
EDITED BY  

Olivier M. Vanakker,  

Ghent University, Belgium

REVIEWED BY  

Rihab Bouchareb,  

Temple University, United States  

Feng Xiao,  

Wuxi People’s Hospital Affiliated to Nanjing 

Medical University, China

*CORRESPONDENCE  

Lucie Hénaut  

lucie.henaut@u-picardie.fr

†These authors have contributed equally to 

this work and share first authorship

RECEIVED 11 July 2025 

ACCEPTED 05 September 2025 

PUBLISHED 24 September 2025

CITATION 

Issa N, Blot G, Candellier A, Boudot C, 

Louvet L, Kamel S, Bennis Y and Hénaut L 

(2025) Macrophages as key modulators of 

calcific aortic valve disease.  

Front. Cardiovasc. Med. 12:1664067. 

doi: 10.3389/fcvm.2025.1664067

COPYRIGHT 

© 2025 Issa, Blot, Candellier, Boudot, Louvet, 

Kamel, Bennis and Hénaut. This is an open- 

access article distributed under the terms of 

the Creative Commons Attribution License 

(CC BY). The use, distribution or reproduction 

in other forums is permitted, provided the 

original author(s) and the copyright owner(s) 

are credited and that the original publication 

in this journal is cited, in accordance with 

accepted academic practice. No use, 

distribution or reproduction is permitted 

which does not comply with these terms.

Macrophages as key modulators 
of calcific aortic valve disease

Nervana Issa
1†
, Gérémy Blot

1†
, Alexandre Candellier

1
,  

Cédric Boudot
1
, Loïc Louvet

1
, Saïd Kamel

1,2
, Youssef Bennis

1,3 

and Lucie Hénaut
1*

1UR UPJV 7517, MP3CV, CURS, Amiens, France, 2Department of Biochemistry and Endocrine Biology, 

Amiens University Hospital, Amiens, France, 3Department of Pharmacology, Amiens University 

Hospital, Amiens, France

Calcific aortic valve disease (CAVD), defined by thickening, fibrosis, and 

mineralization of the aortic valve (AV) leaflets, is the most common valvular 

heart disease worldwide. This progressive remodeling gradually impairs valve 

opening, obstructing blood flow. Without intervention, the resulting aortic 

stenosis (AS) causes hemodynamic deterioration that ultimately leads to heart 

failure and death. To date, therapeutic options remain limited, making valve 

replacement the reference treatment. While valvular endothelial and 

interstitial cells have traditionally been considered the primary drivers of the 

osteogenic program underlying AV remodeling, recent evidence highlights a 

central role for macrophages, whose plasticity profoundly impacts the local 

microenvironment. In their inflammatory state, macrophages release 

cytokines, generate oxidative stress, and secrete Bone Morphogenetic Protein 

2 (BMP2), which promotes the osteogenic transformation of valvular cells. 

The resulting calcium crystal deposition further amplifies macrophage-driven 

inflammation, creating a vicious cycle. Conversely, immunomodulatory 

macrophages can protect against CAVD by releasing pyrophosphate, a 

calcification inhibitor. However, these macrophages also secrete pro-fibrotic 

factors and may undergo myeloid-to-mesenchymal transition, processes that 

paradoxically contribute to AV fibrosis and mineralization. In addition, 

macrophages within the AV can differentiate into osteoclast-like cells, 

suggesting that a bone-like remodeling process occurs in the cardiovascular 

wall. This high phenotypic plasticity complicates our understanding of CAVD 

pathogenesis and highlights the need for deeper insight into macrophage 

functions to design effective preventive and therapeutic strategies. This review 

summarizes the mechanisms through which different macrophage subsets 

promote, prevent, or reverse AV remodeling, in both native and bioprosthetic 

contexts, and explores the therapeutic potential of targeting macrophages or 

their activity to slow AS progression.
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1 Introduction

Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease 
worldwide, characterized by progressive fibro-calcific remodeling of the aortic valve 

(AV) lea!ets, leading to lea!et thickening and impaired mobility. Over time, this 
process results in progressive narrowing of the AV opening, known as aortic stenosis 

(AS), which obstructs blood !ow across the valve. When hemodynamically significant, 
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AS increases left ventricular afterload, potentially causing left 
ventricular hypertrophy (LVH) and heart failure (HF). CAVD 

affects up to 5% of individuals over 65 and ranks as the third 
most frequent cardiovascular disease, after hypertension and 

coronary artery disease (1, 2). With an aging population, its 
prevalence is expected to double over the next 20 years, 

amplifying the socioeconomic burden (3). The disease 
progresses through a long latent phase marked by subtle 

molecular, cellular, and tissue-level changes that precede clinical 
symptoms. Because CAVD is typically diagnosed once 

hemodynamic impairment becomes apparent, opportunities for 
early therapeutic intervention are currently limited. Untreated, 

symptomatic CAVD carries a poor prognosis, and no 
pharmacological therapy has demonstrated efficacy in slowing 
disease progression. Consequently, aortic valve replacement 

(AVR)—either surgical (SAVR) or transcatheter (TAVR)— 
remains the only effective treatment. Improved understanding of 

early mechanisms may facilitate the identification of novel 
biomarkers and preventive strategies

A growing body of evidence implicates in!ammation as a 
central driver of CAVD pathogenesis. While elevated circulating 

levels of in!ammatory biomarkers such as TNFα, IL-8, and IL-6 
have been linked with disease development and prognosis (4, 5), 

increasing attention is now focused on local in!ammatory 
processes within the AV tissue that drive lea!et remodeling. 

Among immune cells, macrophages have emerged as key 
players. Present even in healthy valves as part of immune 

surveillance, they contribute both to the initiation and 
resolution of sterile in!ammation. Notably, their remarkable 

plasticity allows them to secrete pro- or anti-in!ammatory 
mediators, as well as regulators of fibrosis and calcification, 

making them critical modulators of valvular remodeling.
This review summarizes current knowledge on how distinct 

macrophage subsets promote, prevent, or reverse AV remodeling 
in both native and bioprosthetic contexts. It also discusses the 

therapeutic potential of targeting macrophages or their activity 
to prevent or slow the progression of AS.

2 Structure and function of the AV

The human AV is an avascular structure composed of three 
individual lea!ets anchored to a fibrous ring at the out!ow of the 

left ventricle. Each lea!et is composed of three distinct layers of 
extracellular matrix (ECM), named fibrosa, spongiosa, and 

ventricularis, lined on both sides by valvular endothelial cells 
(VECs) (6). The fibrosa, located on the aortic side, consists of 

dense type I and III collagen arranged circumferentially (7). On 
the ventricular side, the ventricularis contains radially aligned 

collagen and elastin fibers (8). Between these, the spongiosa is 
characterized by a high content of glycosaminoglycans. These 

ECM layers are mainly populated by valvular interstitial cells 
(VICs), but also contain fibroblasts, mesenchymal stem cells (9), 

and a minority of vascular smooth muscle cells (VSMCs, <5%), 
particularly near the ventricularis base (10, 11). VICs largely 

derive from endothelial-to-mesenchymal transition (EndMT) 

(12–15), but are also replenished by hematopoietic stem cells (16). 
These cells are highly plastic and can differentiate into 

myofibroblast-, chondrocyte-, osteoblast-, or adipocyte-like 
phenotypes in response to environmental stimuli, positioning 

them as central regulators of both valve physiology and 
pathological remodeling (17). In healthy valves, VICs typically 

display a quiescent fibroblast-like phenotype (qVICs), and are 
primarily involved in ECM turnover and collagen homeostasis.

3 Main processes involved in AV 
remodelling

CAVD is an active, tightly regulated cellular process that 

evolves through two interconnected phases: an initiation phase, 
marked by endothelial injury and dysfunction that trigger local 

in!ammation, and a progression phase, in which sustained 
in!ammation drives fibrosis and mineralization (18, 19).

3.1 Initiation phase

Mechanical stress during the cardiac cycle can injure VECs, 
disrupting the endothelium and basement membrane. This 

facilitates the entry of circulating components such as lipids and 
red blood cells (RBCs) and induces VECs expression of 

adhesion molecules including E-selectin, VCAM-1, and 
ICAM-1, which promote immune cell adhesion, rolling, and 

transmigration into the subvalvular tissue (20–22). Infiltrating 
monocytes and lymphocytes differentiate into macrophages and 

activated T cells, releasing pro-in!ammatory cytokines such as 
TGF-β, IL-1β, IL-6, and TNF-α. Exposure to RBCs stimulates 

VICs to produce in!ammatory mediators such as IL-6 and IL- 
1β, amplifying local in!ammation. In!ammation rapidly 

becomes a central feature of CAVD, with immune cell density 
often correlating with disease severity and tissue remodeling.

3.2 Main mechanism driving fibrosis

Fibrosis, which results from excessive ECM production, 

particularly of collagen (23), is primarily mediated by 
myofibroblasts. Within the AV, TGF-β is the strongest inducer of 

myofibroblast formation. Indeed, in response to TGF-β, quiescent 
VICs (qVICs) differentiate into activated VICs (aVICs) exhibiting 

a myofibroblastic phenotype characterized by the expression of α- 
smooth muscle actin (α-SMA). These aVICs proliferate and 

secrete matrix metalloproteinases (MMPs), driving ECM 
remodeling, lea!et thickening, and increased stiffness (18, 22, 24). 

In the early stages of CAVD, TGF-β also promotes EndMT, 
leading to the formation of myofibroblasts from VECs (15, 25). 

During this process, VECs downregulate their expression of 
endothelial markers such as CD31 and VE-cadherin, while 

upregulating mesenchymal markers like α-SMA. EndMT can also 
be induced by in!ammatory cytokines (e.g., IFNγ, IL-6, TNF-α, 
or LPS) (25), disturbed !ow patterns (26), and metabolic stressors 
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such as oxidized LDL or hyperglycemia (27). The presence of 
neovessels and in!ammatory infiltrates in sclerotic valves supports 

the view that lea!et thickening results at least in part from an 
active and chronic in!ammatory process (28–30).

3.3 Main mechanisms driving calcification

Over time, aVICs may gradually downregulate α-SMA and 
transition into osteoblast-like VICs (obVICs), acquiring the 

capacity to deposit a bone-like, calcifiable matrix. This calcification 
process is tightly regulated by the balance between inhibitors that 

prevent calcium phosphate (Ca/P) deposition and activators that 
drive VIC osteogenic differentiation. Key inhibitors include 

pyrophosphate (PPi), which directly interferes with hydroxyapatite 
formation, and matrix Gla protein (MGP) together with Fetuin-A, 

which stabilize calcium and phosphate ions into amorphous 
calciprotein particles (CPPs) to promote Ca/P clearance and 
prevent ectopic calcification (31–36). Activators include 

in!ammation, oxidative stress, and local elevations in calcium and 
phosphorus, all of which drive VICs transition toward obVICs 

expressing osteogenic markers such as Bone Morphogenetic 
Protein 2 (BMP2), Runt-related transcription factor 2 (RUNX2), 

and alkaline phosphatase (ALP). BMP2 induces RUNX2, a master 
transcription factor regulating osteogenic genes including ALP, 

osteopontin (OPN), type I collagen, and osteocalcin (OCN). ALP 
activity promotes mineral deposition by hydrolyzing PPi into 

inorganic phosphate (37). Accordingly, calcifying VICs exhibit 
high ALP activity and reduced PPi levels (38).

Osteoblast-like VICs release extracellular vesicles (EVs) 
enriched in pro-calcific ectonucleotidases such as ALP, ENPP1 

(ectonucleotide pyrophosphatase/phosphodiesterase 1), and 5′- 
nucleotidase (37, 39–42). ENPP1 and 5′-nucleotidase hydrolyze 

ATP to produce PPi, which is subsequently degraded by ALP 
(40, 41). Because ATP also acts as a survival signal via P2Y2 

receptors, its degradation by ENPP1 may favor VIC apoptosis 
(40). Apoptotic bodies, which resemble calcifying EVs, further 

contribute to matrix mineralization. In collagen-rich areas, EVs 
cluster to form macrocalcifications, whereas in collagen-poor 

areas, EVs remain dispersed, leading to microcalcifications (43). 
Annexin A1, a calcium-binding protein secreted by obVICs, 

facilitates EVs aggregation and calcification (44).
Early calcific nodules often co-localize with lipid-rich regions 

and consist of hydroxyapatite embedded within a matrix enriched 
in collagen, OPN, and other bone matrix proteins (20, 45). In 

advanced stages of CAVD, valve tissue may display cartilage- 
and bone-like features, including lamellar bone, hematopoietic 

marrow elements, neovascularization, and even microfractures 
(20, 46). These ossific changes markedly reduce lea!et 

compliance and accelerate stenotic progression.

3.4 Side-specific AV remodeling

Aortic valve remodelling predominantly affects the aortic side 

of the lea!ets, where cells and the ECM are exposed to complex 

and disturbed hemodynamic forces (47). On this side, shear 
stress induces the expression of endothelial adhesion molecules 

such as VCAM-1 and ICAM-1 via TGF-β1– and BMP-4– 
dependent pathways (48), thereby promoting monocyte 

adhesion, rolling, and infiltration. By contrast, these 
in!ammatory responses are absent on the ventricular surface, 

despite exposure to shear forces. This side-specific in!ammation 
is thought to arise from differences in local !ow dynamics, with 

relatively stable !ow on the ventricular side vs. disturbed !ow 
on the aortic side. Histologically, calcification occurs more 

frequently at the base and center of the valve than within the 
lea!et cusps (49), consistent with these regions experiencing 

greater mechanical stress, which contributes to age-related 
calcification (1, 50). Notably, in tricuspid CAVD, macrophages 
infiltration mainly occurs in the valve base and center, 

surrounding calcified regions (49), reinforcing the idea that 
macrophages may be key modulators of the calcification process.

4 From monocyte infiltration to 
macrophage differentiation

Once infiltrated into the lea!et, monocytes rapidly 
differentiate into macrophages that adopt distinct functional 

phenotypes depending on local cues. Th1 cytokines, such as 
interferon-gamma (IFN-γ), drive them toward a pro- 

in!ammatory profile characterized by the release of IL-1β, IL-6, 
TNF-α, IL-8 and reactive oxygen species. Three major signaling 

pathways are primarily involved in macrophages production of 
pro-in!ammatory cytokines. Activation of the MAPK pathway 

promotes the production of TNF-α and IL-6. Activation of the 
NF-κB pathway induces the expression of TNF-α, IL-6, IL-8, 

and the precursors pro-IL-1β and pro-IL-18. Subsequent 
activation of the NLRP3–pro-caspase-1 axis enables the cleavage 

of these precursors, resulting in the secretion of mature IL-1β 
and IL-18 (Figure 1A). Pro-in!ammatory macrophages are 

typically identified by the expression of CD11c, CD80, CD86, 
CD64, CD16 and CD32, with inducible nitric oxide synthase 

(iNOS) also serving as a marker. In contrast, Th2 cytokines 
(e.g., IL-4 and IL-13) drive macrophages toward an 

immunomodulatory phenotype, marked by the secretion of IL-1 
receptor antagonist (IL-1ra), IL-10, CCL22, TGF-β1 and 

alternative macrophage activation-associated CC chemokine-1 
(AMAC-1). CD163 and CD206 are key markers of 

immunomodulatory macrophages in humans. In mice, Ym1, 
Arg1, and Fizz1 are among the most widely used. Importantly, 

macrophages polarization is highly reversible: in vitro, cells can 
switch from one phenotype to another within 24 h when 

exposed to appropriate cytokines (51).
Macrophage infiltration is increased in calcified compared to 

non-calcified AVs (52). Interestingly, both pro-in!ammatory 
(TNF-α, IL-12α, and IL-6) and immunomodulatory (TGF-β1, 

IL-10, and AMAC-1) cytokines are upregulated in CAVD 
samples. Nevertheless, the pro-in!ammatory subset remains the 

predominant macrophage population in CAVD (52, 53), 
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FIGURE 1 

Inflammatory signaling in CAVD: role of pro-inflammatory cytokines. (A) Main signaling pathways involved in cytokine secretion by pro-inflammatory 

macrophages. (B) Key signaling pathways through which pro-inflammatory cytokines influence the phenotype of valvular cells. (C) Identification of 

the main inflammation-associated signaling pathways involved in the phenotypic transitions of VICs and VECs. Activation of NF-κB signaling (in 

particular by TNF-α and IL-1β) can suppress myofibroblast activation in VICs (182). NF-κB activation has also been reported to induce BMP2 (183) 

and RUNX2 (184) expression, thereby promoting VIC mineralization. In VICs, NF-κB signaling has further been associated with osteogenic 

differentiation, a phenomenon that seems linked to increased secretion of IL6 (128, 185). In addition, NF-κB activation has been linked to 

MMP12-mediated elastin degradation in response to IL-8, thus contributing to calcification (59). Moreover, Notch signaling has been shown to 

amplify NF-κB–induced BMP2 production in VICs (183). In VECs, activation of NF-κB signaling by TNF-α or IL-6 promotes EndMT, characterized 

by decreased VE-cadherin expression together with increased α-SMA and Snail expression (25). Beyond NF-κB, NLRP3 activation in VICs was 

recently demonstrated to promote RUNX2 and ALP expression, as well as the upregulation of inflammatory markers such as ICAM1 and VCAM1 

(186). In VICs, activation of the MAPK/ERK pathway by TNF-α favors deactivation and promotes osteogenic differentiation (56, 187). Finally, 

TNF-α–mediated activation of the Sam68 pathway has been shown to promote the osteogenic differentiation of aortic VICs (188).
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prompting researchers to suggest that this shift may be 
detrimental to valve health.

5 Impact of pro-inflammatory 
macrophages on AV remodelling

5.1 Role of inflammatory cytokines

Pro-in!ammatory cytokines are key drivers of ECM 

degradation, remodeling, and calcification (Figure 1B). TNF-α 
and IL-6 have been shown to upregulate BMP2 and RUNX2 in 

VICs, promoting their mineralization (30, 54–56). IL-1β 
stimulates VIC proliferation and the secretion of MMP1 and 

MMP2 (57). IL-18 induces NF-κB expression, myofibroblast 
transition, ALP activation, and mineralization in VICs (58). IL-8 

activates NF-κB in VICs, increasing MMP12 secretion and 
elastin degradation, thereby promoting VIC mineralization 

without affecting their osteogenic transition (59).
As a consequence, conditioned medium (CM) from pro- 

in!ammatory macrophages enhances VIC expression of several 
osteoblastic markers, including BMP2, ALP, and OPN, as well as 
their mineralization, compared to CM from unpolarized 

macrophages (52). These effects are blocked by neutralizing 
antibodies against TNF-α or IL-6, indicating that the pro- 

osteogenic action of pro-in!ammatory macrophages on VICs is 
mediated, at least in part, by TNF-α and IL-6. Interestingly, 

TNF-α and IL-1β in pro-in!ammatory macrophage CM can 
deactivate aVICs, reducing αSMA expression while 

simultaneously promoting proliferation (60). Notably, female 
VICs retain higher αSMA levels than male VICs following 

exposure to CM from pro-in!ammatory macrophages (56), 
suggesting a sex-specific sensitivity to macrophages activity. In 

2020, Grim et al. demonstrated that IL-6 in macrophages-CM— 
but not TNF-α or IL-1β—promotes aVICs differenciation 

toward obVICs, marked by increased nuclear translocation of 
RUNX2 and elevated OPN expression (60). More recently, Vélez 

et al. showed that TNF-α can also induce RUNX2 nuclear 
translocation, but only in primary VIC from women (56). These 

findings indicate that pro-in!ammatory macrophages may 
contribute to the transition from fibrosis to calcification in AS 

and highlight the importance of considering sex as a biological 
variable in AS research. Interestingly, CM from VICs isolated 

from CAVD samples reduced MMP-9 activity and increased 
type I collagen production in pro-in!ammatory macrophages 

compared to CM from healthy AVs, suggesting a bidirectional 
crosstalk in which macrophages promote the transition of qVICs 

into aVICs, which in turn enhance the pro-fibrotic properties of 
macrophages (61).

In vitro, IL-6 and TNF-α induce EndMT of primary VECs and 
promote cell invasion in a dose-dependent manner via an Akt/NF- 

κB–dependent pathway (25). Accordingly, it is conceivable that 
local macrophage-driven elevations of TNF-α and IL-6 may 

contribute to fibrosis and calcification by promoting EndMT. 
Investigating the effects of CM from pro-in!ammatory 

macrophages on EndMT could help validate this hypothesis. 

Furthermore, Xian et al. demonstrated that M1 macrophages 
markedly increased endothelial expression of VLA4/VCAM-1 

(adhesion molecules mediating leukocyte–endothelium 
interactions) and RAC1/p-PYK2/p-VE-cadherin (signaling 

molecules regulating cytoskeletal dynamics, kinase activity, and 
endothelial permeability), accompanied by a significant increase 

in endothelial permeability (62). Confirming these findings, they 
observed a substantial presence of M1 macrophages in AVs 

from rats with rheumatic heart disease, associated with elevated 
VLA4/VCAM-1 and RAC1/p-PYK2/p-VE-cadherin expression, 

suggesting that M1 macrophages may amplify immune cell 
infiltration by compromising VEC integrity. However, as in 

many other studies, the endothelial cells used in this study were 
derived from human umbilical veins rather than from valvular 
endothelium. Importantly, recent transcriptomic (63) and 

functional (64) analyses show that vascular endothelial cells 
differ substantially from VECs, indicating that results obtained 

with generic vascular endothelial cells may not be directly 
translatable. Future studies should prioritize the use of primary 

VECs to accurately investigate their crosstalk with macrophages. 
The main signaling pathways associated with pro-in!ammatory 

remodeling are shown in Figures 1B,C.

5.2 Intrinsic osteogenic activity of pro- 
inflammatory macrophages

Pro-in!ammatory macrophages exhibit constitutive activation 
of BMP-2-dependent signalling pathways (65), suggesting the 

existence of an auto/paracrine mechanism in which BMP-2 
secreted by pro-in!ammatory macrophages sustains constitutive 

BMP-2 signalling in neighbouring cells. Supporting this 
hypothesis, the use of an antibody targeting BMP2 prevented 

the induction of ALP expression in human mesenchymal stem 
cells by CM from pro-in!ammatory macrophages (66). Cellular 

Communication Network Factor 3 (CCN3) appears to regulate 
macrophage BMP2 production, since bone marrow-derived 

macrophages (BMDMs) from CCN3-deficient mice exhibit 
increased BMP2 synthesis and secretion (67). CM from these 

macrophages promoted VIC osteogenic transition and 
mineralization, an effect blocked by BMP2 neutralization. 

Consistently, mice with myeloid-specific CCN3 deficiency 
display exacerbated valvular calcification and dysfunction (67). 

Together, these findings identify CCN3 as a potential anti- 
calcific factor through its regulatory role in macrophage 

osteogenic activity and suggest that targeting BMP2 may 
represent a promising strategy to prevent macrophage-induced 

valvular calcification.

5.3 Role of macrophages-derived EVs

In 2022, Xia et al. demonstrated that pro-in!ammatory 

macrophages communicate with VICs via EVs secretion (68). 
Internalization of these EVs significantly increased calcium 

nodule formation and the expression of osteogenic genes in 
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VICs, including RUNX2, BMP2, OPN, compared to EVs from 
control macrophages. VICs exposed to EVs from pro- 

in!ammatory macrophages also showed higher α-SMA and 
collagen I levels, indicating that these EVs promote both 

osteogenic and fibrotic processes. Xia et al. further showed that 
these EVs deliver tRNA-derived small RNAs (tsRNAs)—a novel 

class of noncoding RNAs implicated in cardiovascular diseases 
(69, 70). Among them, tsRNA-5006c, which regulates 

autophagy, was markedly enriched in EVs from pro- 
in!ammatory macrophages. Deletion of tsRNA-5006c reduced 

calcium nodule formation and lowered the expression of 
osteogenic (RUNX2, BMP2, OPN) and fibrotic (collagen I, α- 

SMA) markers in VICs, highlighting its key role in driving VIC 
phenotypic differentiation. Notably, VICs exposed to these EVs 
showed enhanced mitophagy, which disappeared upon tsRNA- 

5006c inhibition. These findings are consistent with previous 
studies linking excessive mitophagy and autophagy to osteogenic 

differentiation and CAVD progression (71).
In CAVD, pro-in!ammatory polarization is accompanied by 

the upregulation of miR-214, a microRNA essential for pro- 
in!ammatory polarization (72). Increased miR-214 levels in AV 

samples correlate with decreased expression of its target gene 
TWIST-1, a transcription factor that inhibits osteoblastic 

transdifferentiation of human VICs by antagonizing RUNX2 
(73). This has led to the hypothesis that macrophage-derived 

miR-214 promotes CAVD. Supporting this, co-culture with pro- 
in!ammatory macrophages or their EVs reduced TWIST-1 

expression in VICs, accompanied by increased ALP activity and 
elevated OCN expression. Conversely, VICs exposed to EVs 

from miR-214-silenced pro-in!ammatory macrophages showed 
higher TWIST-1 expression and reduced ALP activity and OCN 

expression compared to those treated with wild-type pro- 
in!ammatory EVs. These effects were abolished when VICs 

were pre-treated with TWIST-1 siRNA. Intravenous injection of 
a miR-214 inhibitor in hypercholesterolemic apoE-/- mice 

increased valvular TWIST-1 expression and markedly reduced 
AV calcification. Together, these results suggest that pro- 

in!ammatory macrophages deliver miR-214 via EVs, thereby 
downregulating TWIST-1 and promoting VIC mineralization. 

This discovery is particularly relevant given emerging 
therapeutic strategies involving engineered EVs (74).

5.4 Impact of physical contacts between 
pro-inflammatory macrophages and VICs

Physical interactions between macrophages and VICs enhance 

the calcification process. Indeed, direct co-culture with 
macrophages further promotes the osteogenic transition of 

VICs, as evidenced by increased RUNX2 expression, compared 
to indirect co-culture in transwell systems without physical 

contact (75). This physical interaction is associated with a 
marked decrease in VIC expression of STAT3β, an alternatively 

spliced isoform of STAT3 that binds and inhibits RUNX2 (75, 
76). Consistent with these findings, STAT3β expression 

negatively correlates with RUNX2 levels in calcified regions of 

human AVs (75), suggesting that reduced STAT3β expression 
relieves the inhibitory effect on RUNX2, thereby promoting VIC 

osteogenic transition and mineralization. The main pathways 
through which pro-in!ammatory macrophages drive fibrocalcific 

remodeling of the AV are summarized in Figure 2.

6 Impact of immunomodulatory 
macrophages on AV remodelling

6.1 Evidence linking immunomodulatory 
cytokines to AV remodelling

Immunomodulatory macrophages contribute to the resolution 

of in!ammation and tissue repair primarily through the secretion 
of anti-in!ammatory cytokines such as IL-10 and TGF-β (77, 78), 

which has long suggested a protective role against CAVD. Indeed, 
IL-10 suppresses Th1 responses and inhibits monocyte functions, 

including the production of pro-in!ammatory cytokines such as 
TNF-α and IL-8 (79). In CAVD patients, plasma IL-10 levels 

inversely correlate with valve in!ammation and degeneration, 
and IL-10 gene polymorphisms have been linked to CAVD (80). 
TGF-β, a key regulator of fibrosis and immune homeostasis, is 

elevated in calcified compared to noncalcified control cusps (81, 
82). In vitro, recombinant TGF-β promotes the differentiation of 

qVICs into aVICs and enhances VICs mobility, aggregation, as 
well as the formation of nodules enriched in ALP, leading to 

mineralization (83–85). In this model, blockade of TGF- 
β1-induced apoptosis with a caspase inhibitor significantly 

reduced mineralization but did not affect nodule formation, 
whereas cytochalasin D, an actin-depolymerizing agent, 

inhibited nodule formation without impacting calcification. 
Together these findings suggest that targeting TGF-β activity 

could protect the valve from fibro-calcic remodelling. The ability 
of IL-10 and TGF-β to promote EndMT and neoangiogenesis 

reinforces the idea that immunomodulatory macrophages can 
detrimentally contribute to valvular disease (82, 86).

In 2023, Wu et al. showed that CM from immunomodulatory 
macrophages induces VIC expression of α-SMA without affecting 

RUNX2 levels (87). This indicates that secretions from 
immunomodulatory macrophages may drive myofibroblast 

activation but do not directly trigger osteogenic differentiation 
in VICs. Although histological analyses of CAVD samples 

confirm colocalization of CD163 and α-SMA (87), no 
mechanistic study to date has demonstrated that factors secreted 

by immunomodulatory macrophages, particularly TGF-β, 
directly drive myofibroblastic differentiation and fibrosis. 

Further research is needed to clarify this issue.
Interestingly, CM from aVICs promotes macrophage 

chemotaxis by increasing CCL5 secretion via the AKT pathway 
(87). Macrophage adhesion to aVICs decreases upon blocking 

CD44, the main receptor for hyaluronic acid (HA), indicating 
that aVICs not only recruit immune cells but also stabilize cell 

contacts through the HA/CD44 complex. Consistently, both HA 
and CD44 are upregulated in fibrotic tissues (88). Notably, CM 

from aVICs drives macrophage polarization toward an 
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FIGURE 2 

Overview of the main mechanisms by which macrophage subtypes influence the fibrocalcific remodeling of aortic valve leaflets. ALP, alkaline 

phosphatase; α-SMA, α-smooth muscle actin; BMP2, bone morphogenetic protein 2; CA2, carbonic anhydrase II; CatK, cathespin K; CCL5, C-C 

Motif Chemokine Ligand 5; EVs, extracellular vesicles; IFNγ, interferon γ; IL-4, interleukin 4; IL-1β, interleukin 1β; IL-6, interleukin 6; IL-10, 

interleukin 10; MФ, macrophages; MMP12, matrix metalloproteinase 12; NLRP3, NOD-Like Receptor Pyrin Domain-Containing Protein 3; obMΦ, 

macrophages with an osteoblast-like activity; OPN, osteopontin; PPi, pyrophosphate; qVICs, quiescent VICs; RUNX2, Runt-related transcription 

factor 2; TGF-β, transforming growth factor β; TNF-α, tumor necrosis factor α; TRAP, Tartrate-resistant acid phosphatase.
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immunomodulatory phenotype, marked by increased expression 
of CD206, CD163, TGF-β, and IL-10 and decreased IL-1β 
expression; this effect is prevented by inhibiting hyaluronan 
synthase-2. Together, these findings reveal a positive feedback 

loop in which aVICs promote the recruitment and polarization 
of macrophages toward an immunomodulatory phenotype, 

which in turn further stimulates aVIC activation and drives 
CAVD progression. Targeting aVIC–macrophage interactions, 

particularly via the HA/CD44 axis, may therefore represent a 
promising therapeutic strategy.

In calcified regions of CAVD samples, the 
immunomodulatory markers CD163 and CD206 strongly 

correlate with TLR7 mRNA levels (89). Ex vivo stimulation of 
AV tissue with the TLR7 ligand imiquimod induced the 
secretion of IL-10, TNF-α, and GM-CSF. In vitro experiments 

suggest that macrophages are the main source of these 
cytokines. Together, these findings link TLR7 activation in 

CAVD to immunomodulatory and anti-in!ammatory responses. 
Further studies are needed to clarify the relationship between 

TLR7 signaling and immunomodulatory macrophage pathways 
in human AVs.

6.2 Secretion of pyrophosphate

Macrophages produce PPi through ATP hydrolysis mediated 
by eNPP1. In 2016, Villa-Bellosta et al. reported that 

immunomodulatory macrophages promote PPi synthesis more 
efficiently than pro-in!ammatory macrophages by enhancing 

ATP release and upregulating eNPP1 (51). While this 
mechanism protected VSMCs from calcification in vitro, its 

relevance to VICs remains unclear. Since PPi inhibits 
calcification through a physicochemical rather than a cellular 

mechanism, a similar protective role in the AV is plausible but 
requires further investigation.

6.3 Macrophage-to-mesenchymal 
transition (MMT)

Although immunomodulatory macrophages do not seem to 

directly promote the transition of aVICs into obVICs in vitro, 
emerging evidence suggests that they may themselves contribute 

to the pool of osteoblast-like cells through a process known as 
macrophage-to-mesenchymal transition (MMT) (90). In 2023, 

Lyu et al. used single cell RNA sequencing (scRNA-seq) on 
calcified bicuspid AVs and identified a subpopulation co- 

expressing monocytic markers (e.g., CD14, CD68) and 
mesenchymal markers (e.g., COL1A1, ACTA2), with activation 

of ECM organization and calcification-related pathways (90). 
Termed “macrophage-derived stromal cells”, these cells were 

shown to originate from CD206+ immunomodulatory-like 
macrophages undergoing MMT. During this process, 

macrophages upregulated myofibroblastic and osteogenic 
markers—including BMP2, ASPN, and POSTN—and 

progressively differentiated into osteoblast-like cells capable of 

mineralization. These findings align with the 2020 study by Oba 
et al., who reported increased CD163+ and CD206+ 

macrophages in calcified (n = 36) compared to non-calcified 
(n = 6) AVs, with most CD206+ macrophages expressing BMP2 

(49). Figure 2 summarizes the main pathways through which 
immunomodulatory macrophages in!uence fibrocalcific 

remodeling of the AV.

7 Role of M(Hb) macrophages in AV 
remodeling

While this review primarily emphasizes the roles of pro- 
in!ammatory and immunomodulatory macrophages in CAVD, 

numerous other subsets exist whose contributions to AS remain 
largely unexplored. Among them, M(Hb) macrophages—an 

anti-in!ammatory population resistant to cholesterol 
accumulation—may play a significant role in AV remodelling. 
These cells typically emerge in vascular tissue following plaque 

hemorrhage, in response to hemoglobin (Hb)/haptoglobin (Hp) 
complexes, and are characterized by high expression of heme 

oxygenase-1 (HO-1). In 2023, Sakamoto et al. demonstrated that 
M(Hb) macrophages inhibit VSMC calcification compared with 

unpolarized macrophages (91), through the secretion of 
hyaluronan, a glycosaminoglycan that prevents Ca/P deposition. 

Inhibition of hyaluronan synthesis abolished this protective 
effect. Notably, HO-1+ macrophages are enriched in calcified 

compared with non-calcified AV tissue (49). Whether these cells 
arise as a compensatory mechanism to protect VICs from 

calcification, as observed in VSMCs, remains unknown. 
Intriguingly, some HO-1+ macrophages in AVs also express 

BMP2 (49), suggesting that this subset may not only exert 
protective functions but also contribute to osteogenic activity. 

Further studies are therefore needed to clarify the precise role of 
M(Hb) macrophages and other underexplored subsets in AS 

pathogenesis and progression.

8 Crosstalk between macrophages 
and calcification crystals

In vitro, exposure of naïve macrophages to Ca/P nanocrystals 
induces polarization toward a pro-in!ammatory phenotype 

characterized by increased iNOS expression and secretion of 
cytokines such as TNF-α, which further amplify calcification 

(92, 93). Ca/P nanocrystals also activate the NLR family pyrin 
domain containing 3 (NLRP3) in!ammasome in THP-1 cells 

and murine BMDMs, leading to IL-1β release (93). Human 
monocyte-derived macrophages can engulf Ca/P microcrystals 

within intracellular vacuoles and respond by producing pro- 
in!ammatory mediators including TNF-α, IL-1β, and IL-8, 

which in turn activate endothelial cells and enhance leukocyte 
adhesion under !ow conditions (94). Interestingly, the pro- 

in!ammatory potential of Ca/P nanocrystals inversely correlates 
with their size: crystals measuring 1–2 µm in diameter with pore 

sizes of 10–50 Å elicit the strongest TNF-α response (95), 
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suggesting that small, early-stage nanocrystals are more 
in!ammatory than larger bone-like deposits. These findings 

support a model in which calcification and in!ammation 
reinforce each other in a deleterious feedback loop, driving 

CAVD progression.
MGP and fetuin-A stabilize nascent Ca/P clusters by forming 

CPPs, which facilitate Ca/P clearance and prevent ectopic 
calcification. In vitro, CPPs induce lower cytokine secretion and 

cause less macrophage apoptosis than hydroxyapatite crystals of 
similar size and calcium content (32). Clinically, CAVD 

progression is associated with reduced serum fetuin-A levels 
(96), likely decreasing CPP formation and promoting 

accumulation of large, pro-in!ammatory hydroxyapatite 
deposits. Interestingly, fetuin-A is elevated in CAVD samples 
compared to healthy AVs, suggesting a compensatory 

mechanism whereby increased calcification drives fetuin-A 
accumulation in the AV to limit further mineral deposition (97).

Macrophages release EVs ranging from 30 to 300 nm. Upon 
Ca/P stimulation, these EVs show increased ALP activity and 

promote hydroxyapatite nucleation. They carry typical exosomal 
markers such as CD9 and TSG101, along with S100A9, 

phosphatidylserine (PS), and annexin V (Anx5), resembling 
chondrocyte-derived EVs involved in bone mineralization (98, 

99). Ca/P exposure enhances the interaction between S100A9 
and Anx5 and promotes PS externalization on EVs membrane, 

suggesting that mineral nucleation occurs at the EV surface. 
Silencing S100A9 or using S100A9-deficient mice reduces EV- 

mediated mineralization, whereas S100A9 stimulation increases 
calcification, highlighting the key role of the PS–Anx5–S100A9 

complex in HA formation (100). Ca/P-stimulated macrophages 
upregulate pro-in!ammatory markers (iNOS, IL-6) and 

downregulate immunomodulatory markers (CD206, ARG1), 
indicating that pro-calcific EVs mainly originate from pro- 

in!ammatory macrophages. Studies have shown that High 
mobility group box 1 (HMGB1), a nuclear protein released by 

stressed cells and enriched in regions of macrophage infiltration 
and calcification in AS, promotes EVs secretion. HMGB1 

activates the receptor for advanced glycation end-products 
(RAGE), triggering p38 MAPK/nSMase2 signaling in 

macrophages, which enhances EVs release and contributes to 
mineralization in vitro and in vivo (101–104). Collectively, these 

data highlight a dynamic, reciprocal interaction between 
macrophages and Ca/P crystals in CAVD progression (Figure 2). 

Understanding the molecular mechanisms governing this 
crosstalk could reveal novel therapeutic targets to halt 

AV calcification.

9 Macrophages as precursors of 
osteoclast-like cells

About 13% of calcified AVs contain true bone with osteoblasts 
and osteoclasts (105). Macrophages are considered precursors of 

these osteoclast-like cells, as both originate from the same 
hematopoietic lineage. Upon stimulation with macrophage 

colony-stimulating factor (M-CSF) and receptor activator of 

nuclear factor κB ligand (RANKL), macrophages can 
differentiate into multinucleated osteoclasts specialized in bone 

resorption. Both RANKL and MCSF are present in human 
stenotic AVs (106, 107), suggesting that an osteoclastogenesis- 

like process may occur locally. Supporting this, tartrate-resistant 
acid phosphatase (TRAP) and cathepsin K—enzymes associated 

with bone resorption—are detected in calcified but not in non- 
calcified AVs (107), and osteoclasts-like cells can actively reduce 

mineral deposits on pre-calcified aortic elastin in vitro (108, 
109). In addition, macrophages express high levels of carbonic 

anhydrase 2 (CA2) (110), an enzyme critical for mineral 
dissolution by osteoclasts, as it acidifies the resorption lacuna by 

generating protons. In cell-free assays, macrophages 
decalcification capacity correlates with CA2 expression (110). 
However, AV calcification does not appear to regress in vivo, 

suggesting that the valvular microenvironment impairs 
osteoclast-like activity. Supporting this, IL-18, whose expression 

is upregulated in CAVD and correlates with disease severity 
(111), inhibits osteoclastogenesis in vitro (112). Similarly, 

oxidized LDL (oxLDL) suppresses RANKL-induced TRAP 
activity and resorptive activity in human peripheral blood 

mononuclear cells (PBMCs) and mouse RAW 264.7 
macrophages (113) (Figure 2).

Recent studies have investigated whether osteoclast-like cells 
arise preferentially from pro-in!ammatory macrophages or 

immunomodulatory macrophage. In 2017, Chinetti-Gbaguidi 
et al. showed that IL-4-induced polarization toward an 

immunomodulatory phenotype reduces the ability of 
macrophages to form TRAP-positive osteoclast-like cells. These 

cells exhibit low cathepsin K expression, diminished TRAP 
activity, and defective resorptive capacity. Mechanistically, IL-4 

downregulates NFATc1, the transcriptional regulator of 
cathepsin K, through enrichment of the repressive histone mark 

H3K27me3 at its promoter (114).
Conversely, Nagy et al. demonstrated that pro-in!ammatory 

signals can also impair osteoclast-like differentiation (107). They 
reported that the exposure of calcified AV tissues to a T-cell 

activation cocktail increased IFN-γ production and reduced 
RANKL, TRAP, and cathepsin K expression. PBMCs cultured 

with CM from these tissues formed fewer osteoclast-like cells 
with reduced resorptive capacity, an effect that was reversed by 

anti-IFN-γ antibodies. Barinda et al. further showed that pro- 
in!ammatory polarization or treatment with vasoactive peptides 

(endothelin-1, angiotensin II) or cytokines (TNF-α, IL-1β) 
downregulate CA2 expression in macrophages (110). Similarly, 

Yamaguchi et al. reported that co-culture with pro-in!ammatory 
macrophages suppresses RANKL-induced osteoclastogenesis, 
through soluble factors including IFN-γ and IL-12, which 

inhibit NFATc1 expression and promote osteoclast precursor 
apoptosis (115).

Collectively, these findings indicate that both 
immunomodulatory and pro-in!ammatory signals can hinder 

the differentiation of macrophages into functional osteoclast-like 
cells. Therefore, the origins and developmental pathways of 

these resorptive cells in CAVD remains incompletely 
understood. Large-scale approaches such as scRNA-seq may 
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help clarify their identity and trajectory. Strategies aimed at 
enhancing macrophage osteoclastic capacity through targeted 

pharmacological interventions may offer a novel approach to 
counteract valvular calcification, although the impact on 

systemic bone physiology requires careful evaluation.

10 Modulating macrophage activity to 
slow aortic stenosis

Recent advances in understanding how macrophages in!uence 

AV fibrosis and calcification have identified novel molecular 
targets and therapeutic strategies. These insights have spurred 

both the development of new pharmacologic approaches and 
renewed interest in repurposing existing drugs for potential use 

in CAVD. Table 1 summarizes emerging molecular targets and 
therapeutic strategies aimed at modulating macrophage function 

to prevent AV remodeling.

10.1 Targeting macrophage polarization

Pro-in!ammatory macrophages are traditionally seen as 

drivers of CAVD by promoting fibrosis and calcification, 
whereas immunomodulatory macrophages are thought to 

counteract disease by resolving in!ammation, suggesting that 
therapeutic benefit could be gained by shifting polarization 

toward the latter phenotype.
Emerging evidence suggests that long non-coding RNAs 

(lncRNAs) regulate macrophage polarization (116, 117) and may 
contribute to AV calcification. Notably, AFAP1-AS1, a lncRNAs 

which promotes the osteogenic differentiation of VICs (118), is 
enriched in calcified AVs (119). Overexpression of AFAP1-AS1 

in THP-1-derived macrophages suppressed the 
immunomodulatory profile and promoted a pro-in!ammatory 

state, whose CM enhanced osteogenic marker expression, ALP 
activity, and calcification in VICs. Conversely, AFAP1-AS1 

silencing favored an immunomodulatory phenotype, and the 
resulting CM suppressed VIC osteogenic transition and 

calcification. These findings suggest that AFAP1-AS1 drives AV 
calcification by skewing macrophage polarization toward a pro- 

in!ammatory, pro-osteogenic state, making it a promising 
therapeutic target in CAVD.

In recent years, increasing attention has been given to the role 
of IL-37 in modulating macrophage polarization. In CAVD, an 

inverse relationship has been observed between IL-37 expression 
and pro-in!ammatory macrophage polarization (120). In vitro, 

recombinant human IL-37 suppressed the expression of iNOS, 
CD11c, IL-6, and MCP-1 in pro-in!ammatory macrophages, 

while enhancing CD206 and IL-10 in immunomodulatory 
macrophages. This effect was associated with inhibition of the 

NF-κB and Notch1 pathways. Beyond macrophages, IL-37 also 
suppressed osteogenic responses of human VICs in vitro and 

alleviated valve lesions in mice (121). Consistently, recombinant 
IL-37 reduced in!ammation and prevented mineralization in 
human VICs (122, 123). Collectively, these findings suggest that 

IL-37 may represent a promising therapeutic target in CAVD by 
shifting both macrophages and VICs away from a pro- 

in!ammatory state, thereby attenuating valvular in!ammation 
and calcification.

In 2023, Salazar-Puerta et al. investigated an innovative 
approach to enhance the generation of immunomodulatory 

macrophages using engineered EVs as nanocarriers to deliver 
molecular factors that reduce in!ammation (124). EVs were 

derived from human dermal fibroblasts and loaded with the 
myeloid transcription factors CEBPA and Spi1, which are 

known to induce the transdifferentiation of endothelial cells into 
macrophages. The authors demonstrated that these EVs 

effectively promoted the conversion of VECs in aortic valve 
tissue ex vivo into anti-in!ammatory macrophage-like cells. 
These findings suggest that engineered EVs could serve as next- 

generation nanocarriers to reprogram VECs into anti- 
in!ammatory macrophages, offering a promising therapeutic 

strategy to modulate macrophage polarization and potentially 
prevent AS.

While targeting macrophage polarization appears promising, 
several aspects should be considered. Notably, 

immunomodulatory macrophages secrete TGF-β, a potent driver 
of AV fibrosis, raising uncertainty about whether promoting this 

phenotype is truly a viable therapeutic strategy. To date, no 
study has directly investigated whether TGF-β secretion by 

immunomodulatory macrophages affects the fibrotic activity of 
VICs. Clarifying this issue is essential if macrophage 

polarization is to be therapeutically steered toward the 
immunomodulatory phenotype. Besides, macrophage 

polarization is highly dynamic and reversible, posing challenges 
for developing drugs with sufficiently long half-lives to maintain 

macrophages in a protective state. Finally, it remains unclear 
whether macrophage phenotypes can be selectively targeted 

without compromising their essential functions in innate 
immunity and host defense.

10.2 Targeting inflammation

In recent years, it has become clear that local in!ammation, 
whether driven by macrophages or VICs, plays a major role in 
CAVD. This has led to the idea that targeting pro-in!ammatory 

cytokines could represent a promising therapeutic strategy.

10.2.1 Targeting Il6

Interleukin-6 has emerged as a genetic risk factor for AS (125). 
IL-6 expression is elevated in AV lea!ets where it correlates with 

tissue remodelling (126, 127), and increased circulating IL-6 
levels are strongly associated with HF and increased mortality in 

patients with AS (4). In vitro, IL-6 neutralization reduces 
osteogenic transition and calcification of human VICs (128). 

Notably, Mendelian randomization studies have linked 
genetically predicted treatment with tocilizumab (an antibody 

targeting the IL-6 receptor) to a reduced risk of AS, thereby 
supporting the rationale for IL-6 inhibition in this disease (129). 
Collectively, these findings suggest that IL-6 blockade may 

Issa et al.                                                                                                                                                               10.3389/fcvm.2025.1664067 

Frontiers in Cardiovascular Medicine 10 frontiersin.org



T
A

B
L

E
 1

 
E

m
e

rg
in

g
 m

o
le

c
u

la
r 

ta
rg

e
ts

 a
n

d
 t

h
e

ra
p

e
u

ti
c

 s
tr

a
te

g
ie

s 
m

o
d

u
la

ti
n

g
 m

a
c

ro
p

h
a

g
e

 a
c

ti
v

it
y

 i
n

 C
A

V
D

. 
.

T
a

rg
e

ts
M

e
c

h
a

n
is

m
s 

o
f 

a
c

ti
o

n
R

e
fe

re
n

c
e

s
P

o
te

n
ti

a
l 

th
e

ra
p

y
E

v
id

e
n

c
e

 o
f 

e
ffi

c
ie

n
c

y
 i

n
 A

S

P
re

c
li

n
ic

a
l

R
e

fe
re

n
c

e
s

C
li

n
ic

a
l

R
e

fe
re

n
c

e
s

T
N

F-
α

Se
cr

et
io

n 
of

 T
N

F-
α 

by
 p

ro
-i

n!
am

m
at

or
y 

m
ac

ro
ph

ag
es

 a
ct

iv
at

es
 E

nd
M

T
, 

an
d 

pr
om

ot
es

 
m

yo
fib

ro
bl

as
ts

 d
ea

ct
iv

at
io

n 
as

 w
el

l 
as

 o
st

eg
en

ic
 

di
ff

er
en

ci
at

io
n

(2
5,

 3
0,

 5
2,

 5
4,

 5
6,

 
60

, 1
89

)
A

nt
ib

od
ie

s 
ag

ai
ns

t 
T

N
Fα

 
(i

n!
ix

im
ab

, 
ad

al
im

um
ab

, 
go

lim
um

ab
, 

ce
rt

ol
iz

um
ab

 
pe

go
l 

…
)

In
 v

it
ro

, 
an

ti
bo

di
es

 n
eu

tr
al

iz
in

g 
T

N
F-

α 
pr

ev
en

t 
th

e 
os

te
og

en
ic

 t
ra

ns
it

io
n 

an
d 

m
in

er
al

iz
at

io
n 

of
 

V
IC

s 
in

du
ce

d 
by

 C
M

 f
ro

m
 p

ro
-i

n!
am

m
at

or
y 

m
ac

ro
ph

ag
es

(5
2)

N
o 

cl
in

ic
al

 d
at

a 
av

ai
la

bl
e

IL
-6

Se
cr

et
io

n 
of

 I
L-

6 
by

 p
ro

-i
n!

am
m

at
or

y 
m

ac
ro

ph
ag

es
 a

ct
iv

at
es

 E
nd

M
T

 a
nd

 p
ro

m
ot

es
 

V
IC

s 
os

te
ge

ni
c 

di
ff

er
en

ci
at

io
n

(2
5,

 5
2,

 6
0,

 1
26

)
A

nt
ib

od
ie

s 
ag

ai
ns

t 
IL

6 
(z

ilt
iv

ek
im

ab
, 

cl
az

ak
iz

um
ab

, …
)

In
 v

it
ro

, 
ne

ut
ra

liz
in

g 
an

ti
bo

di
es

 a
ga

in
st

 I
L-

6 
pr

ev
en

t 
th

e 
os

te
og

en
ic

 t
ra

ns
it

io
n 

an
d 

m
in

er
al

iz
at

io
n 

of
 V

IC
s 

in
du

ce
d 

ei
th

er
 b

y 
C

M
 

fr
om

 p
ro

-i
n!

am
m

at
or

y 
m

ac
ro

ph
ag

es
 o

r 
by

 t
he

 
ur

em
ic

 t
ox

in
 i

nd
ox

yl
 s

ul
fa

te
.

(5
2,

 1
28

)
Z

ilt
iv

ek
im

ab
 a

nd
 C

la
za

ki
zu

m
ab

 a
re

 
cu

rr
en

tl
y 

be
in

g 
ev

al
ua

te
d 

fo
r 

th
ei

r 
ca

rd
io

va
sc

ul
ar

 e
ff

ec
ts

 i
n 

pa
ti

en
ts

 
w

it
h 

C
K

D
 a

nd
 p

er
si

st
en

t 
in

!a
m

m
at

io
n.

(1
30

–1
32

)

N
o 

cl
in

ic
al

 d
at

a 
av

ai
la

bl
e 

re
ga

rd
in

g 
A

S

A
nt

ib
od

y 
an

ga
in

st
 I

L-
6 

re
ce

pt
or

 (
T

oc
ili

zu
m

ab
)

N
o 

pr
ec

lin
ic

al
 d

at
a 

av
ai

la
bl

e
M

en
de

lia
n 

ra
nd

om
iz

at
io

n 
st

ud
ie

s 
ha

ve
 a

ss
oc

ia
te

d 
ge

ne
ti

ca
lly

 p
re

di
ct

ed
 

to
ci

liz
um

ab
 t

re
at

m
en

t 
w

it
h 

a 
re

du
ce

d 
ri

sk
 o

f 
A

S

(1
29

)

IL
-1

β
Se

cr
et

io
n 

of
 I

L-
1β

 b
y 

pr
o-

in
!a

m
m

at
or

y 
m

ac
ro

ph
ag

es
 p

ro
m

ot
es

 m
yo

fib
ro

bl
as

ts
 

pr
ol

if
er

at
io

n,
 s

ec
re

ti
on

 o
f 

M
M

P
1 

an
d 

2 
as

 w
el

l 
as

 
m

yo
fib

ro
bl

as
ts

 d
ea

ct
iv

at
io

n

(5
7,

 6
0)

R
ec

om
bi

na
nt

 I
L-

1 
re

ce
pt

or
 

an
ta

go
ni

st
 (

A
na

ki
nr

a)
D

efi
ci

en
cy

 o
f 

in
te

rl
eu

ki
n-

1 
re

ce
pt

or
 a

nt
ag

on
is

t 
in

du
ce

s 
A

V
 d

is
ea

se
 i

n 
B

A
LB

/c
 m

ic
e

(1
90

)
H

as
 s

ho
w

n 
be

ne
fit

s 
fo

r 
ca

rd
io

re
sp

ir
at

or
y 

fu
nc

ti
on

 a
nd

 
qu

al
it

y 
of

 l
if

e 
in

 H
F,

 p
ar

ti
cu

la
rl

y 
am

on
g 

pa
ti

en
ts

 w
it

h 
pr

es
er

ve
d 

ej
ec

ti
on

 f
ra

ct
io

n.

(1
36

, 
13

7)

N
o 

cl
in

ic
al

 d
at

a 
av

ai
la

bl
e 

re
ga

rd
in

g 
A

S

Fu
si

on
 p

ro
te

in
 t

ar
ge

ti
ng

 
IL

-1
 r

ec
ep

to
rs

 (
ri

lo
na

ce
pt

)
N

o 
pr

ec
lin

ic
al

 d
at

a 
av

ai
la

bl
e

N
o 

cl
in

ic
al

 d
at

a 
av

ai
la

bl
e

M
on

oc
lo

na
l 

an
ti

bo
dy

 
ag

ai
ns

t 
IL

-1
β 

(C
an

ak
in

um
ab

)

N
o 

pr
ec

lin
ic

al
 d

at
a 

av
ai

la
bl

e
R

ed
uc

ed
 s

ys
te

m
ic

 in
!a

m
m

at
io

n 
an

d 
im

pr
ov

ed
 H

F 
ou

tc
om

es
 i

n 
po

st
- 

m
yo

ca
rd

ia
l 

in
fa

rc
ti

on
 p

at
ie

nt
s.

(1
35

)

N
o 

cl
in

ic
al

 d
at

a 
av

ai
la

bl
e 

re
ga

rd
in

g 
A

S

IL
-1

8
Se

cr
et

io
n 

of
 I

L-
18

 b
y 

pr
o-

in
!a

m
m

at
or

y 
m

ac
ro

ph
ag

es
 i

nd
uc

es
 N

F-
κB

 e
xp

re
ss

io
n,

 
m

yo
fib

ro
bl

as
t 

tr
an

si
ti

on
, A

LP
 a

ct
iv

at
io

n,
 a

nd
 V

IC
 

ca
lc

ifi
ca

ti
on

(5
8)

R
ec

om
bi

na
nt

 I
L-

18
 b

in
di

ng
 

pr
ot

ei
ns

, a
nt

i-
IL

18
 

an
ti

bo
di

es
, 

IL
-1

8 
re

ce
pt

or
 

an
ta

go
ni

st
s

N
o 

pr
ec

lin
ic

al
 d

at
a 

av
ai

la
bl

e
N

o 
cl

in
ic

al
 d

at
a 

av
ai

la
bl

e

IL
-8

Se
cr

et
io

n 
of

 I
L-

8 
by

 p
ro

-i
n!

am
m

at
or

y 
m

ac
ro

ph
ag

es
, a

nd
 i

ts
 s

ub
se

qu
en

t 
bi

nd
in

g 
to

 
C

X
C

R
2,

 p
ro

m
ot

es
 M

M
P

-1
2 

se
cr

et
io

n,
 

co
nt

ri
bu

ti
ng

 t
o 

el
as

ti
n 

de
gr

ad
at

io
n 

an
d,

 
co

ns
eq

ue
nt

ly
, t

o 
V

IC
 c

al
ci

fic
at

io
n.

 M
or

eo
ve

r,
 I

L-
8 

pr
om

ot
es

 t
he

 p
ro

-i
n!

am
m

at
or

y 
po

la
ri

za
ti

on
 o

f 
m

ac
ro

ph
ag

es
.

(5
9,

 1
91

)
A

nt
ag

on
is

t 
of

 C
X

C
R

2 
(N

av
ar

ix
in

)
P

re
ve

nt
s 

V
IC

s 
m

in
er

al
iz

at
io

n 
in

 v
it

ro
, a

nd
 

pr
ev

en
ts

 A
V

 c
al

ci
fic

at
io

n 
in

 a
 r

at
 m

od
el

 o
f 

C
K

D
.

(5
9)

N
o 

cl
in

ic
al

 d
at

a 
av

ai
la

bl
e

A
nt

ib
od

y 
an

ga
in

st
 I

L-
8 

(i
vi

da
lim

ab
)

N
o 

pr
ec

lin
ic

al
 d

at
a 

av
ai

la
bl

e
N

o 
cl

in
ic

al
 d

at
a 

av
ai

la
bl

e

N
LR

P
3

A
ct

iv
at

io
n 

of
 t

he
 N

LR
P

3 
pa

th
w

ay
 in

 m
ac

ro
ph

ag
es

 
m

ed
ia

te
s 

ca
sp

as
e-

1 
ac

ti
va

ti
on

 a
nd

 t
he

 s
ec

re
ti

on
 o

f 
IL

-1
β 

an
d 

IL
-1

8

(1
92

)
C

Y
-0

9
A

dm
in

is
tr

at
io

n 
of

 C
Y

-0
9 

in
 A

po
E

-/
- 

m
ic

e 
fe

d 
a 

hi
gh

-f
at

 d
ie

t 
pr

ev
en

te
d 

pr
o-

in
!a

m
m

at
or

y 
po

la
ri

za
ti

on
 o

f 
m

ac
ro

ph
ag

es
 i

n 
th

e 
A

V
, 

in
hi

bi
te

d 
os

te
og

en
ic

 t
ra

ns
it

io
n 

an
d 

A
V

 m
in

er
al

iz
at

io
n,

 a
nd

 
im

pr
ov

ed
 A

V
 f

un
ct

io
n.

(1
40

)
N

o 
cl

in
ic

al
 d

at
a 

av
ai

la
bl

e

N
on

-s
pe

ci
fic

 N
LR

P
3 

in
hi

bi
to

r 
(C

ol
ch

ic
in

e)
N

o 
pr

ec
lin

ic
al

 d
at

a 
av

ai
la

bl
e

C
ol

ch
ic

in
e 

re
du

ce
s 

is
ch

em
ic

 e
ve

nt
s 

fo
llo

w
in

g 
m

yo
ca

rd
ia

l 
in

fa
rc

ti
on

(1
44

) (C
on

ti
n

u
ed

) 

Issa et al.                                                                                                                                                               10.3389/fcvm.2025.1664067 

Frontiers in Cardiovascular Medicine 11 frontiersin.org



T
A

B
L

E
 1

 
C

o
n

ti
n

u
e

d
  

T
a

rg
e

ts
M

e
c

h
a

n
is

m
s 

o
f 

a
c

ti
o

n
R

e
fe

re
n

c
e

s
P

o
te

n
ti

a
l 

th
e

ra
p

y
E

v
id

e
n

c
e

 o
f 

e
ffi

c
ie

n
c

y
 i

n
 A

S

P
re

c
li

n
ic

a
l

R
e

fe
re

n
c

e
s

C
li

n
ic

a
l

R
e

fe
re

n
c

e
s

C
ol

ch
ic

in
e 

ha
s 

no
t 

de
m

on
st

ra
te

d 
ef

fic
ac

y 
in

 i
m

pr
ov

in
g 

ou
tc

om
es

 i
n 

H
F

(1
93

)

N
o 

cl
in

ic
al

 d
at

a 
av

ai
la

bl
e 

re
ga

rd
in

g 
A

S

P
ro

m
ot

in
g 

T
R

E
M

2 
ac

ti
vi

ty
T

R
E

M
2 

su
pp

re
ss

io
n 

tr
ig

ge
rs

 N
LR

P
3 

in
!a

m
m

as
om

e 
ac

ti
va

ti
on

, r
es

ul
ti

ng
 i

n 
in

cr
ea

se
d 

se
cr

et
io

n 
of

 I
L-

1β
, 

T
N

F-
α,

 I
L-

6 
an

d 
R

O
S.

 
In

hi
bi

ti
on

 o
f 

T
R

E
M

2 
vi

a 
ad

en
o-

as
so

ci
at

ed
 v

ir
us

 
se

ro
ty

pe
 9

 (
A

A
V

9)
 v

ec
to

rs
 d

el
iv

er
in

g 
sh

R
N

A
 i

n 
A

po
E

-/
- 

m
ic

e 
fe

d 
a 

hi
gh

-f
at

 d
ie

t 
ex

ac
er

ba
te

d 
A

V
 

ca
lc

ifi
ca

ti
on

.

(1
42

)
N

o 
cl

in
ic

al
 d

at
a 

av
ai

la
bl

e 
re

ga
rd

in
g 

A
S

A
L0

02
a—

a 
no

ve
l 

ag
on

is
ti

c 
an

ti
bo

dy
 t

ar
ge

ti
ng

 
T

R
E

M
2 

th
at

 h
as

 d
em

on
st

ra
te

d 
ef

fic
ac

y 
in

 
en

ha
nc

in
g 

pl
aq

ue
 s

ta
bi

lit
y 

in
 m

ur
in

e 
m

od
el

s 
of

 
at

he
ro

sc
le

ro
si

s

(1
43

)

IL
-3

7
P

re
ve

nt
s 

pr
o-

in
!a

m
m

at
or

y 
po

la
ri

za
ti

on
 a

nd
 

pr
om

ot
es

 i
m

m
un

om
od

ul
at

or
y 

po
la

ri
za

ti
on

 o
f 

m
ac

ro
ph

ag
es

 b
y 

in
hi

bi
ti

ng
 N

F-
κB

 a
nd

 N
ot

ch
1 

si
gn

al
in

g

(1
20

)
R

ec
om

bi
na

nt
 I

L-
37

R
ec

om
bi

na
nt

 I
L-

37
 d

am
pe

ns
 p

ro
-i

n!
am

m
at

or
y 

po
la

ri
za

ti
on

 a
nd

 f
av

or
s 

im
m

un
om

od
ul

at
or

y 
po

la
ri

za
ti

on
 o

f 
m

ac
ro

ph
ag

es

(1
20

)
N

o 
cl

in
ic

al
 d

at
a 

av
ai

la
bl

e

IL
-3

7 
su

pp
re

ss
es

 t
he

 o
st

eo
ge

ni
c 

re
sp

on
se

s 
of

 
hu

m
an

 V
IC

s 
in

 v
it

ro
 a

nd
 a

lle
vi

at
es

 v
al

ve
 le

si
on

s 
in

 
m

ic
e

(1
21

)

R
ec

om
bi

na
nt

 I
L-

37
 a

ls
o 

ex
er

ts
 a

n 
an

ti
- 

in
!a

m
m

at
or

y 
ef

fe
ct

 o
n 

hu
m

an
 V

IC
s 

in
 v

it
ro

, 
th

er
eb

y 
pr

ev
en

ti
ng

 t
he

ir
 m

in
er

al
iz

at
io

n

(1
22

, 
12

3)

P
P

i
Se

cr
et

io
n 

of
 P

P
i 

by
 i

m
m

un
om

od
ul

at
or

y 
m

ac
ro

ph
ag

es
 p

re
ve

nt
s 

C
a/

P
 d

ep
os

it
io

n
(5

1)
P

P
i 

an
al

og
s 

(B
is

ph
os

ph
on

at
es

 
ib

an
dr

on
at

e,
 a

le
nd

ro
na

te
, 

zo
le

dr
on

at
e,

 a
nd

 
et

id
ro

na
te

)

Z
ol

ed
ro

ni
c 

ac
id

 h
al

te
d 

th
e 

pr
og

re
ss

io
n 

of
 A

V
 

ca
lc

ifi
ca

ti
on

 in
du

ce
d 

by
 e

xc
es

si
ve

 v
it

am
in

 D
 in

ta
ke

 
in

 a
 N

ew
 Z

ea
la

nd
 r

ab
bi

t 
m

od
el

(1
48

)
B

is
ph

os
ph

on
at

e 
us

e 
w

as
 

in
de

pe
nd

en
tl

y 
lin

ke
d 

to
 s

lo
w

er
 

pr
og

re
ss

io
n 

of
 m

ild
 A

S 
in

 
in

di
vi

du
al

s 
w

it
h 

pr
es

er
ve

d 
ki

dn
ey

 
fu

nc
ti

on

(1
49

)

A
le

nd
ro

na
te

 (
70

 m
g 

w
ee

kl
y 

ov
er

 2
4 

m
on

th
s)

 s
lo

w
ed

 s
te

no
si

s 
pr

og
re

ss
io

n 
an

d 
im

pr
ov

ed
 c

lin
ic

al
 

pr
og

no
si

s 
in

 p
at

ie
nt

s 
w

it
h 

A
S 

an
d 

co
nc

ur
re

nt
 o

st
eo

po
ro

si
s

(1
50

)

A
le

nd
ro

ni
c 

ac
id

 (
70

 m
g 

w
ee

kl
y 

fo
r 

24
 m

on
th

s)
 h

ad
 n

o 
si

gn
ifi

ca
nt

 e
ff

ec
t 

on
 A

V
 c

al
ci

fic
at

io
n 

pr
og

re
ss

io
n 

in
 

pa
ti

en
ts

 w
it

h 
es

ta
bl

is
he

d 
ca

lc
ifi

c 
A

S

(1
51

)

R
A

N
K

L
P

ro
m

ot
es

 p
ro

-i
n!

am
m

at
or

y 
po

la
ri

za
ti

on
 o

f 
m

ac
ro

ph
ag

es
, a

nd
 s

ub
se

qu
en

t 
se

cr
et

io
n 

of
 I

L-
6 

an
d 

T
N

F-
α.

 P
ro

m
ot

es
 V

IC
s 

os
te

og
en

ic
 t

ra
ns

it
io

n 
an

d 
m

in
ér

al
iz

at
io

n

(1
06

, 1
54

)
M

on
oc

lo
na

l 
an

ti
bo

dy
 

ta
rg

et
in

g 
R

A
N

K
L 

(D
en

os
um

ab
)

D
en

os
um

ab
 p

re
ve

nt
s 

V
IC

s 
m

in
er

al
iz

at
io

n 
in

 v
it

ro
(1

57
)

D
en

os
um

ab
 (

60
 m

g 
ev

er
y 

6 
m

on
th

s 
fo

r 
24

 m
on

th
s)

 d
id

 n
ot

 s
lo

w
 t

he
 

pr
og

re
ss

io
n 

of
 A

V
 c

al
ci

fic
at

io
n 

in
 

pa
ti

en
ts

 w
it

h 
A

S

(1
51

)

Issa et al.                                                                                                                                                               10.3389/fcvm.2025.1664067 

Frontiers in Cardiovascular Medicine 12 frontiersin.org



provide therapeutic benefits in CAVD. Antibodies targeting IL-6, 
such as ziltivekimab (130, 131) and clazakizumab (132), are 

currently being evaluated for their cardiovascular effects in 
patients with advanced chronic kidney disease (CKD) and 

persistent in!ammation. Should these trials yield positive results, 
further studies will be needed to determine whether IL-6 

inhibition can slow AS progression in patients with and without 
renal impairment.

10.2.2 Targeting IL-8/CXCR2 axis
In patients, elevated circulating IL-8 levels are associated with 

faster AS progression (59). CXCR2, an IL-8 receptor, is 
upregulated in calcified regions of AV samples (59). In vitro, 

pharmacological inhibition of CXCR2 prevents ECM 
degradation and calcification in human VICs and in rats with 

CKD (59). Moreover, CXCR2 antagonism reduced monocytosis 
and macrophage infiltration in porcine AVs implanted 
subcutaneously in rats, which led to decreased valvular 

calcification (133). Collectively, these findings suggest that IL-8 
blockade may hold therapeutic potential for preventing or 

slowing AS. Several IL-8 antagonists are currently under 
development, including neutralizing antibodies such as BMS- 

986253 (ividalimab), and small-molecule inhibitors of CXCR1/2 
such as reparixin and navarixin. These agents are in phase 2 

clinical trials for cancer, chronic obstructive pulmonary disease, 
and other in!ammatory diseases, but have not yet been tested in 

AS or cardiovascular calcification.

10.2.3 Targeting other cytokines

The literature suggests that, beyond IL-6 and IL-8, 
macrophage-derived cytokines such as IL-1β and TNF-α may 

in!uence valvular remodeling, making them potential targets to 
prevent AS.

Three IL-1-targeting agents are already clinically available: 
anakinra (a recombinant IL-1 receptor antagonist), rilonacept 

(a fusion protein targeting IL-1 receptors), and canakinumab 
(a monoclonal antibody against IL-1β). Although these drugs 

are not specifically approved for cardiovascular indications, they 
have been tested in patients with cardiovascular diseases (134). 

Notably, the CANTOS trial demonstrated that canakinumab 
reduced systemic in!ammation and improved outcomes in post- 

myocardial infarction HF (135). Anakinra has also shown 
benefits on cardiorespiratory function and quality of life in HF, 

particularly in patients with preserved ejection fraction (136, 
137). To date, none of these IL-1 inhibitors has been evaluated 

for preventing or treating AS.
Several TNF-α-targeting agents are FDA-approved and widely 

used in autoimmune diseases such as rheumatoid arthritis and 
Crohn’s disease. These include TNF-α receptor–Fc fusion 

proteins (etanercept), chimeric antibodies (in!iximab), fully 
human antibodies (adalimumab, golimumab), and PEGylated 

humanized antibodies (certolizumab pegol) (138). However, to 
date, none of these therapies have been evaluated for the 

prevention or treatment of AS.

10.2.4 Targeting the NLRP3 axis

The NLRP3 in!ammasome plays a pivotal role in innate 
immunity by activating caspase-1, leading to the maturation and 

secretion of the pro-in!ammatory cytokines IL-1β and IL-18. 
Emerging evidence suggests that targeting NLRP3 in 

macrophages could protect against valvular calcification (139). 
In ApoE−/− mice fed a high-fat diet for 24 weeks, treatment 

with the NLRP3 inhibitor CY-09 (2.5 mg/kg/day, 
intraperitoneally for 42 days) improved AV function and 

reduced both calcification and the valvular expression of 
osteogenic markers (140). In this model, NLRP3 inhibition 
prevented macrophage polarization toward a pro-in!ammatory 

phenotype, lowering IL-6 and TNF-α levels, and reduced the 
ratio of pro-in!ammatory (CD11c+) to immunomodulatory 

(CD206+) macrophages, although it did not significantly affect 
the absolute number of CD206+ macrophages infiltrating the 

valve. Consistent with these data, in vitro studies have shown 
that anti-in!ammatory compounds can suppress NLRP3 

activation in VICs, thereby reducing calcification (141). 
Although several specific oral NLRP3 inhibitors are currently in 

development, no clinical trials have yet assessed their potential 
to slow AS progression. In this context, triggering receptor 

expressed on myeloid cells 2 (TREM2), whose expression is 
elevated in CAVD samples, has recently emerged as a key 

regulator of macrophage NLRP3 in!ammasome activation and 
the subsequent mineralization of VICs (142). Indeed, 

suppression of TREM2 has been shown to activate NLRP3, 
leading to increased secretion of IL-1β, TNF-α, and IL-6, along 

with elevated production of reactive oxygen species. In ApoE-/- 
mice fed a high-fat diet, TREM2 inhibition exacerbated AV 

calcification. Future studies should assess whether AL002a—a 
novel agonistic antibody targeting TREM2 (143)—can confer 

protective effects in preclinical models of CAVD. Whether 
colchicine, a non-specific NLRP3 inhibitor that reduces ischemic 

events following myocardial infarction (144), also exerts 
protective effects against CAVD remains to be investigated. 

Importantly, IL-18, whose maturation depends on NLRP3 
activation, is implicated in both the myofibroblastic and 

osteogenic transition of VICs (58). Thus, the protective effects 
of NLRP3 inhibition observed in pre-clinical studies may, at 

least in part, result from reduced IL-18 activity. Future 
preclinical studies should explore whether neutralizing IL-18 

using recombinant IL-18 binding proteins (145), blocking IL-18 
with neutralizing antibodies (146), or inhibiting its signaling via 
IL-18 receptor antagonists (147) can prevent valvular remodeling.

10.2.5 Key considerations for anti-cytokine 
therapies

Despite the well-established link between in!ammation and 
AS, a search of ClinicalTrials.gov (accessed July 7, 2025) 

confirms that no trials are currently testing anti-cytokine or 
anti-in!ammatory therapies for the prevention or treatment of 

AS. Yet these cytokines remain particularly attractive targets, 
especially since clinically approved agents against them are 

already available. Timing is a major challenge, as patients with 
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established AS—already exhibiting fibro-calcific remodeling and 
osteogenic differentiation—are unlikely to benefit significantly, 

since in!ammation may no longer drive disease progression. 
Earlier intervention, during subclinical stages or aortic sclerosis, 

may be more promising. However, the high cost of biologics, 
the large patient populations required, and the long follow-up 

periods pose considerable practical obstacles to conducting such 
trials. Nonetheless, millions of patients worldwide are treated 

annually with TNF-α inhibitors, predominantly for rheumatoid 
arthritis, and many others receive biologics targeting IL-1β and 

IL-6. Observational studies examining CAVD outcomes in these 
populations could provide valuable insights and help design 

adequately powered clinical trials with CAVD as a primary 
endpoint. Moreover, given the central role of NF-κB in 
in!ammation-driven CAVD, targeting this transcription factor 

or other in!ammation-related pathways could expand 
therapeutic opportunities in this field.

10.3 Restoring pyrophosphate

Bisphosphonates—including ibandronate, alendronate, 
zoledronate, and etidronate—are PPi analogs widely prescribed 

to increase bone density and reduce fracture risk in patients 
with osteoporosis. In a preclinical study, zoledronic acid halted 

AV calcification induced by excessive vitamin D in New Zealand 
rabbit (148). To date, only few clinical studies have assessed the 

effects of bisphosphonates on AS progression and outcomes. In 
a retrospective pilot study from 2010, Sterbakova et al. found 

that bisphosphonate use was independently associated with 
slower progression of mild AS in patients with preserved kidney 

function (149). In 2020, Alishiri et al. reported that alendronate 
(70 mg weekly over 24 months) slowed stenosis progression and 

improved clinical outcomes in patients with AS and concurrent 
osteoporosis (150). By contrast, a more recent study by Pawade 

et al. found that alendronic acid (70 mg weekly for 24 months) 
did not significantly affect AV calcification progression in 

patients with established AS (151). Further research is needed to 
determine whether bisphosphonates can prevent or slow 

AS progression.
Recent research has shown that ALP inhibitors can block 

in!ammatory activation, osteogenic transformation, and mineral 
deposition in VICs (152, 153), but their effects on AS in vivo 

remain unexplored.

10.4 Targeting RANKL

The RANKL/OPG pathway plays a key role in regulating AV 

calcification. RANKL is present in human CAVD but is absent 
in healthy valves. Conversely, osteoprotegerin (OPG), a decoy 

receptor that inhibits RANKL signalling, is reduced in areas of 
focal valvular calcification (106). Evidence indicates that RANKL 

promotes pro-in!ammatory macrophage polarization (154). In 

vitro, RANKL stimulation of BMDMs increases IL-6 and TNF-α 
secretion, which in turn promotes VSMC calcification; this 

effect is blocked by neutralizing antibodies against IL-6 or TNF- 
α (155). Given the role of these cytokines in VIC differentiation 

and mineralization, similar mechanisms likely contribute to AV 
lea!et calcification. Notably, RANKL enhances matrix 

calcification, increases ALP activity, and activates RUNX2 in 
cultured VICs (106). In contrast, exogenous OPG reduces AV 

calcification in hypercholesterolemic LDLR-/- ApoB100/100 
mice by inhibiting osteogenic differentiation, without affecting 

fibrosis or lipid accumulation (156). Denosumab, a monoclonal 
antibody clinically used to inhibit RANKL and prevent bone 

resorption, also suppresses VIC mineralization in vitro (157). 
However, Pawade et al. reported that denosumab (60 mg every 6 

months for 24 months) did not slow the progression of AV 
calcification in patients with AS. In this study, no differences 
were observed in 18F-sodium !uoride uptake in the valve or in 

peak aortic jet velocity, indicating a lack of effect on calcification 
activity or hemodynamic progression (151). To our knowledge, 

this study—which included a small number of patients (n = 49 
denosumab, n = 50 placebo) and a predominance of male 

participants—remains the only clinical evaluation of RANKL 
inhibition in AS. Further research is needed to assess whether 

denosumab could be an effective strategy to prevent or slow 
AS progression.

11 Macrophages and structural valve 
deterioration (SVD)

Emerging evidence suggests that macrophage activity 

contributes to structural valve deterioration (SVD), a progressive 
degeneration of bioprosthetic AVs characterized by tissue 

changes such as calcification, stiffening, or tears, which can lead 
to stenosis or regurgitation and limit long-term durability (158). 

SVD affects about 30% of patients within a median of 6 years 
post-AVR, with most cases (∼80%) arising after 10 years. This 

condition doubles the risk of mortality and often necessitates 
valve reintervention within 10–15 years of the initial surgery (159).

Glutaraldehyde fixation of bioprosthetic tissues, used to 
stabilize the ECM prior to implantation, induces compositional 

changes that promote monocyte recruitment and macrophage 
activation (160, 161). Despite efforts to reduce immunogenicity, 

xenografts retain carbohydrate antigens like αGal and Neu5Gc, 
which can activate complement pathways and further enhance 

immune cell infiltration (161, 162). Consequently, immune cells 
—including macrophages, foam cells, and multinucleated giant 

cells—are observed in histological samples of degenerated 
bioprosthetic AVs, often colocalizing with lipid deposits, 

mirroring patterns observed in native AS (163–165). Elevated 
MMP activity in macrophage-rich regions supports their role in 

ECM remodelling (163, 164). This immune activation also 
triggers pro-thrombotic processes through platelet adhesion and 

coagulation. Subclinical lea!et thrombosis, affecting up to 30% 
of patients within the first year post-implantation, increases 

SVD risk (166, 167). Fibrin deposits further enhance monocyte 
adhesion and macrophage activation (168). In animal models, 

fibrin deposition has been linked to calcification in bovine 
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pericardium (165, 169). Mechanical stressors—such as 
hypertension, small aortic annulus, or patient-prosthesis 

mismatch—likely exacerbate SVD via macrophage activation 
(160). Together, these findings indicate that persistent or 

reactivated monocyte/macrophage-driven in!ammation plays a 
central role in bioprosthetic valve degeneration. Given that free 

aldehyde groups resulting from glutaraldehyde fixation, along 
with phospholipids and circulating calcium ions, promote 

passive ECM calcification (170), it is plausible that this passive 
Ca/P deposition further drives pro-in!ammatory macrophage 

polarization. However, to our knowledge, no studies have 
directly assessed macrophage polarization within bioprosthetic 

valves affected by SVD, highlighting a critical gap for 
future research.

12 Conclusion

Over the past decade, studies have highlighted the pivotal yet 
dualistic role of macrophages in AV remodeling. Pro- 

in!ammatory macrophages are now well established as drivers 
of VIC osteogenic differentiation and mineralization, mediated 
by the secretion of pro-in!ammatory cytokines and EVs 

enriched with small RNAs. Immunomodulatory macrophages, 
long considered protective due to their IL-10–mediated 

resolution of in!ammation, are now thought to also promote 
myofibroblastic differentiation of VICs and VECs. Given the 

potentially deleterious effects of both macrophage subtypes, 
strategies aimed solely at shifting polarization toward an 

immunomodulatory phenotype should be approached with 
caution. Recent preclinical evidence suggests that broader 

modulation of in!ammation, rather than targeting a single 
phenotype, may be a more effective therapeutic strategy. 

However, despite the availability of therapeutic agents targeting 
key pro-in!ammatory cytokines such as IL-1β, IL-6, and TNF-α, 

no studies have yet specifically evaluated the impact of anti- 
interleukin therapies on CAVD. Observational studies in 

patients receiving these therapies for other indications could 
provide valuable insights and guide the design of adequately 

powered clinical trials with CAVD as a primary endpoint.
An important consideration in AS research is the in!uence of 

comorbid conditions on VIC and macrophage physiology, as these 
factors can significantly in!uence disease progression. Chronic 

kidney disease provides a striking example, as AV remodeling 
occurs more frequently, earlier, and progresses faster in CKD 

patients, leading to a nearly threefold increase in mortality 
compared with the general population (171–173). In CKD, the 

accumulation of uremic toxins promotes pro-in!ammatory 
macrophage activation while impairing their ability to adopt an 

osteoclast-like phenotype (174–176), thereby fueling valvular 
calcification. Bicuspid aortic valve (BAV) disease represents 

another context in which the crucial role of macrophage 
involvement remains underappreciated. Macrophage density and 

distribution are higher and more widespread in BAV compared 
to tricuspid AVs (177–179), with elevated expression of pro- 

in!ammatory markers such as iNOS, phosphorylated-p65, and 

TNF-α, and reduced levels of immunomodulatory markers 
including CD163, Arg-1, and IL-10 (178, 180). Notably, 

macrophages expressing neopterin—a by-product of the 
guanosine triphosphate pathway that amplifies oxidative stress— 

are more abundant in BAV patients (179). Whether this pro- 
in!ammatory macrophage profile contributes to the higher 

calcification propensity observed in BAV remains unclear. 
Finally, given that macrophage-derived cytokines can 

differentially in!uence VIC phenotype depending on sex (56), 
future studies should systematically account for sex as a 

biological variable. Macrophages from male and female donors 
may differ in activation states, cytokine profiles, and interactions 

with VICs, potentially in!uencing CAVD progression and 
therapeutic responses.

Given the central role of macrophages in regulating valvular 

remodeling, it is reasonable to consider their potential as 
biomarkers predictive of AS progression or outcomes. Direct 

assessment of macrophages as biomarkers is challenging due to 
their localization within the valvular tissue; however, circulating 

factors that re!ect macrophage activity may offer a practical 
alternative. Supporting this approach, Mueller et al. showed that 

circulating levels of macrophage migration inhibitory factor 
(MIF) predict rapid AS progression, with MIF-associated 

biomarkers strongly linked to an accelerated disease course 
(181). Considering the crucial role of macrophage subsets in 

CAVD, future studies should investigate how biomarkers of 
macrophage activity—such as MIF, IL-8, IL-6, TNF-α, and IL-1β 
—could help identify patients at high risk of rapid progression 
and how these markers might be integrated with perioperative 

risk scores to select AS patients most likely to benefit from AVR.
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