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Background: Disturbed metabolism correlates with the progression of heart 

failure with preserved ejection fraction (HFpEF). However, the discrepancy in 

metabolism between asymptomatic (Stage B) and symptomatic (Stage C) 

HFpEF patients remains unclear. This study aimed to explore the metabolic 

differences between Stages B and C HFpEF patients and to screen 

metabolites to distinguish between the two groups of patients.

Methods: A total of 97 Stage B and 31 Stage C HFpEF patients were included from a 

previous cohort, named Frailty and Comprehensive Geriatric Assessment in 

Hospitalized Elderly Patients (registration number: ChiCTR1800017204). Serum 

metabolites of the participants were identified and quantified using targeted 

metabolomics (Biocrates MxP® Quant 500 kit).

Results: Differential analysis identified 208 metabolites of 19 categories, of 

which lipids (n = 168), amino acids (n = 7), and related metabolites (n = 18) 

accounted for the top three differential metabolites. In addition, the 

differential metabolites were significantly enriched in 15 metabolic pathways 

encompassing amino acid metabolism (10 pathways), lipid metabolism (two 

pathways), carbohydrate metabolism (one pathway), energy metabolism (one 

pathway), and protein translation (one pathway). Metabolite set enrichment 

analysis demonstrated that the differential metabolites most likely originated 

from muscles and were most significantly enriched in renal disease states 

(continuous ambulatory peritoneal dialysis and chronic renal failure). Three 

non-heart-specific metabolites, i.e., cystine (AUC = 0.919), stearic acid 

[FA (18:0), AUC = 0.913], and N-palmitoyl sphingomyelin (SM C 16:0, 

AUC = 0.898), displayed higher accuracy than N-terminal pro-B-type brain 

natriuretic peptide (AUC = 0.838) in differentiating Stage B and Stage C patients.
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Conclusion: Compared with Stage B control, Stage C patients suffer from extensive 

metabolic disorders, of which lipid metabolism and amino acid metabolism are 

mostly significantly impaired. The alterations of metabolites are largely attributed 

to renal dysfunction and muscle proteolysis. Moreover, non-heart-specific 

metabolites display potential diagnostic value in differentiating subgroups of 

patients with HFpEF.

KEYWORDS

heart failure with preserved ejection fraction, metabolomics, bioinformatics, 

pathophysiology, biomarker

Introduction

Heart failure (HF) remains a global health challenge, affecting 

over 56 million individuals worldwide with persistently high 

mortality rates (1). Epidemiological shifts have established HF 

with preserved ejection fraction (HFpEF) as the predominant 

phenotype, constituting >50% of HF cases (2). Despite preserved 

systolic function, HFpEF carries a prognosis paralleling HF with 

reduced ejection fraction (HFrEF), with 5-year mortality 

exceeding 70% (3). This paradox underscores the need to re- 

evaluate HFpEF pathophysiology beyond ejection fraction- 

centric paradigms.

The HF continuum progresses through Stages A–D, with Stage 

B marking asymptomatic cardiac structural abnormalities preceding 

overt clinical symptoms (4). Alarmingly, Stage B HF affects >40% of 

community populations (5, 6), of whom 90% exhibit HFpEF (5). 

This at-risk cohort represents a critical window for intervention to 

avert progression to Stage C HFpEF—a transition marked by 

irreversible myocardial remodeling and functional decline (4, 7). 

However, current management strategies confront two fundamental 

challenges in Stage B HFpEF: (1) the absence of stage-specific 

therapies rooted in incomplete understanding of progression 

mechanisms (4) and (2) the diagnostic inadequacy of heart-derived 

biomarker, N-terminal pro-B-type brain natriuretic peptide (NT- 

proBNP), which fails to discriminate Stages B and C due to shared 

cardiac abnormalities (4). These limitations highlight the urgent need 

for non-heart-specific biomarkers to differentiate between the 

two stages.

Emerging evidence positions metabolic dysregulation as a pivotal 

yet understudied mechanism in HFpEF pathogenesis. Recent clinical 

trials with metabolic modulators—sodium–glucose cotransporter 2 

(SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists 

(GLP-1 RA)—have demonstrated unprecedented improvements in 

exercise capacity among symptomatic HFpEF patients (8, 9). These 

therapeutic breakthroughs suggest that metabolic perturbations may 

drive disease progression through pathways distinct from traditional 

hemodynamic models. However, critical knowledge gaps persist in 

characterizing the metabolic transitions between preclinical (Stage B) 

and clinical (Stage C) HFpEF—a prerequisite for developing stage- 

specific interventions.

Notably, current investigations have not comprehensively 

characterized metabolic alterations across HFpEF disease stages—a 

crucial omission given the dynamic nature of metabolic adaptations 

during disease progression. To address these gaps, we employ a 

targeted metabolomics approach to (1) systematically characterize 

stage-specific metabolic profiles in HFpEF progression; (2) explore 

potential metabolic mechanisms promoting HFpEF progression with 

a bioinformatic approach; and (3) identify candidate metabolic 

biomarkers with diagnostic potential for distinguishing Stage B and 

C HFpEF. Our findings may provide novel insights into metabolic 

drivers of HFpEF advancement and inform the development of 

stage-specific therapeutic strategies.

Materials and methods

Study participants

This study included participants from a previous cohort study, 

named Frailty and Comprehensive Geriatric Assessment in 

Hospitalized Elderly Patients (10). The previous study 

consecutively recruited 1,000 elderly inpatients from September 

2018 to February 2019 in Beijing Hospital. That study was 

approved by the Ethics Committee of Beijing Hospital (approval 

no. 2018BJYYEC-121-02) and registered at the Chinese Clinical 

Trial Registry (registration number: ChiCTR1800017204). 

Written informed consents were obtained from all participants.

The HFpEF diagnosis and HF stages were defined according to the 

2022 AHA/ACC/HFSA Guidelines for the Management of Heart 

Failure (4). Stage C HFpEF patients were those who fulfilled the 

following criteria: (1) current or previous symptoms or signs of HF; 

(2) left ventricular ejection fraction (LVEF) ≥ 50%; and (3) evidence 

of cardiac structural or functional abnormalities. Stage B HFpEF 

patients were LVEF-preserved (LVEF ≥ 50%) and had cardiac 

abnormalities but had no current or previous presentation of HF. 

The criteria for defining cardiac abnormalities (Supplementary 

Table S1) were proposed previously (11). Patients with cancer, acute 

infection, rheumatic diseases, hematological disease, acute myocardial 

infarction, acute cerebral infarction, estimated glomerular filtration 

rate (eGFR) < 30 mL/(min*1.73 m2), abnormal liver function, and 

LVEF < 50% were excluded. In this study, a total of 97 Stage B and 31 

Stage C HFpEF patients were included.

Metabolomics analysis

Fasting blood samples were collected in the morning after 

admission. Serum samples were prepared and frozen at −80 °C 
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until further analysis. Metabolite levels were profiled using the 

Biocrates MxP Quant 500 kit. The details of metabolite 

extraction and analysis are described elsewhere (12, 13). For 

metabolite extraction, a 10 μm sample was transferred to a 

96-well plate and dried under a nitrogen stream. The samples 

were then derivatized with 5% phenyl isothiocyanate solution. 

After incubating in the dark for 1 h, the samples were dried 

under a nitrogen stream and dissolved in the extraction solvent. 

The dissolved samples were then mixed and filtered to obtain 

the extracts. Flow injection analysis-tandem mass spectrometry 

(FIA-MS/MS) and liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) methods were used to analyze the 

extracts. Lipids were analyzed by FIA-MS/MS using a 5500 

QTRAP® instrument (AB Sciex, Darmstadt, Germany) with 

an electrospray ionization source, and non-lipid molecules 

were analyzed by LC-MS/MS with the same 5500 QTRAP® 

instrument. MS software (Sciex Analyst®) and Biocrates 

MetIDQTM software were used to calculate metabolite 

concentrations, data assessment, and compilation. Metabolites 

with levels below the detection limit were excluded from 

further analyses.

Statistics

All data were analyzed using GraphPad Prism 8 (GraphPad, San 

Diego, CA, USA), Microsoft Excel, SPSS 23.0 (IBM Corp., Armonk, 

NY, USA), R 4.1.2 (Vienna, Austria), and MetaboAnalyst 5.0 (https:// 

www.metaboanalyst.ca). Categorical variables were described as 

percentages, and normally distributed continuous variables were 

expressed as mean ± standard deviation. Non-normally distributed 

continuous data were described as medians (interquartile range: 

25th–75th percentiles).

Differences in baseline characteristics between Stage B and C 

HFpEF participants were tested using the chi-squared test 

(categorical variables), Mann–Whitney U test (non-normally 

distributed continuous variables), or Student’s t-test (normally 

distributed continuous variables). Differential analysis of all 

metabolites was performed using the Mann–Whitney U test, as 

most metabolites were not normally distributed. The P-values 

across all metabolites within each comparison were adjusted using a 

false discovery rate (FDR) method to account for multiple testing, 

and FDR < 0.05 was considered statistically significant. Hierarchical 

clustering heatmaps were generated using the “pheatmap” package. 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis was performed by the MetaboAnalyst web service with a 

hypergeometric test for significance and topology analysis for 

pathway impact (14). Metabolite set enrichment analysis (MSEA) of 

diseases and origins was also performed using MetaboAnalyst with 

a hypergeometric test for significance (14). To maximize the 

identification of differences in metabolic profiles between groups, 

an orthogonal projection to latent structure-discriminant analysis 

(OPLS-DA) model was constructed using SIMCA-P 14.1 (Umetrics 

AB, Sweden). Metabolites with FDR < 0.05 and variable importance 

in projection (VIP) ≥1.5 were further analyzed with receiver 

operating characteristic (ROC) curves.

Results

Baseline characteristics

The baseline characteristics of patients stratified by Stage B (n = 97) 

and Stage C (n = 31) are presented in Table 1. Stage C tend to be older 

compared with Stage B (80.45 ± 7.41 vs. 77.85 ± 5.95 years, p = 0.050), 

with marked differences observed in cardiac biomarker and renal 

function. Stage C patients demonstrated significantly elevated NT- 

proBNP levels (median 700.2 vs. 170.4 pg/mL, p < 0.001), lower eGFR 

[median 63.59 vs. 79.77 mL/(min × 1.73 m2), p < 0.001], and 

decreased exercise tolerance. Echocardiographic analysis revealed that 

Stage C patients had lower LVEF (62% vs. 65%, p = 0.001) and higher 

E wave velocity (0.96 ± 0.28 vs. 0.81 ± 0.22 m/s, p = 0.002). Moreover, 

Stage C patients had larger left atrial dimensions (LAAPD: 

42.27 ± 6.11 vs. 38.90 ± 5.37 mm, p = 0.004), and more Stage 

C patients suffered from atrial fibrillation (21.6% vs. 48.4%, 

p = 0.004). No significant differences were observed in gender, body 

mass index, total cholesterol, total triglyceride, high-density 

lipoprotein (HDL), low-density lipoprotein (LDL), smoking status, 

prevalence of hypertension, diabetes, peripheral artery disease, 

coronary heart disease, valvular disease, and stroke. Medication 

patterns were generally comparable between groups except fr 

diuretics (Stage C vs. Stage B: 12.4% vs. 64.5%, p < 0.001) and 

mineralocorticoid receptor antagonists (Stage C vs. Stage B: 0% vs. 

12.9%, p = 0.003).

Differential analysis

Using targeted metabolomics, 630 compounds were identified 

and quantified, including 107 non-lipid compounds and 523 

lipids. After removing compounds with levels below the 

detection limit, 355 metabolites were statistically analyzed.

Differential analysis identified 208 metabolites in 19 categories that 

differed significantly (FDR < 0.05) between the two groups (Figures 1A, 

B). Detailed concentrations of the 208 differential metabolites are 

summarized in Supplementary Table S2. Compared with the Stage 

B group, almost all differential metabolites (202/208) significantly 

increased in symptomatic patients, and only six metabolites 

significantly decreased (Figure 1B and Supplementary Table S2).

Lipids accounted for the largest proportion of differential 

metabolites (168/208). The differential lipids include 

triglycerides (TGs, n = 76), diglycerides (DGs, n = 5), fatty acids 

(FAs, n = 5), cholesteryl esters (CEs, n = 6), phosphatidylcholines 

(PCs, n = 34), lysophosphatidylcholines (LysoPCs, n = 2), 

acylcarnitine (Acar, n = 1), ceramides (Cers, n = 11) and their 

derivates, hexosylceramides (Hexcers, n = 8), dihexosylceramides 

(Hex2Cers, n = 5), trihexosylceramides (Hex3Cers, n = 3), and 

sphingomyelins (SMs, n = 12) (Figure 1B). The Pearson 

correlation coefficients among the differential lipids with similar 

structures, such as TGs–DGs, PCs, and Cers, tended to gather in 

the hierarchical clustering heatmap (Supplementary Figure S1).

Among the non-lipid metabolites, amino acids (AAs) and AA- 

related metabolites accounted for the top two differential metabolites, 
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with 23 compounds (7 AAs and 16 AA-related metabolites) 

significantly increased and only two AA-related metabolites, 

carnosine and phenylacetylglycine, significantly decreased (Figure 1B

and Supplementary Table S2). In addition, six biogenic amines, 

three carboxylic acids, three bile acids, and choline significantly 

increased (Figure 1B and Supplementary Table S2). One carboxylic 

acid (succinic acid) and one nucleobase-related metabolite 

(hypoxanthine) significantly decreased (Figure 1B and 

Supplementary Table S2).

Pathway analysis and enrichment analysis 
of differential metabolites

To investigate the metabolic pathways related to the metabolic 

differences between Stage B and C patients, KEGG pathway 

analysis was performed using the MetaboAnalyst web service. 

Altogether, 38 metabolic pathways were mapped, of which 15 

were significantly enriched, most of which were involved in AA 

metabolism (10/15) (P < 0.05, Figure 2). In addition, pathways 

concerning lipid metabolism (2/15), carbohydrate metabolism 

(1/15), energy metabolism (1/15), and protein translation (1/15), 

although impacted relatively lower by differential metabolites, 

were also significantly changed (Figure 2). As shown in 

Figure 2, the top three significantly altered pathways were the 

histidine, arginine, and glutathione metabolic pathways.

MSEA revealed that muscles were the most likely sources of 

differential metabolites (Figure 3A). Moreover, based on MSEA, 

differential metabolites were most significantly enriched in renal 

disease states, including continuous ambulatory peritoneal 

dialysis and chronic renal failure (Figure 3B).

Diagnostic value of metabolic biomarkers

To screen metabolites that maximally contributed to the separation 

of HFpEF stages, an OPLS-DA model was created based on 355 

metabolites that passed quality control. OPLS-DA plot demonstrated 

clear separation between Stage B and Stage C patients (Figure 4A). 

The goodness-of-fit parameters (R2X = 0.756, R2Y = 0.67) revealed a 

good fit, and the parameter for prediction (Q2 = 0.444) suggested a 

moderate predictive ability of this model. The R2 and Q2 interceptive 

values were 0.273 and −0.387, respectively, after 200 random 

permutations, suggesting no overfitting. The criteria to screen 

potential biomarkers for discriminating preclinical and clinical 

HFpEF patients were VIP > 1.5 and FDR < 0.05. Of the 355 qualified 

metabolites, 28 fulfilled these criteria (Supplementary Table S3). We 

further assessed the diagnostic accuracy of the 28 metabolites using 

ROC curves. We found that cystine, FA (18:0), and SM C 16:0 were 

the metabolites with the highest areas under the curves 

(AUC = 0.919, 0.913, and 0.898, respectively), which were even 

higher than those of NT-proBNP (AUC = 0.838) (Figures 4B,C). 

Moreover, their combinations with NT-proBNP further improved 

the diagnostic accuracy. The AUCs were 0.924, 0.969, and 0.937 for 

NT-proBNP plus FA (18:0), NT-proBNP plus SM C 16:0, and NT- 

proBNP plus cystine, respectively. Based on the maximum Youden’s 

index (maximal sum of sensitivity and specificity), the optimal cutoff 

concentrations of cystine, SM C 16:0, and FA (18:0) were 73, 103, 

and 234 µmol/L, respectively (Figure 4D).

TABLE 1 Patients’ characteristics.

Characteristics Stage B 
(n = 97)

Stage C 
(n = 31)

P-value

Age (years) 77.85 ± 5.95 80.45 ± 7.41 0.050

Male (%) 48 (49.5%) 10 (32.3%) 0.093

BMI (kg/m2) 25.08 ± 3.65 24.51 ± 3.66 0.449

Smoker (%) 28 (28.9%) 6 (19.4%) 0.297

NT-proBNP (pg/mL) 170.4 (89.81– 

390.6)

700.2 (184.4– 

1,819)

<0.001

NYHA functional class <0.001

I (%) 97 (100%) 0 (0%)

II (%) 0 (0%) 10 (32.3%)

III (%) 0 (0%) 19 (61.2%)

IV (%) 0 (0%) 2 (6.5%)

Disease history

Atrial fibrillation (%) 21 (21.6%) 15 (48.4%) 0.004

Aortic regurgitation (%) 4 (4.2%) 0 (%) 0.571

Mitral regurgitation (%) 8 (8.2%) 1 (3.2%) 0.687

Hypertension (%) 79 (81.4%) 28 (90.3) 0.245

Diabetes mellitus (%) 34 (35.1%) 14 (45.2%) 0.311

Peripheral artery disease (%) 20 (20.6%) 10 (32.3%) 0.183

Coronary heart disease (%) 52 (53.6%) 18 (58.1%) 0.664

Stroke (%) 32 (33.0%) 7 (22.6%) 0.273

eGFR [mL/(min × 1.73 m2)] 79.77 (67.70– 

89.17)

63.59 (42.81– 

86.83)

<0.001

Medication

Diuretics (%) 12 (12.4%) 20 (64.5%) <0.001

MRAs (%) 0 (0%) 4 (12.9%) 0.003

Antiplatelet drugs (%) 68 (70.1%) 16 (51.6%) 0.059

RAAS inhibitors (%) 43 (44.3%) 10 (32.3%) 0.235

Lipid-lowering drugs (%) 74 (76.3%) 23 (74.2%) 0.813

β-blockers (%) 53 (54.6%) 22 (71.0%) 0.108

Anticoagulants (%) 12 (12.4%) 8 (25.8%) 0.09

Blood lipids

Total cholesterol (mmol/L) 3.52 (3.10–4.30) 3.89 (3.32–4.40) 0.376

Total triglyceride (mmol/L) 1.12 (0.81–1.53) 1.15 (0.78–1.36) 0.733

HDL (mmol/L) 1.07 (0.92–1.21) 1.01 (0.72–1.12) 0.309

LDL (mmol/L) 2.10 (1.72–2.69) 2.34 (1.68–2.79) 0.336

Echocardiographic parameters

LVEF (%) 65 (60–65) 62 (60–65) 0.001

LAAPD (mm) 38.90 ± 5.37 42.27 ± 6.11 0.004

E velocity (m/s) 0.81 ± 0.22 0.96 ± 0.28 0.002

A velocity (m/s) 0.94 (0.84–1.1) 1 (0.98–1.2) 0.804

E/A 0.8 (0.67–1.08) 0.67 (0.61–1.09) 0.837

Septal e′ (cm/s) 7 (6–7.2) 7 (6–9) 0.649

Lateral e′ (cm/s) 5 (4–6) 5 (5–6) 0.187

Septal E/e′ 12.09 ± 4.66 13.99 ± 5.64 0.171

Lateral E/e′ 16.8 ± 6.2 19.05 ± 10.67 0.265

LV mass/height2.7 (g/m2.7) 42.81 (37.40– 

47.63)

46.35 (36.32– 

51.88)

0.142

BMI, body mass index; NT-proBNP, N-terminal pro-B-type brain natriuretic peptide; 

NYHA, New York Heart Association; eGFR, estimated glomerular filtration rate; MRAs, 

mineralocorticoid receptor antagonists; RAAS, renin–angiotensin–aldosterone system; 

HDL, high-density lipoprotein; LDL, low-density lipoprotein; LV, left ventricular; LVEF, 

left ventricular ejection fraction; LAAPD, left atrial anteroposterior diameter; E velocity, 

peak early diastolic transmitral Xow velocity; A velocity, peak late diastolic transmitral 

Xow velocity; septal e′, peak early diastolic mitral annular tissue velocity at septal mitral 

annulus; lateral e′ peak early diastolic mitral annular tissue velocity at lateral mitral annulus.
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FIGURE 1 

Differential analysis of metabolites. (A) Volcano plot of quantified metabolites in Stage C vs. Stage B patients. Each dot represents a metabolite. 

Y-axis: significance plotted as -log10 FDR (false discovery rate) with a cutoff of 0.05 (horizontal line). X-axis: effect size plotted as log2 fold 

change. Red dots represent increased metabolites, blue dots represent decreased metabolites, and black dots represent metabolites that were 

not significantly changed. (B) Categories of differential metabolites. Each part with a different color in the circular ring represents each category 

of metabolites. The area of each part represents the proportion of metabolites of each category to all differential metabolites; red font (↑) and 

blue font (↓) indicate metabolites that were significantly increased or decreased, respectively.
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Discussion

This study explored the metabolic differences between 

patients with Stage B and Stage C HFpEF. Compared to 

the Stage B group, multiple categories of metabolites 

and corresponding pathways, especially lipids and AAs, were 

significantly altered in Stage C patients. Bioinformatics analysis 

revealed that the differential metabolites most likely originated 

from muscles and were most significantly enriched in 

renal disease states. Three non-heart-specific metabolites, 

cystine, SM C 16:0, and FA (18:0), differentiated between 

preclinical and clinical HFpEF patients with accuracy higher 

than NT-proBNP.

Pathophysiological significance

Impaired lipid metabolism and abnormal 
energetic metabolism

Lipid metabolism is strongly associated with cardiovascular 

diseases. A high-fat diet has previously been reported to induce 

cardiac abnormalities and murine HFpEF (15, 16). Mechanistically, 

the accumulation of lipids, including TGs (17, 18), CEs (19), PCs 

(20), Cers (21, 22), and glycosylated Cers (17), in the myocardium 

results in cardiac structural and functional abnormalities. Thus, we 

speculate that the excessively increased serum lipids in Stage 

C patients account for their worse cardiac parameters (Figure 1B

and Table 1).

We also observed that lipids in the same categories, especially 

TGs–DGs, PCs, FAs, LysoPCs, Cers, and HexCers, tend to 

cluster together in the hierarchical clustering heatmap 

(Supplementary Figure S1), suggesting a strong intrinsic 

association between lipids in the same class. Theoretically, this 

association should be attributed to shared metabolic pathways 

for the same class of lipids. These results suggest that intrinsic 

metabolic defects are the cause of disturbed lipid metabolism in 

Stage C patients. Consistent with our results, previous 

investigations also reported that fatty acid metabolism is 

impaired in HFpEF patients’ or animals’ myocardium (23, 24), 

and restoring fatty acid metabolism corrected HFpEF phenotype 

in animals (25–27).

Lipids are the storage form of energy. Recently, two glucose- 

lowering drugs, SGLT2 inhibitor and GLP-1RA, were reported 

to improve the exercise tolerance of symptomatic HFpEF 

patients (8, 9). Moreover, a previous study reported that 

exercise training reduced Stage B HFpEF patients’ LV 

myocardial stiffness (7). These investigations, together with 

our findings, provide a possibility that decreasing energy, 

whether by drugs or exercise, helps to prevent Stage 

B HFpEF progression.

In this research, blood lipids tested by the hospital’s clinical 

laboratory, including total cholesterol, total triglyceride, HDL, 

FIGURE 2 

Pathway analysis of differential metabolites. Scatter plot presenting enriched metabolic pathways. The color gradient indicates the significance of the 

pathway ranked by P-value (yellow, higher P-values; red, lower P-values), and the circle’s size indicates the pathway impact score (the larger the 

circle, the higher the impact score). Significantly enriched pathways were marked by names, and the colors of the names represent categories of 

enriched pathways. The black horizontal line indicates P = 0.05.
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and LDL, were not significantly different between the two groups 

(Table 1). However, the metabolomics approach identified various 

significantly altered lipids (Figure 1 and Supplementary Table S2). 

This may be owing to the more precise detectability of the 

metabolomics approach, which can detect differences at the 

molecular level.

FIGURE 3 

Metabolite set enrichment analysis. (A,B) Enrichment analysis of origins and associated diseases of differential metabolites. The color gradient indicates the 

significance of the enriched organs or diseases ranked by P-value (yellow, higher P-values; red, lower P-values), and the circle’s size indicates the enrichment 

ratio (the larger the circle, the higher the enrichment ratio). Red font indicates organs or diseases that were most significantly enriched.

Zou et al.                                                                                                                                                               10.3389/fcvm.2025.1674243 

Frontiers in Cardiovascular Medicine 07 frontiersin.org



Amino acid metabolism disorder and HFpEF

As shown in Figure 2, the differential metabolites were significantly 

enriched in 10 AA metabolism pathways with high impact. AAs, AA- 

related metabolites, and biogenic amines are metabolically related. 

Consistently, previous studies also demonstrate impaired AA 

metabolism in HFpEF (23, 28, 29). In this study, we speculate that 

muscular abnormalities and decreased renal function partly account 

for the perturbation of AA metabolism.

FIGURE 4 

Screening metabolites with potential diagnostic value. (A) Three-dimensional scatter plot of OPLS-DA model analysis for Stage C patients (red dot) 

vs. Stage B patients (blue dot) by the main components. (B) Plot of the area under the curve of each metabolite to differentiate Stage B and Stage 

C patients. (C) Receiver operating characteristic curves of FA (18:0), SM C 16:0, cystine, and NT-proBNP. (D) Concentrations and optimal cutoff values 

of FA (18:0), SM C 16:0, and cystine to differentiate Stage B and C patients.
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In this study, MSEA revealed that muscles were the most 

significantly enriched origins of differential metabolites 

(Figure 3A). Seven essential AAs, including glutamine, glycine, 

phenylalanine, glutamate, aspartate, arginine, and cysteine, 

which participate in protein biosynthesis, increased in the serum 

of Stage C patients (Figure 1B and Supplementary Table S2). 

Moreover, the levels of two muscle-related metabolites, sarcosine 

(30) and taurine (31), also increased in the serum of patients 

with Stage C disease (Supplementary Table S2). These results 

suggest that Stage C patients suffer from increased muscle 

proteolysis, a process of releasing AAs into the blood, which 

also accounts for the decreased exercise tolerance of Stage 

C patients. Similarly, previous studies also reported increased 

proteolysis in both the myocardium (32) and skeletal muscles of 

HFpEF patients (33).

In addition, differential metabolites were most significantly 

enriched in renal disease states (Figure 3B), and Stage C patients 

had lower eGFR (Table 1). Creatinine, kynurenine, asymmetric 

dimethylarginine (ADMA), symmetric dimethylarginine 

(SDMA), and homocysteine are uremic toxins (34, 35), and 

their increase is accompanied by a decline in eGFR 

(Supplementary Table S2 and Table 1). In addition, ADMA and 

SDMA can decrease nitric oxide (NO) biosynthesis by inhibiting 

NO synthase and suppressing the transportation of arginine, 

respectively (36, 37). Moreover, impaired NO bioavailability 

contributes to cardiac dysfunction in HFpEF patients (38). Our 

results provided a possible mechanistic link between the decline 

of renal function and the exacerbation of HFpEF—that is, 

decreased renal function in HFpEF patients increases serum 

uremic toxins, which impair NO biosynthesis and exacerbate 

cardiac dysfunction. Future study would concentrate on whether 

and how slowing down eGFR decline or clearing uremic toxins 

(such as ADMA and SDMA) helps to prevent Stage B 

HFpEF progression.

Diagnostic value of serum metabolites

In this study, we found that three non-heart-specific 

metabolites, i.e., FA (18:0), SM C 16:0, and cystine, were more 

accurate than NT-proBNP in differentiating between patients 

with Stage B and Stage C HFpEF (Figure 4B). Although FA 

(18:0), SM C 16:0, and cystine are not heart-specific metabolites, 

their high diagnostic accuracy should be ascribed to systemic 

changes that occur during the progression of HFpEF (39, 40). In 

addition, the accuracy of NT-proBNP is limited as it also 

increases in Stage B patients (4). In summary, these findings 

reveal the potential value of non-heart-specific biomarkers for 

differentiating the subtypes of cardiovascular disease.

Limitations

In this research, patients’ baseline characteristics, including 

age and comorbidities, were significantly different between the 

two groups. Stage C patients were older, more vulnerable to 

atrial fibrillation, had lower eGFR, and worse cardiac function 

(Table 1), which may impact the metabolome to some extent. 

As a matter of fact, metabolites associated with renal 

dysfunction, such as ADMA and SDMA (34), did increase in 

Stage C group serum, which means the kidney-related 

metabolites may provide a mechanistic link between renal 

dysfunction and HFpEF progression. Aging is a risk factor of 

HFpEF, which suggests that aging may promote the progression 

of HFpEF via an altered metabolome. Thus, it is reasonable that 

Stage C patients are older than Stage B control. Moreover, 

SGLT2 inhibitors were not prescribed for Stage C patients as 

they were enrolled from 2018 to 2019 when this drug had not 

been recommended by guidelines. Future studies must include 

patients taking SGLT2 inhibitors to clarify the residual risk 

under such therapy. In addition, it would have been valuable to 

take healthy subjects as controls. However, it was not available 

as all participants were inpatients in our previous cohort. 

Finally, the findings of this study were derived from a single 

cohort. Therefore, the results should be interpreted with caution.

Conclusion

The metabolic differences between Stage B and Stage 

C HFpEF patients are diverse, involving various metabolites and 

metabolic pathways, among which lipid metabolism and AA 

metabolism are most significantly impaired. The perturbations 

of metabolism are largely attributed to muscle proteolysis and 

renal dysfunction. Non-heart-specific metabolites, including FA 

(18:0), SM C 16:0, and cystine, are candidate biomarkers to 

differentiate HFpEF subgroups with accuracy higher than NT- 

proBNP. In the future, therapeutic strategies targeting excessive 

energy, renal dysfunction, and uremic toxins have the potential 

to prevent Stage B patients from progression.
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