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Background: Local impedance (LI) mapping provides additional tissue 

characterization of the atria substrate. Measuring LI at different current 

frequencies has the advantage of exploring intra- and extra-cellular 

compartments and may add useful information about tissue integrity. The 

objective of this study was to characterize the changes in local 

multifrequency impedance (LMI) after radiofrequency ablation in human 

atrial tissue.

Methods: In fifteen patients undergoing catheter ablation of atrial arrhythmias, 

we constructed a baseline high-density electroanatomical map (EAM) and 

measured the LMI (1–1,000 kHz) at fifty sites around the cava veins using the 

QDOT or Smarttouch electrocatheter. Then a point-by-point pulmonary vein 

isolation procedure was performed using radiofrequency energy in a 

temperature controlled mode (90W for 4 s for QDOT/30W for 30 s for 

Smarttouch). After confirming the PVI fifty additional LMI recordings per 

patient were performed around the initial sites. We performed an offline 

analysis to compare the values of bipolar voltage and LMI of blood, pre- and 

post-ablated tissue. We also analyzed the cardiac cycle changes of LMI and 

the effects of catheter orientation to the LMI, contact force and bipolar voltage.

Results: A total of 641 pre-ablated and 190 post-ablated sites were studied from 

all patients. Blood pool, healthy and post-ablated myocardium presented 

distinctive LMI signatures (ZPRE = 110 ± 15 Ω vs. ZPOST = 90 ± 10 Ω vs. 

ZBLOOD = 90 ± 8 Ω; p < 0.001). LMI cyclic changes showed an inverse 

relationship with the contact force, and these were more attenuated in the 

post-ablated tissue (p < 0.001).

Conclusions: LMI can differentiate pre- from post-ablated tissue in a cohort of 

patients submitted to RF ablations. This new tool could be of potential clinical 

applicability for the characterization of the atrial substrate and to monitor lesion 

quality to perform durable ablation lesions.

Clinical Trial Registration: NCT05159180 (https://www.clinicaltrials.gov); 

Unique Protocol ID: IIBSP-IMS-2021-74.
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1 Introduction

Radiofrequency ablation is an established therapy for atrial 

fibrillation treatment (1). However, long-term success rates 

remain suboptimal, with recurrence rates around 30% (2). This 

can be partially attributed to the limitations of the current 

mapping systems to characterize the atrial substrate and at the 

same time predict the lesion efficacy during the radiofrequency 

(RF) ablation procedures. The algorithms of those systems to 

characterize the atrial substrate are based on passive tissue 

properties such as local voltage. The lesion quality indicators 

have been developed in experimental models targeting healthy 

myocardium and are based on external biophysical properties 

such as power, temperature, duration of RF and contact force 

(3). In contrast, the generator impedance (GI) measured by the 

commercial RF generators is both a marker of the local 

biophysical derangements induced in the ablation site and have 

also been correlated with the ablation lesion size in experimental 

studies (4, 5). Recent clinical studies have also shown that local 

impedance, measured at the catheter tip, is more effective than 

GI and can be used to characterize myocardial tissue 

heterogeneity (6–10). The measurement of LI at different current 

frequencies has the advantage of exploring the integrity of intra- 

and extra-cellular compartments and, in theory, would allow for a 

better characterization of the ablated and non-ablated atrial 

myocardial tissue (9, 11). The goal of this study was to 

characterize the changes of local multifrequency impedance (LMI) 

occurred in the myocardial tissue before and after radiofrequency 

ablations in patients submitted to a PVI procedure.

2 Methods

2.1 Study population

We conducted a single-center, prospective, observational 

study in fifteen patients (13% females) with atrial arrythmias 

undergoing catheter ablation. All patients were included from 

December 2021 to June 2022 and the inclusion criteria were: (1) 

Age of comprised between 18 and 85 years old, (2) 

Understanding of the informed consent, (3) That they did not 

present any contraindication and pass the exploration and tests 

prior to bioimpedance measurements. The exclusion criteria 

were: (1) Age outside the range described in the inclusion 

criteria, (2) Subjects who presented any type of complication 

during the procedure, (3) Pregnancy. The protocol was 

approved by the ethics committee and the study was conducted 

in accordance with the principles of the Declaration of Helsinki. 

Written informed consent was obtained from all patients prior 

to study participation.

2.2 Experimental procedures in patients

2.2.1 Baseline electroanatomical map
Patients were submitted to mapping of both voltage and local 

multifrequency impedance. Brie?y, patients were anesthetized 

with intravenous propofol (2–4 mg/kg) and were maintained 

with a mixture of oxygen and sevo?urane inhalation (2.5%– 

3.5%). A femoral vein was catheterized and a mapping 

electrocatheter (Pentaarray, Biosense Webster, USA) was 

advanced to the left atrium through a transeptal access using 

?uoroscopic guidance. Then, a 3D high density endocardial 

mapping of left atria was constructed.

2.2.2 Local multifrequency impedance
Afterwards, the mapping catheter was replaced by an irrigated 

ablation catheter (QDOT or Smarttouch, Biosense Webster, USA) 

with the aim to measure the local multifrequency impedance. LMI 

of the left atrium was measured at fifty sites around the cava veins 

and other anatomical sites using the same endocardial mapping 

electrocatheter. To ensure precise spatial correspondence 

between pre- and post-ablation measurements we used manual 

CARTO point tagging with a minimum contact force for data 

inclusion of 5 g. This catheter was connected to a CARTO 3, a 

SmartAblate system (Biosense Webster, USA) and an impedance 

spectroscopy recording system made by our group (CARDIOZ, 

Spain) (12). Alternating currents (1 ms duration, 1 mA total 

peak amplitude) of twenty-six frequencies ranging from 1 to 

1,000 kHz were injected between the distal electrocatheter pole 

and a skin reference electrode (Dispersive pad, 3M) placed 

before on the anterior thoracic region. The resultant changes in 

current voltage were measured between the distal electrocatheter 

electrode and a second thoracic skin reference electrode (ECG 

pad, 3M, USA) (Figure 1). The LMI was measured at a 

sampling rate of 60 Hz during the entire duration of the cardiac 

cycle and stored at 2 s frames. The LMI obtained had two 

components: (1) the LMI magnitude which quantifies the drop 

of voltage amplitude for a given applied current and (2) the 

LMI phase angle that re?ects the delay between the voltage and 

current waves which is in?uenced by structural characteristics of 

the myocardial tissue. From all LMI measurement we obtained a 

frequency-specific response, with lower frequencies re?ecting 

extracellular changes and higher frequencies correlating with 

membrane integrity (13).

2.2.3 Ablation procedure and parameters
In eleven patients we performed a point-by-point pulmonary 

vein isolation (PVI) procedure using an irrigated ablation 

catheter (QDOT, Biosense Webster, USA) with a temperature- 

controlled mode and a high-power short-duration strategy (90 

watts for 4 s). In the other four patients we performed a PVI 

procedure using another irrigated catheter (SmartTouch, 

Biosense Webster, USA) with a temperature-controlled mode 

and a power setting of 30 watts for 30 s. In all patients the 

efficacy of the ablation was assessed by the reduction of the 

local electrogram signals. After confirming the PVI fifty 

Abbreviations  

AF, atrial fibrillation; BMI, body-mass index; CF, contact force; CTI, cavo- 

tricuspid isthmus; GI, generator impedance; LI, local impedance; LMI, local 

multifrequency impedance; RF, radiofrequency; PVI, pulmonary vein 

isolation; PV, pulmonary vein.
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additional LMI recordings per patient were performed around the 

same initial sites.

2.3 Signal processing and data analysis

An of?ine analysis of the bipolar electrograms (EGM) and 

of the impedance signals was done using custom-made 

Matlab scripts (Mathworks, USA) and the following 

parameters extracted: Bipolar amplitude (in mV) of the 

EGMs, contact force data, the magnitude and phase angle of 

the local multifrequency impedance at all current frequencies 

(in ohms), the amplitude of the cyclic changes of the 

impedance magnitude at 5 kHz (in ohms), and the impedance 

magnitude and phase angle drops at all current frequencies 

(in ohms and percentage). We also analyzed the effects of 

catheter orientation on the studied variables. For this 

purpose, we considered that the catheter was orthogonal to 

the tissue when the angle (ϴ) between the catheter and the 

contact force was ϴ<|15°|, and that the catheter was parallel 

to the tissue when the angle between the catheter and the 

contact force was ϴ>|70°| and ϴ<|110°|.

2.4 Statistical analysis

Quantitative data were expressed as the mean ± standard 

deviation (SD). The ordinary two-way ANOVA test with Sidak’s 

multiple comparison correction was used to assess the statistical 

significance of changes in bipolar voltages, impedance 

magnitude and phase angle at different current frequencies 

(factor 1: blood, pre- or post-ablation; factor 2: current 

frequencies/catheter used/parallel or orthogonal condition). A 

p-value <0.05 was considered significant. All analyses were 

performed using SPSS v.22.0 software (IBM-SPSS, USA).

3 Results

All patients were included in the study, and a table of their 

baseline characteristics is shown in Table 1. We obtained high- 

density electroanatomical maps of all patients. We extracted and 

merged the data from the CARTO and CARDIOZ systems and 

obtained a total number of 29 measurements of the blood pool, 

641 of the pre-ablated myocardium and 190 of the post- 

ablated myocardium.

FIGURE 1 

Experimental setup. Left panel shows a basic diagram of the experimental setup used to measure the Local Multifrequency Impedance (LMI) on 

patients submitted to pulmonary isolation procedure. Right panel shows an electroanatomical map (EAM) of the left atria of a representative 

patient with its corresponding LMI data, for a selected site.
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3.1 LMI of blood pool, pre-ablated and 
post-ablated myocardium in patients

The LMI magnitude of pre-ablated myocardium was 

significantly higher than of post-ablated myocardium and of 

blood pool, from 1 kHz to 209 kHz, in both catheters 

(ANOVA p < 0.05). LMI magnitude of blood pool and post- 

ablated did not show differences. The LMI phase angle 

showed similar results (Figure 2). All LMI magnitude values 

acquired with the QDOT catheter were lower than the 

measurements performed with the SmartTouch catheter 

(ANOVA p < 0.001). However, the LMI drop was similar 

among both catheters. The current frequency range that 

better discriminated pre-ablated from post-ablated regions 

was 1–371 kHz for the LMI magnitude and 173–1,000 kHz for 

the LMI phase angle. Detailed impedance spectra for each 

patient are shown in Supplementary Figure S1.

3.2 Cyclic changes of LMI, contact force 
and local electrograms in patients

Figure 3 illustrates the biphasic pattern of the LMI magnitude 

during the cardiac cycle and its relationship with the contact force, 

the bipolar electrograms and the surface ECG. The pre-ablated 

myocardium had an LMI amplitude higher than the post- 

ablated myocardium and the blood pool from 1 to 95 kHz, in 

both catheters (LMI magnitude amplitude using QDOT @ 

41 kHz: ZPRE = 12 ± 8 Ω vs. ZPOST = 7 ± 4 Ω; ANOVA p < 0.001). 

There were no statistical differences between post-ablated tissue 

and blood, despite the catheter being used. As expected, the 

mean amplitude of the bipolar electrograms was higher in the 

pre-ablated sites than in the post-ablated sites (M1-M2 

amplitude using STOUCH: VPRE = 2 ± 2 mV vs. 

VPOST = 0.9 ± 0.7 mV; ANOVA p < 0.05). The mean contact 

force recorded was comparable between the pre- and post- 

ablated sites and was higher than in blood pool for both 

catheters (Contact force measured using STOUCH: 

FPRE = 8 ± 6 g and FPOST = 9 ± 7 g vs. FBLOOD = 1 ± 1 g; in both, 

ANOVA p < 0.05).

TABLE 1 Baseline characteristics of the study population.

Variable Mean ± SD/Percentage

Age (years) 55 ± 11

Male sex (%) 87

BMI (kg/m2) 29 ± 6

Type of atrial fibrillation:

Paroxysmal AF (%) 43

Persistent AF (%) 57

Left atrial diameter (mm) 41 ± 4

Left ventricular ejection fraction (%) 60 ± 6

Duration of AF (years) 3 ± 2

Hypertension (%) 36

Diabetes mellitus type 2(%) 21

Dyslipidemia 43

Smoker (%) 29

CHA2DS2-VASc score 1 ± 1

FIGURE 2 

Local multifrequency impedance of pre-ablated, post-ablated and of blood for the QDOT catheter (left panel) and the smarttouch catheter (right 

panel). Bar graphs show the mean LMI magnitudes and phase angles at selected frequencies for each catheter, in the studied sites. Values are 

reported as mean ± SD. *** p < 0.001, **** p < 0.0001.
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3.3 Influence of catheter orientation in the 
EGM and LMI measurements in patients

In a subset of the explored sites, we analyzed the 

in?uence of catheter orientation on LMI, the contact force 

and bipolar electrograms. In Figure 4 we can observe 

that LMI Magnitude changed only in pre-ablated 

myocardium when using the SmartTouch catheter (LMI 

measured using STOUCH @ 5 kHz Orthogonal vs. Parallel: 

114 ± 21 Ω vs. 131 ± 10 Ω; ANOVA p < 0.001). The contact 

force was higher in the pre-ablated sites only when using the 

QDOT catheter if it was orthogonal to the tissue. Local 

bipolar electrograms showed the same behavior despite 

catheter orientation.

4 Discussion

4.1 Main findings

This study shows for the first time that local multifrequency 

impedance can be used to distinguish pre-ablated from post- 

ablated atrial myocardial tissue, in patients submitted to 

radiofrequency ablations in PVI procedures.

4.2 Ability of myocardial impedance to 
identify ablated tissue

A fifteen to twenty ohms drop in local impedance during RF 

ablation is associated with successful lesion creation, as shown 

in Table 2. This is in accordance with our mean impedance 

magnitude drop at the current frequency used by commercial 

RF generators (50 kHz).

Recent studies have shown that the optimal LI drop for 

effective lesion formation depends on the atrial region where the 

lesions are performed. Higher cut-off values are needed for 

the anterior wall which has higher wall thickness compared to 

the lower cut-off values needed on the thinner posterior wall 

(10, 16). In addition the baseline LI and the LI drop differ 

according to atrial tissue characteristics: normal-voltage areas 

show higher baseline LI and greater LI drops, suggesting that tissue 

substrate should be considered for tailored ablation strategies (9, 

17, 19). In this sense, the measurement of impedance at different 

frequencies allows a better tissue characterization than LI since it 

permits the detailed characterization of the intra- and extracellular 

compartments (13). In our study we have described for the first 

time that human blood pool and post-ablated tissue have a lower 

LMI magnitude and phase angle than pre-ablated tissue, at all 

current frequencies studied. The lack of significant differences 

between post-ablated scarred tissue and blood pool suggests that 

FIGURE 3 

LMI magnitude at 5 kHz, contact force, bipolar electrograms and ECGs (V1) waveforms of one patient recorded in pre-ablated, post-ablated and 

blood sites (left panel). The right panel shows the bar graphs of the mean amplitudes for the LMI magnitude and the local electrograms and the 

mean values of the contact force, for each catheter in the studied sites. Values are reported as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, 

**** p < 0.0001.
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LMI drops re?ect cellular disruption and extracellular matrix 

disorganization post-ablation, consistent with irreversible lesion 

formation. This in accordance with previous large-animal studies 

where the impedance magnitude and phase angle showed the same 

behavior in the atrial and ventricular scarred tissue (9, 11). The 

frequency-specific responses, with lower frequencies re?ecting 

extracellular changes and higher frequencies correlating with 

membrane integrity, further highlight LMI’s potential for 

evaluating the tissue substrate characteristics to perform tailored 

applications and at the same time evaluate in real-time the 

lesion formation.

Finally, this study also shows that, despite the ablation power 

strategy used, 90W for 4 s (QDOT) or 30W for 30 s (Smarttouch), 

there is a similar LMI drop. This is in accordance with a recent 

experimental study where different high power short duration 

strategies and catheters were compared and showed similar 

impedance drops (20).

4.3 Cyclic changes of LMI

The biphasic pattern of LMI magnitude during the cardiac 

cycle highlights its dynamic interaction with mechanical and 

electrical activity (21, 22). Pre-ablated myocardium exhibited 

171% greater cyclic impedance amplitude than post-ablated 

tissue, re?ecting preserved tissue elasticity and contact force 

variability. The time-correlation between LMI ?uctuations and 

contact force emphasizes the importance of stable catheter 

FIGURE 4 

Influence of catheter direction on studied variables. The left part shows the mean values of the LMI magnitude at 5 kHz, contact force and bipolar 

electrograms in the pre- and post-ablation groups and how the catheter is oriented. The right part shows two geometries of the atria of one patient 

with different measured sites. In each site the vectors of the catheter direction (blue arrows) and the contact force (red arrows) are represented.

TABLE 2 Recent clinical studies on local impedance and RF ablation.

Study type # of patients Ablation type Catheter LI drop predicts conduction block Ref

Retrospective, single center, observational 50 CTI IntellaNav 

MiFi

>15 Ω (14)

Prospective, single center, pilot study 8 PVI StablePoint >22 Ω for anterior wall 

>18 Ω for posterior wall

(15)

Prospective, multicenter trial 60 PVI IntellaNav 

MiFi

>16 Ω for anterior wall, 

>12 Ω for posterior wall

(16)

Prospective, multicenter trial 51 PVI IntellaNav 

MiFi

>17 Ω for anterior wall 

>14 Ω for posterior wall

(16)

Prospective, multicenter trial 324 PVI StablePoint >21 for anterior wall, 

>18 Ω for posterior wall

(17, 18)
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contact during ablation. Post-ablated tissue’s attenuated 

cyclic changes may indicate loss of structural integrity, 

serving as a functional marker of lesion maturity. These 

findings suggest that integrating both static multifrequency 

impedance values and dynamic cyclic behavior could enhance 

lesion assessment.

4.4 Influence of catheter orientation

Catheter orientation significantly impacted LMI 

measurements in pre-ablated tissue when using the 

SmartTouch catheter, but it did not have an effect when using 

the QDOT catheter. This discrepancy may stem from 

differences in electrode configuration or contact force sensing 

mechanisms between catheters. Bipolar electrogram voltages 

remained unaffected by orientation. Both results are in 

accordance with a recent in vitro study by Calzolari et al. 

where they found that changes in catheter orientation did not 

affect the lesion depth (23).

4.5 Limitations

This study has several limitations. First, the sample size was 

modest, and the single-center design may limit generalizability. 

Second, differences in LMI values between catheters (QDOT vs. 

SmartTouch) complicate direct comparisons, requiring catheter- 

specific validation. Third, the fact that the impedance signature 

of a successful lesion converges with that of blood, potentially 

limits the specificity of the impedance measurement for 

distinguishing an effective ablation lesion from the pool of 

blood near the catheter tip. However, the integration of the 

magnitude and phase angle together with the cyclic changes of 

LMI and the contact-force data could overcome this issue. 

Finally, while LMI’s cyclic behavior was characterized, its 

clinical utility for predicting lesion durability remains 

speculative without further validation using imaging methods.

4.6 Clinical implications

This study shows that measuring local impedance at different 

current frequencies is feasible in the clinical scenario. The 

integration of LMI with electroanatomic mapping systems may 

enable detailed local tissue characterization and at the same time 

automated lesion tagging, optimizing ablation line continuity. 

Furthermore, cyclic impedance patterns could serve as 

intraprocedural biomarkers of contact stability and lesion 

transmurality. Recent studies have shown that the deepest 

penetrations can be achieved using an ablation strategy 

consisting of applying 50W for 10–15 s (24). Future studies 

should explore LMI-guided ablation strategies using this power 

setting and others to determine their impact on long-term 

arrhythmia-free survival.

4.7 Conclusions

This study shows for the first time that LMI can differentiate 

pre- from post-ablated tissue in a cohort of patients submitted 

to RF ablations. By combining frequency-specific impedance 

measurements with dynamic cyclic analysis, this new tool could 

be of potential clinical applicability for the characterization of 

the atrial substrate and at the same time monitor lesion quality 

during the ablations.
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