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Background: Disturbed metabolism correlates with the progression of heart
failure with preserved ejection fraction (HFpEF). However, the discrepancy in
metabolism between asymptomatic (Stage B) and symptomatic (Stage C)
HFpEF patients remains unclear. This study aimed to explore the metabolic
differences between Stages B and C HFpEF patients and to screen
metabolites to distinguish between the two groups of patients.

Methods: Atotal of 97 Stage B and 31 Stage C HFpEF patients were included froma
previous cohort, named Frailty and Comprehensive Geriatric Assessment in
Hospitalized Elderly Patients (registration number: ChiCTR1800017204). Serum
metabolites of the participants were identified and quantified using targeted
metabolomics (Biocrates MxP®™ Quant 500 kit).

Results: Differential analysis identified 208 metabolites of 19 categories, of
which lipids (n=168), amino acids (n=7), and related metabolites (n =18)
accounted for the top three differential metabolites. In addition, the
differential metabolites were significantly enriched in 15 metabolic pathways
encompassing amino acid metabolism (10 pathways), lipid metabolism (two
pathways), carbohydrate metabolism (one pathway), energy metabolism (one
pathway), and protein translation (one pathway). Metabolite set enrichment
analysis demonstrated that the differential metabolites most likely originated
from muscles and were most significantly enriched in renal disease states
(continuous ambulatory peritoneal dialysis and chronic renal failure). Three
non-heart-specific metabolites, i.e., cystine (AUC=0.919), stearic acid
[FA (18:0), AUC=0.913], and N-palmitoyl sphingomyelin (SM C 16:0,
AUC = 0.898), displayed higher accuracy than N-terminal pro-B-type brain
natriuretic peptide (AUC = 0.838) in differentiating Stage B and Stage C patients.
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Conclusion: Compared with Stage B control, Stage C patients suffer from extensive
metabolic disorders, of which lipid metabolism and amino acid metabolism are
mostly significantly impaired. The alterations of metabolites are largely attributed
to renal dysfunction and muscle proteolysis. Moreover, non-heart-specific
metabolites display potential diagnostic value in differentiating subgroups of
patients with HFpEF.

KEYWORDS

heart failure with preserved ejection fraction, metabolomics, bioinformatics,
pathophysiology, biomarker

Introduction

Heart failure (HF) remains a global health challenge, affecting
over 56 million individuals worldwide with persistently high
mortality rates (1). Epidemiological shifts have established HF
with preserved ejection fraction (HFpEF) as the predominant
phenotype, constituting >50% of HF cases (2). Despite preserved
systolic function, HFpEF carries a prognosis paralleling HF with
reduced ejection fraction (HFrEF), with 5-year mortality
exceeding 70% (3). This paradox underscores the need to re-
evaluate HFpEF pathophysiology beyond ejection fraction-
centric paradigms.

The HF continuum progresses through Stages A-D, with Stage
B marking asymptomatic cardiac structural abnormalities preceding
overt clinical symptoms (4). Alarmingly, Stage B HF affects >40% of
community populations (5, 6), of whom 90% exhibit HFpEF (5).
This at-risk cohort represents a critical window for intervention to
avert progression to Stage C HFpEF—a transition marked by
irreversible myocardial remodeling and functional decline (4, 7).
However, current management strategies confront two fundamental
challenges in Stage B HFpEF: (1) the absence of stage-specific
therapies rooted in incomplete understanding of progression
mechanisms (4) and (2) the diagnostic inadequacy of heart-derived
biomarker, N-terminal pro-B-type brain natriuretic peptide (NT-
proBNP), which fails to discriminate Stages B and C due to shared
cardiac abnormalities (4). These limitations highlight the urgent need
for non-heart-specific biomarkers to differentiate between the
two stages.

Emerging evidence positions metabolic dysregulation as a pivotal
yet understudied mechanism in HFpEF pathogenesis. Recent clinical
trials with metabolic modulators—sodium-glucose cotransporter 2
(SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists
(GLP-1 RA)—have demonstrated unprecedented improvements in
exercise capacity among symptomatic HFpEF patients (8, 9). These
therapeutic breakthroughs suggest that metabolic perturbations may
drive disease progression through pathways distinct from traditional
hemodynamic models. However, critical knowledge gaps persist in
characterizing the metabolic transitions between preclinical (Stage B)
and clinical (Stage C) HFpEF—a prerequisite for developing stage-
specific interventions.

Notably, current investigations have not comprehensively
characterized metabolic alterations across HFpEF disease stages—a
crucial omission given the dynamic nature of metabolic adaptations
during disease progression. To address these gaps, we employ a
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targeted metabolomics approach to (1) systematically characterize
stage-specific metabolic profiles in HFpEF progression; (2) explore
potential metabolic mechanisms promoting HFpEF progression with
a bioinformatic approach; and (3) identify candidate metabolic
biomarkers with diagnostic potential for distinguishing Stage B and
C HFpEF. Our findings may provide novel insights into metabolic
drivers of HFpEF advancement and inform the development of
stage-specific therapeutic strategies.

Materials and methods
Study participants

This study included participants from a previous cohort study,
named Frailty and Comprehensive Geriatric Assessment in
Hospitalized Elderly Patients (10). The previous study
consecutively recruited 1,000 elderly inpatients from September
2018 to February 2019 in Beijing Hospital. That study was
approved by the Ethics Committee of Beijing Hospital (approval
no. 2018BJYYEC-121-02) and registered at the Chinese Clinical
Trial Registry (registration number: ChiCTR1800017204).
Written informed consents were obtained from all participants.

The HFpEF diagnosis and HF stages were defined according to the
2022 AHA/ACC/HFSA Guidelines for the Management of Heart
Failure (4). Stage C HFpEF patients were those who fulfilled the
following criteria: (1) current or previous symptoms or signs of HF;
(2) left ventricular ejection fraction (LVEF) > 50%; and (3) evidence
of cardiac structural or functional abnormalities. Stage B HFpEF
patients were LVEF-preserved (LVEF>50%) and had cardiac
abnormalities but had no current or previous presentation of HF.
The criteria for defining cardiac abnormalities (Supplementary
Table S1) were proposed previously (11). Patients with cancer, acute
infection, rheumatic diseases, hematological disease, acute myocardial
infarction, acute cerebral infarction, estimated glomerular filtration
rate (eGFR) < 30 mL/(min*1.73 m?), abnormal liver function, and
LVEF < 50% were excluded. In this study, a total of 97 Stage B and 31
Stage C HFpEF patients were included.

Metabolomics analysis

Fasting blood samples were collected in the morning after
admission. Serum samples were prepared and frozen at —80 °C
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until further analysis. Metabolite levels were profiled using the
Biocrates MxP Quant 500 kit. The
extraction and analysis are described elsewhere (12, 13). For

details of metabolite

metabolite extraction, a 10 pm sample was transferred to a
96-well plate and dried under a nitrogen stream. The samples
were then derivatized with 5% phenyl isothiocyanate solution.
After incubating in the dark for 1h, the samples were dried
under a nitrogen stream and dissolved in the extraction solvent.
The dissolved samples were then mixed and filtered to obtain
the extracts. Flow injection analysis-tandem mass spectrometry
(FIA-MS/MS)
spectrometry (LC-MS/MS) methods were used to analyze the
extracts. Lipids were analyzed by FIA-MS/MS using a 5500
QTRAP® instrument (AB Sciex, Darmstadt, Germany) with
an electrospray ionization source, and non-lipid molecules

were analyzed by LC-MS/MS with the same 5500 QTRAP®
®
)

and liquid chromatography-tandem mass

instrument. MS software and Biocrates
MetIDQ™

concentrations, data assessment, and compilation. Metabolites

(Sciex Analyst

software were wused to calculate metabolite
with levels below the detection limit were excluded from

further analyses.

Statistics

All data were analyzed using GraphPad Prism 8 (GraphPad, San
Diego, CA, USA), Microsoft Excel, SPSS 23.0 (IBM Corp., Armonk,
NY, USA), R 4.1.2 (Vienna, Austria), and MetaboAnalyst 5.0 (https://
www.metaboanalyst.ca). Categorical variables were described as
percentages, and normally distributed continuous variables were
expressed as mean + standard deviation. Non-normally distributed
continuous data were described as medians (interquartile range:
25th-75th percentiles).

Differences in baseline characteristics between Stage B and C
HFpEF participants were tested using the chi-squared test
(categorical variables), Mann-Whitney U test (non-normally
distributed continuous variables), or Student’s t-test (normally
distributed continuous variables). Differential analysis of all
metabolites was performed using the Mann-Whitney U test, as
most metabolites were not normally distributed. The P-values
across all metabolites within each comparison were adjusted using a
false discovery rate (FDR) method to account for multiple testing,
and FDR < 0.05 was considered statistically significant. Hierarchical
clustering heatmaps were generated using the “pheatmap” package.
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis was performed by the MetaboAnalyst web service with a
hypergeometric test for significance and topology analysis for
pathway impact (14). Metabolite set enrichment analysis (MSEA) of
diseases and origins was also performed using MetaboAnalyst with
a hypergeometric test for significance (14). To maximize the
identification of differences in metabolic profiles between groups,
an orthogonal projection to latent structure-discriminant analysis
(OPLS-DA) model was constructed using SIMCA-P 14.1 (Umetrics
AB, Sweden). Metabolites with FDR < 0.05 and variable importance
in projection (VIP) >1.5 were further analyzed with receiver
operating characteristic (ROC) curves.
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Results
Baseline characteristics

The baseline characteristics of patients stratified by Stage B (n = 97)
and Stage C (n = 31) are presented in Table 1. Stage C tend to be older
compared with Stage B (80.45 + 7.41 vs. 77.85 £ 5.95 years, p = 0.050),
with marked differences observed in cardiac biomarker and renal
function. Stage C patients demonstrated significantly elevated NT-
proBNP levels (median 700.2 vs. 170.4 pg/mL, p < 0.001), lower eGFR
[median 63.59 vs. 79.77 mL/(minx 1.73 m?), p<0.001], and
decreased exercise tolerance. Echocardiographic analysis revealed that
Stage C patients had lower LVEF (62% vs. 65%, p = 0.001) and higher
E wave velocity (0.96 +0.28 vs. 0.81 + 0.22 m/s, p = 0.002). Moreover,
Stage C patients had larger left atrial dimensions (LAAPD:
4227 +6.11 vs. 3890+5.37mm, p=0.004), and more Stage
C patients suffered from atrial fibrillation (21.6% vs. 48.4%,
p=0.004). No significant differences were observed in gender, body
mass index, total cholesterol, total triglyceride, high-density
lipoprotein (HDL), low-density lipoprotein (LDL), smoking status,
prevalence of hypertension, diabetes, peripheral artery disease,
coronary heart disease, valvular disease, and stroke. Medication
patterns were generally comparable between groups except fr
diuretics (Stage C vs. Stage B: 12.4% vs. 64.5%, p<0.001) and
mineralocorticoid receptor antagonists (Stage C vs. Stage B: 0% vs.
12.9%, p = 0.003).

Differential analysis

Using targeted metabolomics, 630 compounds were identified
and quantified, including 107 non-lipid compounds and 523
lipids. After removing compounds with levels below the
detection limit, 355 metabolites were statistically analyzed.

Differential analysis identified 208 metabolites in 19 categories that
differed significantly (FDR < 0.05) between the two groups (Figures 1A,
B). Detailed concentrations of the 208 differential metabolites are
summarized in Supplementary Table S2. Compared with the Stage
B group, almost all differential metabolites (202/208) significantly
increased in symptomatic patients, and only six metabolites
significantly decreased (Figure 1B and Supplementary Table S2).

Lipids accounted for the largest proportion of differential
metabolites  (168/208). The differential lipids include
triglycerides (TGs, n=76), diglycerides (DGs, n=>5), fatty acids
(FAs, n=5), cholesteryl esters (CEs, n = 6), phosphatidylcholines
(PCs, n=234), (LysoPCs, n=2),
acylcarnitine (Acar, n=1), ceramides (Cers, n=11) and their

lysophosphatidylcholines

derivates, hexosylceramides (Hexcers, n =8), dihexosylceramides
(Hex2Cers, n=>5), trihexosylceramides (Hex3Cers, n=3), and
(SMs, n=12) 1B). The
correlation coefficients among the differential lipids with similar

sphingomyelins (Figure Pearson

structures, such as TGs-DGs, PCs, and Cers, tended to gather in

the hierarchical clustering heatmap (Supplementary Figure S1).
Among the non-lipid metabolites, amino acids (AAs) and AA-

related metabolites accounted for the top two differential metabolites,
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TABLE 1 Patients’ characteristics.

Characteristics Stage B Stage C | P-value
(n=97) (n=31)

Age (years) 77.85+5.95 80.45+7.41 0.050
Male (%) 48 (49.5%) 0 (32.3%) 0.093
BMI (kg/m?) 25.08 £3.65 24.51+3.66 0.449
Smoker (%) 28 (28.9%) 6 (19.4%) 0.297
NT-proBNP (pg/mL) 170.4 (89.81- | 700.2 (184.4- <0.001
390.6) 1,819)
NYHA functional class <0.001
1 (%) 97 (100%) 0 (0%)
11 (%) 0 (0%) 10 (32.3%)
111 (%) 0 (0%) 19 (61.2%)
1V (%) 0 (0%) 2 (6.5%)
Disease history
Atrial fibrillation (%) 21 (21.6%) 15 (48.4%) 0.004
Aortic regurgitation (%) 4 (4.2%) 0 (%) 0.571
Mitral regurgitation (%) 8 (8.2%) 1 (3.2%) 0.687
Hypertension (%) 79 (81.4%) 28 (90.3) 0.245
Diabetes mellitus (%) 34 (35.1%) 14 (45.2%) 0.311
Peripheral artery disease (%) 20 (20.6%) 10 (32.3%) 0.183
Coronary heart disease (%) 52 (53.6%) 18 (58.1%) 0.664
Stroke (%) 32 (33.0%) 7 (22.6%) 0.273
eGFR [mL/(min x 1.73 m?)] 79.77 (67.70- | 63.59 (42.81- <0.001
89.17) 86.83)
Medication
Diuretics (%) 12 (12.4%) 20 (64.5%) <0.001
MRAs (%) 0 (0%) 4 (12.9%) 0.003
Antiplatelet drugs (%) 68 (70.1%) 16 (51.6%) 0.059
RAAS inhibitors (%) 43 (44.3%) 10 (32.3%) 0.235
Lipid-lowering drugs (%) 74 (76.3%) 23 (74.2%) 0.813
B-blockers (%) 53 (54.6%) 22 (71.0%) 0.108
Anticoagulants (%) 12 (12.4%) 8 (25.8%) 0.09
Blood lipids
Total cholesterol (mmol/L) 3.52 (3.10-4.30) | 3.89 (3.32-4.40) 0.376
Total triglyceride (mmol/L) 1.12 (0.81-1.53) | 1.15 (0.78-1.36) 0.733
HDL (mmol/L) 1.07 (0.92-1.21) | 1.01 (0.72-1.12) 0.309
LDL (mmol/L) 2.10 (1.72-2.69) | 2.34 (1.68-2.79) 0.336
Echocardiographic parameters
LVEF (%) 65 (60-65) 62 (60-65) 0.001
LAAPD (mm) 38.90 £ 5.37 4227 +6.11 0.004
E velocity (m/s) 0.81+0.22 0.96 +0.28 0.002
A velocity (m/s) 0.94 (0.84-1.1) 1 (0.98-1.2) 0.804
E/A 0.8 (0.67-1.08) | 0.67 (0.61-1.09) 0.837
Septal ¢’ (cm/s) 7 (6-7.2) 7 (6-9) 0.649
Lateral ¢’ (cm/s) 5 (4-6) 5 (5-6) 0.187
Septal E/e’ 12.09 + 4.66 13.99 +5.64 0.171
Lateral E/e” 16.8+6.2 19.05 + 10.67 0.265
LV mass/height*” (g/m*7) 42.81 (37.40- 46.35 (36.32- 0.142
47.63) 51.88)

BMI, body mass index; NT-proBNP, N-terminal pro-B-type brain natriuretic peptide;
NYHA, New York Heart Association; eGFR, estimated glomerular filtration rate; MRAs,
mineralocorticoid receptor antagonists; RAAS, renin-angiotensin-aldosterone system;
HDL, high-density lipoprotein; LDL, low-density lipoprotein; LV, left ventricular; LVEF,
left ventricular ejection fraction; LAAPD, left atrial anteroposterior diameter; E velocity,
peak early diastolic transmitral flow velocity; A velocity, peak late diastolic transmitral
flow velocity; septal e’, peak early diastolic mitral annular tissue velocity at septal mitral
annulus; lateral e peak early diastolic mitral annular tissue velocity at lateral mitral annulus.

with 23 compounds (7 AAs and 16 AA-related metabolites)
significantly increased and only two AA-related metabolites,
carnosine and phenylacetylglycine, significantly decreased (Figure 1B
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and Supplementary Table S2). In addition, six biogenic amines,
three carboxylic acids, three bile acids, and choline significantly
increased (Figure 1B and Supplementary Table S2). One carboxylic

acid (succinic acid) and one nucleobase-related metabolite
(hypoxanthine)  significantly ~ decreased  (Figure 1B  and
Supplementary Table S2).

Pathway analysis and enrichment analysis
of differential metabolites

To investigate the metabolic pathways related to the metabolic
differences between Stage B and C patients, KEGG pathway
analysis was performed using the MetaboAnalyst web service.
Altogether, 38 metabolic pathways were mapped, of which 15
were significantly enriched, most of which were involved in AA
metabolism (10/15) (P <0.05, Figure 2). In addition, pathways
concerning lipid metabolism (2/15), carbohydrate metabolism
(1/15), energy metabolism (1/15), and protein translation (1/15),
although impacted relatively lower by differential metabolites,
were also significantly changed (Figure 2). As shown in
Figure 2, the top three significantly altered pathways were the
histidine, arginine, and glutathione metabolic pathways.

MSEA revealed that muscles were the most likely sources of
differential metabolites (Figure 3A). Moreover, based on MSEA,
differential metabolites were most significantly enriched in renal
disease states, including continuous ambulatory peritoneal
dialysis and chronic renal failure (Figure 3B).

Diagnostic value of metabolic biomarkers

To screen metabolites that maximally contributed to the separation
of HFpEF stages, an OPLS-DA model was created based on 355
metabolites that passed quality control. OPLS-DA plot demonstrated
clear separation between Stage B and Stage C patients (Figure 4A).
The goodness-of-fit parameters (R2X = 0.756, R2Y = 0.67) revealed a
good fit, and the parameter for prediction (Q2 =0.444) suggested a
moderate predictive ability of this model. The R2 and Q2 interceptive
values were 0.273 and —0.387, respectively, after 200 random
permutations, suggesting no overfitting. The criteria to screen
potential biomarkers for discriminating preclinical and clinical
HEFpEF patients were VIP > 1.5 and FDR < 0.05. Of the 355 qualified
metabolites, 28 fulfilled these criteria (Supplementary Table S3). We
further assessed the diagnostic accuracy of the 28 metabolites using
ROC curves. We found that cystine, FA (18:0), and SM C 16:0 were
the metabolites with the highest areas under the curves
(AUC=0.919, 0913, and 0.898, respectively), which were even
higher than those of NT-proBNP (AUC=0.838) (Figures 4B,C).
Moreover, their combinations with NT-proBNP further improved
the diagnostic accuracy. The AUCs were 0.924, 0.969, and 0.937 for
NT-proBNP plus FA (18:0), NT-proBNP plus SM C 16:0, and NT-
proBNP plus cystine, respectively. Based on the maximum Youden’s
index (maximal sum of sensitivity and specificity), the optimal cutoff
concentrations of cystine, SM C 16:0, and FA (18:0) were 73, 103,
and 234 umol/L, respectively (Figure 4D).
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FIGURE 1
Differential analysis of metabolites. (A) Volcano plot of quantified metabolites in Stage C vs. Stage B patients. Each dot represents a metabolite.
Y-axis: significance plotted as -logl0 FDR (false discovery rate) with a cutoff of 0.05 (horizontal line). X-axis: effect size plotted as log2 fold
change. Red dots represent increased metabolites, blue dots represent decreased metabolites, and black dots represent metabolites that were
not significantly changed. (B) Categories of differential metabolites. Each part with a different color in the circular ring represents each category
of metabolites. The area of each part represents the proportion of metabolites of each category to all differential metabolites; red font (1) and
blue font (|) indicate metabolites that were significantly increased or decreased, respectively.
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Discussion

This study explored the metabolic differences between
patients with Stage B and Stage C HFpEF. Compared to
the Stage B group, categories
and corresponding pathways, especially lipids and AAs, were

multiple of metabolites
significantly altered in Stage C patients. Bioinformatics analysis
revealed that the differential metabolites most likely originated
and were most
disease states. Three non-heart-specific metabolites,
cystine, SM C 16:0, and FA (18:0), differentiated between
preclinical and clinical HFpEF patients with accuracy higher

than NT-proBNP.

from muscles significantly enriched in

renal

Pathophysiological significance

Impaired lipid metabolism and abnormal
energetic metabolism

Lipid metabolism is strongly associated with cardiovascular
diseases. A high-fat diet has previously been reported to induce
cardiac abnormalities and murine HFpEF (15, 16). Mechanistically,
the accumulation of lipids, including TGs (17, 18), CEs (19), PCs
(20), Cers (21, 22), and glycosylated Cers (17), in the myocardium
results in cardiac structural and functional abnormalities. Thus, we
speculate that the excessively increased serum lipids in Stage
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C patients account for their worse cardiac parameters (Figure 1B
and Table 1).

We also observed that lipids in the same categories, especially
TGs-DGs, PCs, FAs, LysoPCs, Cers, and HexCers, tend to
the

D),
association between lipids in the same class. Theoretically, this

cluster together in hierarchical clustering heatmap

(Supplementary Figure suggesting a strong intrinsic
association should be attributed to shared metabolic pathways
for the same class of lipids. These results suggest that intrinsic
metabolic defects are the cause of disturbed lipid metabolism in
Stage C patients. Consistent with our results, previous
investigations also reported that fatty acid metabolism is
impaired in HFpEF patients’ or animals’ myocardium (23, 24),
and restoring fatty acid metabolism corrected HFpEF phenotype
in animals (25-27).

Lipids are the storage form of energy. Recently, two glucose-
lowering drugs, SGLT2 inhibitor and GLP-1RA, were reported
to improve the exercise tolerance of symptomatic HFpEF
patients (8, 9). Moreover, a previous study reported that
B HFpEF patients’ LV

myocardial stiffness (7). These investigations, together with

exercise training reduced Stage
our findings, provide a possibility that decreasing energy,
whether

B HFpEF progression.

by drugs or exercise, helps to prevent Stage

In this research, blood lipids tested by the hospital’s clinical
laboratory, including total cholesterol, total triglyceride, HDL,
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and LDL, were not significantly different between the two groups  This may be owing to the more precise detectability of the

(Table 1). However, the metabolomics approach identified various ~ metabolomics approach, which can detect differences at the

significantly altered lipids (Figure 1 and Supplementary Table S2).  molecular level.
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Amino acid metabolism disorder and HFpEF
As shown in Figure 2, the differential metabolites were significantly
enriched in 10 AA metabolism pathways with high impact. AAs, AA-
related metabolites, and biogenic amines are metabolically related.

Frontiers in Cardiovascular Medicine

Consistently, previous studies also demonstrate impaired AA
metabolism in HFpEF (23, 28, 29). In this study, we speculate that
muscular abnormalities and decreased renal function partly account

for the perturbation of AA metabolism.
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In this study, MSEA revealed that muscles were the most
of differential
(Figure 3A). Seven essential AAs, including glutamine, glycine,

significantly  enriched origins metabolites
phenylalanine, glutamate, aspartate, arginine, and cysteine,
which participate in protein biosynthesis, increased in the serum
of Stage C patients (Figure 1B and Supplementary Table S2).
Moreover, the levels of two muscle-related metabolites, sarcosine
(30) and taurine (31), also increased in the serum of patients
with Stage C disease (Supplementary Table S2). These results
suggest that Stage C patients suffer from increased muscle
proteolysis, a process of releasing AAs into the blood, which
also accounts for the decreased exercise tolerance of Stage
C patients. Similarly, previous studies also reported increased
proteolysis in both the myocardium (32) and skeletal muscles of
HFpEF patients (33).

In addition, differential metabolites were most significantly
enriched in renal disease states (Figure 3B), and Stage C patients
had lower eGFR (Table 1). Creatinine, kynurenine, asymmetric
(ADMA),
(SDMA), and homocysteine are uremic toxins (34, 35), and
their increase is accompanied by a decline in eGFR
(Supplementary Table S2 and Table 1). In addition, ADMA and

SDMA can decrease nitric oxide (NO) biosynthesis by inhibiting

dimethylarginine symmetric  dimethylarginine

NO synthase and suppressing the transportation of arginine,
respectively (36, 37). Moreover, impaired NO bioavailability
contributes to cardiac dysfunction in HFpEF patients (38). Our
results provided a possible mechanistic link between the decline
of renal function and the exacerbation of HFpEF—that is,
decreased renal function in HFpEF patients increases serum
uremic toxins, which impair NO biosynthesis and exacerbate
cardiac dysfunction. Future study would concentrate on whether
and how slowing down eGFR decline or clearing uremic toxins
(such as ADMA and SDMA) helps to prevent Stage B
HFpEF progression.

Diagnostic value of serum metabolites

In this study, we found that three non-heart-specific
metabolites, i.e., FA (18:0), SM C 16:0, and cystine, were more
accurate than NT-proBNP in differentiating between patients
with Stage B and Stage C HFpEF (Figure 4B). Although FA
(18:0), SM C 16:0, and cystine are not heart-specific metabolites,
their high diagnostic accuracy should be ascribed to systemic
changes that occur during the progression of HFpEF (39, 40). In
addition, the accuracy of NT-proBNP is limited as it also
increases in Stage B patients (4). In summary, these findings
reveal the potential value of non-heart-specific biomarkers for
differentiating the subtypes of cardiovascular disease.

Limitations
In this research, patients’ baseline characteristics, including

age and comorbidities, were significantly different between the
two groups. Stage C patients were older, more vulnerable to
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atrial fibrillation, had lower eGFR, and worse cardiac function
(Table 1), which may impact the metabolome to some extent.
As a matter of fact, metabolites associated with renal
dysfunction, such as ADMA and SDMA (34), did increase in
Stage C group kidney-related
metabolites may provide a mechanistic link between renal

serum, which means the
dysfunction and HFpEF progression. Aging is a risk factor of
HFpEF, which suggests that aging may promote the progression
of HFpEF via an altered metabolome. Thus, it is reasonable that
Stage C patients are older than Stage B control. Moreover,
SGLT2 inhibitors were not prescribed for Stage C patients as
they were enrolled from 2018 to 2019 when this drug had not
been recommended by guidelines. Future studies must include
patients taking SGLT2 inhibitors to clarify the residual risk
under such therapy. In addition, it would have been valuable to
take healthy subjects as controls. However, it was not available
as all participants were inpatients in our previous cohort.
Finally, the findings of this study were derived from a single
cohort. Therefore, the results should be interpreted with caution.

Conclusion

The metabolic differences between Stage B and Stage
C HFpEF patients are diverse, involving various metabolites and
metabolic pathways, among which lipid metabolism and AA
metabolism are most significantly impaired. The perturbations
of metabolism are largely attributed to muscle proteolysis and
renal dysfunction. Non-heart-specific metabolites, including FA
(18:0), SM C 16:0, and cystine, are candidate biomarkers to
differentiate HFpEF subgroups with accuracy higher than NT-
proBNP. In the future, therapeutic strategies targeting excessive
energy, renal dysfunction, and uremic toxins have the potential
to prevent Stage B patients from progression.
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