plot
analysis, as both a diagnostic biomarker and dynamic tracker of
sinus node dysfunction. This triphasic electrophysiological
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signature enables real-time assessment of sinus node
recovery capacity.
The 1 pattern demonstrates a distinctive biphasic

morphology characterized by a sharp heart rate deceleration
phase followed by gradual acceleration. This pattern physiologically
reflects  the primary
subsidiary cardiac pacemakers. Reverse ECG mapping analysis
confirms that this pattern signifies either escape rhythms or

dynamic interaction between and

transient sinus bradycardia, with the initial acceleration phase
corresponding to either the emergence of ERs (atrial, junctional,
or ventricular) during sinus node dysfunction or transient
sinus bradycardia triggered by autonomic fluctuations. The
subsequent deceleration phase marks sinus node functional
recovery through overdrive suppression of ectopic foci, a
process dynamically regulated by autonomic balance (18). This
mechanistic framework aligns with established electrophysiological
principles while introducing a novel noninvasive diagnostic
parameter—the A pattern. The integration of A pattern kinetics
with ECG reverse-mapping technology enables rapid, intuitive
bradycardia identification, representing a paradigm shift in
neonatal cardiac monitoring. Clinically, this advancement may
improve prediction accuracy for pacemaker requirements while
reducing unnecessary interventions in transient autonomic
dysfunction cases.

Furthermore, our retrospective cohort analysis revealed a
correlation between A pattern burden and both arrhythmia
severity (p <0.01) and recovery duration (p =0.003), potentially
positioning it as a potential prognostic biomarker. Quantitative
assessment of A pattern dynamics may provide an innovative
clinical framework for predicting recovery trajectories, bridging
critical diagnostic gaps
abnormalities, inflammatory cascades, and autonomic instability.

in detecting evolving conduction

This methodology could enhance diagnostic precision and

conservative management efficacy in neonates, enabling
personalized arrhythmia management strategies that optimize
both therapeutic precision and healthcare resource allocation.
This retrospective observational study has several limitations.
Given the moderate sample size (n=36), our findings require
validation in larger cohorts. While A-pattern burden suggests
prognostic utility, clinical applications should be cautious
The
prevents establishing causal relationships between A pattern
characteristics and clinical outcomes, while the >24h AECG

monitoring inclusion criterion introduces selection bias by

pending multicenter confirmation. design inherently

potentially excluding mild/asymptomatic cases. Single-center
enrollment limits generalizability to broader populations, and
methodological constraints include semi-automated A pattern
identification with inherent subjectivity, compounded by
incomplete therapeutic documentation that hindered precise
physiology treatment correlation. Universal standardized care in
our cohort precluded assessment of A specific therapeutic
external

effects, and the moderate

validation in larger cohorts. These limitations highlight the need

sample size requires

for prospective multicenter studies employing protocolized
and  detailed to verify
clinical applications.

monitoring therapeutic  records
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