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Background: Premature ventricular contractions (PVCs) are increasingly
recognized as a potentially reversible cause of cardiomyopathy, termed PVC-
induced cardiomyopathy (PVCCM). Left ventricular ejection fraction (LVEF) is
commonly used for diagnosis, but it lacks sensitivity for detecting early
myocardial dysfunction. This study aimed to evaluate the diagnostic utility of
speckle tracking echocardiography (STE)-derived strain parameters in patients
with frequent PVCs and to identify associated risk factors for early
myocardial impairment.

Methods: A total of 258 patients with monomorphic PVCs and a PVC burden
>5% on 24 h Holter monitoring were enrolled, along with 80 age- and sex-
matched healthy controls. Conventional echocardiographic parameters,
global longitudinal strain (GLS), and global circumferential strain (GCS) were
measured. Linear regression analyses were performed to identify independent
predictors of impaired strain. Subgroup analyses were conducted based on
comorbidities and electrophysiological features.

Results: Despite comparable LVEF between the PVC and control groups, GLS
and GCS showed attenuated magnitude in PVC patients (P < 0.001), indicating
subclinical dysfunction. Regression analysis revealed that asymptomatic PVCs,
paired/interpolated PVCs, wide QRS duration (=150 ms), and higher PVC
burden were significantly associated with decreased GLS and GCS magnitude.
GLS and GCS showed strong inverse correlations with LVEF, particularly in
patients with hypertension or prolonged QRS duration.

Conclusion: STE-derived strain parameters (GLS, GCS) are more sensitive than
LVEF in detecting early myocardial dysfunction in patients with frequent PVCs.
Specific electrocardiographic features may help identify individuals at higher
risk of strain abnormalities and could inform earlier monitoring or targeted
evaluation; prospective studies are needed to establish whether intervention
based on these markers prevents progression to overt PVCCM.
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1 Introduction

Premature ventricular contraction (PVC) refers to ventricular
premature contractions originating from ectopic foci located
below the His bundle and its branches due to premature
depolarization of ventricular myocardium (1). Increasing evidence
suggests that PVCs are associated with cardiac dysfunction.
Frequent PVCs can lead to ventricular remodeling and may
eventually progress to cardiomyopathy and heart failure (2, 3). This
type of cardiomyopathy has been termed premature ventricular
contraction-induced cardiomyopathy (PVCCM) (1, 4). Although no
standardized definition has been established in current guidelines,
most studies define PVCCM as a condition in which the left
ventricular ejection fraction (LVEF) is <50% (5). However, in the
early stages of the disease, ventricular remodeling or mild systolic
dysfunction may already be present despite a preserved LVEF (6).
Therefore, identifying an appropriate marker for the early
prediction of PVCCM is crucial. In this study, we adopted a PVC
burden threshold of >5% for patient selection. This cutoff has been
supported by several clinical studies, which have demonstrated its
(7, 8), myocardial
remodeling (9), and early markers of myocardial fibrosis (10), and it

association with adverse cardiac events
is widely considered a clinically meaningful threshold.

Speckle Tracking Echocardiography (STE) tracks myocardial
tissue motion by identifying acoustic speckles within the
myocardium (11, 12). Using specialized analytical software, STE
analyzes myocardial displacement at various points within the
region of interest during the cardiac cycle, ultimately calculating
myocardial strain. Based on the direction of deformation,
myocardial strain can be classified into global longitudinal strain
(GLS), global radial strain (GRS), and global circumferential
strain (GCS) (13). Multiple clinical studies have demonstrated a
strong correlation between strain parameters measured by STE
and LVEF in patients with cardiomyopathy. Moreover, STE can
detect strain abnormalities in cardiomyopathy or coronary artery
disease (CAD) patients with preserved LVEF, highlighting its
potential for early detection of myocardial dysfunction (13-17).

Currently, the diagnosis of PVCCM largely relies on retrospective
analysis and exclusion diagnosis. However, in the early stages of the
disease, patients may already exhibit ventricular remodeling or
mild systolic dysfunction despite a normal LVEF (18). Predicting
cardiomyopathy remains a significant challenge in the field of
cardiovascular diseases. This study aims to enroll patients with
frequent PVCs and use conventional echocardiography combined
with speckle tracking analysis to assess myocardial strain, enabling
the early diagnosis of PVCCM. Additionally, we seek to identify
risk factors for PVCCM, with the ultimate goal of facilitating timely
and effective interventions.

2 Materials and methods
2.1 Study design and populations

This study was a cross-sectional analysis conducted between
June 2021 and December 2022 at the Fourth Affiliated Hospital of
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Zhejiang University School of Medicine. Patients with frequent
PVCs were enrolled based on the following inclusion criteria:
(1) Age between 18 and 80 years; (2) Completion of 24 h Holter
monitoring, demonstrating a PVC burden >5% within 24 h (based
on a single baseline recording rather than cumulative monitoring);
(3) Predominantly monomorphic PVCs, with the primary PVC
morphology accounting for >90% of total PVCs; (4) First-time
diagnosis of frequent PVCs, with no prior antiarrhythmic therapy
or electrophysiological interventions. The >5% PVC burden was
derived exclusively from the baseline Holter monitoring,
independent of unmonitored or asymptomatic periods, ensuring
that the burden assessment reflected the initial presentation.
Written informed consent was obtained from all participants. The
exclusion criteria were as follows: (1) Coexisting arrhythmias with
a burden exceeding 10% of total beats on 24 h Holter monitoring;
(2) Multifocal PVCs; (3) Presence of structural heart disease;
(4) Frequent PVCs related to secondary conditions, including
electrolyte
severe trauma, or perioperative stress; (5) Active malignancies;

infections, anemia, hyperthyroidism, imbalances,

(6) History of psychiatric disorders or ongoing use of
psychotropic medications. Healthy Control Group: A total of 80
healthy individuals undergoing routine medical examinations at
the hospital during the same period were recruited as controls.
The control group was matched to the PVC group by age and sex.
Participants had no significant medical history, no family
history of cardiomyopathy, and presented with normal physical
examinations, biochemical tests, electrocardiography (ECG), and
echocardiographic findings. This study was approved by the Ethics
Committee of the Fourth Affiliated Hospital of Zhejiang
University School of Medicine. Written informed consent was
obtained from all participants.

2.2 Data collection and definitions

Demographic and clinical data were collected, including:
(1) gender, age, height, weight, and body mass index (BMI);
(2) Smoking and drinking history; (3) Presence of hypertension
or diabetes mellitus; (4) Presence of clinical symptoms (e.g.,
palpitations, skipped beats, or tachycardia sensations).
12-lead
electrocardiogram (ECG) and a simultaneous 24 h Holter ECG

Electrocardiographic ~ Recordings A surface
were recorded to assess PVC episodes. The presence of the
following PVC-related characteristics was analyzed: interpolated
PVC, paired PVC, and NSVT. The PVC burden was calculated as
the ratio of total PVC beats to total heartbeats over 24 h. Based on
the hourly PVC count and the corresponding mean heart rate,
patients were categorized into three rhythm-dependent PVC
subtypes (19): fast heart rate-dependent PVC (F-HR-PVC), slow
heart rate-dependent PVC (S-HR-PVC), and independent heart
rate PVC (I-HR-PVC).

For 12-lead ECG analysis, the following PVC-related parameters
were manually measured using calipers: QRS duration, QT interval,
coupling interval, and compensatory pause. Additionally, the
coupling interval index and compensatory pause index were
calculated. The PVC site was determined by two experienced
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electrophysiologists based on prior knowledge and clinical expertise
and classified as originating from right ventricle and originating
from left ventricle (20). Furthermore, based on the inferior lead
QRS morphology, PVCs were categorized as outflow tract origin
PVCs or non-outflow tract origin PVCs (21).

Patients were positioned in the left lateral decubitus position,
and routine echocardiographic parameters were collected. Left
ventricular end-diastolic volume (LVEDYV), left ventricular end-
systolic volume (LVESV), and left ventricular ejection fraction
(LVEF) were measured using the biplane Simpson’s method.
Image acquisition followed EACVI/ASE guidelines (22), with the
transducer frequency set at 2-4 MHz, sector width optimized to
maintain temporal resolution >50 Hz, and each view obtained
during breath-hold to minimize motion artifacts.

(=250 frames/s) was
employed, with frame rates adjusted according to heart rate to

High-frame-rate echocardiography
ensure at least 20 frames per cardiac cycle for reliable strain
analysis (23-26). Real-time speckle tracking imaging data were
obtained from apical four-chamber, two-chamber, and three-
chamber views, with 4-5 cardiac cycles stored digitally for
offline analysis. Strain measurements were performed using the
EchoPAC workstation (2D-Strain, Q-analysis) with standardized
settings and automatic quality control.

For strain analysis, the endocardial border was manually traced
and the region of interest selected. The software then automatically
tracked myocardial strain, providing segmental global longitudinal
strain (GLS) and global circumferential strain (GCS) values.
Representative examples of GLS strain curves are shown in
Figure 1. GLS and GCS are reported as negative percentages. Less
negative values indicate impaired myocardial deformation (reduced
magnitude), whereas more negative values indicate greater
deformation (increased magnitude) (27, 28). All stored loops were
reviewed for adequate frame rate (>50 fps) and tracking quality
before analysis. Frames with significant out-of-plane motion or
dropout were excluded, and the motion estimation algorithm
incorporated co-attention mechanisms to resolve inter-frame
variations (29). Manual correction was performed when automated
tracking failed, and inter-frame interpolation was applied when
necessary to maintain analysis continuity (30). Although we
excluded image frames immediately following PVCs to minimize
post-extrasystolic effects, brief alterations in myocardial relaxation
due to calcium handling or NSVT episodes may still influence
strain measurements.

All image loops were reviewed for frame rate and tracking quality
before analysis, and segments with dropout or poor tracking were
excluded. Each strain measurement was performed by a single
experienced echocardiographer, repeated three times, and averaged
for analysis. Accordingly, the reproducibility assessed in this
study reflects intraobserver variability rather than interobserver
have demonstrated excellent

variability. Previous reports

intraobserver reproducibility of speckle tracking (intraclass
correlation coefficient up to 0.98) (31). This protocol ensured
reproducibility through standardized high-frame-rate acquisition,
automated tracking with manual verification, repeated
measurements, and adherence to international guidelines for strain

imaging (22, 32, 33).
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2.3 Statistical analysis

Continuous variables were expressed as mean + standard
deviation (SD) for normally distributed data or as median with
interquartile range (IQR) for non-normally distributed data. Group
comparisons were conducted using the Student’s t-test for
normally distributed continuous variables. Categorical variables
were presented as frequencies (percentages) and compared using
the Chi-square (x%) test. The correlations between GLS, GCS, and
other continuous variables were assessed using Spearman
correlation analysis. Comparisons between GLS, GCS, and
categorical variables were conducted using t-tests or one-way
ANOVA. To identify independent factors influencing GLS and
GCS, univariate and multivariate bidirectional stepwise linear
regression analyses were performed. Variables with P<0.1 in
univariate analysis were included in the multivariate regression
model. Based on the results of multivariate linear regression, trend
analysis and regression modeling were conducted to explore the
relationship between GLS, GCS, and LVEF. Model 1 was the basic
model without any covariate adjustment. Model 2 was adjusted for
gender, age, and body mass index (BMI). Model 3 was further
adjusted for gender, age, BMI, QRS duration, paired PVC,
interpolated PVC and symptomatic PVC. Covariates were selected
based on three considerations: (1) clinical relevance and prior
evidence, whereby gender, age, and BMI are routinely adjusted for
in cardiovascular studies; (2) results from separate multivariable
regression analyses of GLS and GCS, in which predictors with
significant associations were identified; and (3) overlapping positive
predictors between GLS and GCS analyses were retained to
construct the final models. To further ensure model stability, we
assessed multicollinearity among covariates by calculating variance
inflation factors (VIFs) and condition indices, with results
summarized in Supplementary Table S1. Additionally, subgroup
analyses were conducted based on the following factors: gender,
presence of hypertension, presence of diabetes mellitus, smoking
history, drinking history, PVC rhythm-dependent type, left or right
ventricular origin, outflow tract or non-outflow tract origin, QRS
duration group, presence of paired PVC, presence of interpolated
PVC, presence of NSVT, and presence of clinical symptoms. Data
processing and statistical analyses were performed using R (latest
version) and Zstats v1.0 (https://www.zstats.net). All statistical tests
were two-tailed, with P < 0.05 considered statistically significant.

3 Results
3.1 Baseline characteristics

From June 2021 to December 2022, a total of 258 patients with
PVCs were enrolled in this study after applying the inclusion
and exclusion criteria, forming the PVC group. Additionally, 80
age- and gender-matched healthy individuals who underwent
routine health examinations were included as the control group.
The differences in baseline characteristics and cardiac function
parameters between the PVC group and the control group are
summarized in Table 1. There were no statistically significant
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TABLE 1 Baseline characteristics and cardiac function indexes between PVC
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group and control group.

Variables Total (n = 338) 0 (n = 80) 1 (n=258) Statistic

Age, Mean + SD 4521 +14.48 45.58 +13.22 45.09 + 14.87 t=0.26 0.795
BMI, Mean + SD 2541+3.32 25.23+2.90 2546 +3.44 t=-0.55 0.584
LVEF, Mean + SD 61.50 +5.25 62.16 +4.40 61.29 + 548 t=1.45 0.150
GLS, Mean + SD —15.71£2.54 —18.70 £ 2.06 —14.78 +1.88 t=-1592 <.001
GCS, Mean + SD —15.68 £2.59 —18.50 £ 2.09 —14.80 £ 2.04 t=-14.06 <.001
Gender (n, %) x>=0.55 0.458
Female 161 (47.63) 41 (51.25) 120 (46.51)

Male 177 (52.37) 39 (48.75) 138 (53.49)

Hypertension (n, %) x>=0.52 0.472
No 256 (75.74) 63 (78.75) 193 (74.81)

Yes 82 (24.26) 17 (21.25) 65 (25.19)

DM (n, %) X°=1.30 0.254
No 296 (87.57) 73 (91.25) 223 (86.43)

Yes 42 (12.43) 7 (8.75) 35 (13.57)

Smoking (n, %) x>=0.32 0.571
No 267 (78.99) 65 (81.25) 202 (78.29)

Yes 71 (21.01) 15 (18.75) 56 (21.71)

Drinking (n, %) X°=0.22 0.636
No 225 (66.57) 55 (68.75) 170 (65.89)

Yes 113 (33.43) 25 (31.25) 88 (34.11)

t,: t-test, 32, Chi-square test; SD, standard deviation.

differences between the two groups in terms of age, BMI, gender,
prevalence of hypertension or diabetes mellitus, smoking history, or
drinking history. Comparisons of cardiac function parameters
revealed that LVEF was not significantly different between the two
groups (P =0.150). However, both GLS and GCS showed significant
differences between the groups (P<0.001), suggesting early
myocardial dysfunction despite preserved LVEF.

3.2 Electrocardiographic and Holter
characteristics in PVC patients

In the enrolled PVC patients, the mean QT interval, QRS
duration, coupling interval, and compensatory pause were
491.55ms, 138.11 ms, 452.12ms, and 983.57 ms, respectively
(Table 2). Among them, 16.7% of patients had a QRS duration
>150 ms. Most PVCs originated from the right ventricle (61.6%)
and outflow tract (67.1%) (Table 2). The mean PVC burden was
10.94%, with 36.4% of patients experiencing paired PVC, 34.5%
exhibiting interpolated PVC, and 17.8% having NSVT. The
majority of patients (58.5%) had F-HR-PVC, whereas 25.6% had
I-HR-PVCs, and only 15.9% exhibited S-HR-PVC (Table 2).
Additionally, 55.8% of PVC patients reported symptoms such as
palpitations, tachycardia, or a sensation of skipped beats (Table 2).

3.3 GLS, GCS, and their associations with
baseline and electrocardiographic
parameters

The mean age of the included patients was 45.2 years, with an
average BMI of 25.4kg/m® (Table 1). GLS was significantly
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correlated with age (R=0.178, P=0.004), BMI (R=0.192,
P =0.002), hypertension (P =0.001), smoking (P =0.043), and PVC
burden (R=0.186, P=0.003), whereas GCS was mainly associated
with PVC burden (R =0.132, P =0.035). Patients with asymptomatic
PVCs had attenuated GLS and GCS magnitude compared with
symptomatic patients (both P < 0.05). In addition, patients with wide
QRS exhibited significantly impaired GLS (P =0.011). Specific PVC
morphologies—including paired PVCs, interpolated PVCs, and
NSVT—were also significantly associated with impaired GLS and

TABLE 2 Electrocardiographic and holter characteristics in PVC group.

Variables Values

Electrocardiographic Characteristics

QT interval, ms 491.55 +24.33
QRS duration, ms 138.11 £ 11.46
QRS > 150 ms, % (n) 16.7 (43)
Coupling interval, ms 452,12 +38.15
Compensatory pause, ms 983.57 + 83.62
Coupling interval index 0.63 +0.06
Compensatory pause index 1.37+£0.08
Originating from right ventricle, % (1) 61.6 (159)
Originating from outflow tract, % (n) 67.1 (173)

Holter Characteristics

PVC burden, % 10.94 +5.41
Paired PVC, % (n) 36.4 (94)
Interpolated PVC, % (n) 34.5 (89)
Non-sustained ventricular tachycardia, % (1) 17.8 (46)
PVC course

Fast-HR-dependent PVC, % (n) 58.5 (151)

Slow-HR-dependent PVC, % (n) 15.9 (41)

Independent-HR-PVC, % (n) 25.6 (66)
Symptomatic PVC, % (n) 55.8 (144)
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GCS (all P<0.05). Other baseline characteristics and
electrophysiological parameters showed no significant associations
with strain indices. Detailed results are presented in Supplementary

Tables S2, S3.

3.4 Independent correlates of GLS and GCS

In univariate analyses, age, BMI, hypertension, smoking,
symptomatic PVCs, PVC burden, wide QRS, paired PVCs,
interpolated PVCs, NSVT, and LVEF were significantly associated
with attenuated GLS magnitude (all P<0.05). In multivariable
regression, symptomatic PVCs (f=-0.99, P<0.001), wide QRS
(=097, P<0.001), paired PVCs, interpolated PVCs, PVC burden,
and LVEF remained independent correlates of GLS impairment. For
GCS, univariate regression identified associations with symptomatic
PVCs, paired PVCs, interpolated PVCs, NSVT, PVC burden, and
LVEF (all P<0.05). In multivariable models, symptomatic PVCs
(f=-0.70, P=0.004), wide QRS (#=0.84, P=0.009), paired PVCs,
interpolated PVCs, and LVEF were independent predictors of
reduced GCS magnitude. Notably, symptomatic PVCs were inversely
associated with impaired strain, indicating that asymptomatic PVCs
were relatively more detrimental. Comprehensive regression outputs
are provided in Supplementary Tables 4, S5.

3.5 Linear regression modeling analysis of
GLS, GCS, and LVEF

Linear regression modeling showed a consistent association
between lower LVEF and attenuated strain magnitude. In the
unadjusted model, the regression coefficient (f=-0.06, 95% CI:
—0.10 to —0.02, P=0.004) indicates that a 1% lower LVEF
corresponds to a 0.06-unit increase in GLS value, reflecting
reduced GLS magnitude (Table 3). After adjusting for gender, age,
and BMI, the negative correlation remained significant (5= —0.06,
95% CI: —0.10 to —0.01, P=0.008) (Table 3). Further adjustments
for QRS duration, paired PVC, interpolated PVC and symptomatic
PVC still showed a significant correlation (f=-0.04, 95% CI:
—0.08 to —0.01, P=0.010), though the regression coefficient
slightly decreased, suggesting that confounding factors influenced
the relationship but did not alter the overall trend (Table 3).
Similarly, lower LVEF was associated with attenuated GCS

TABLE 3 Linear regression modeling analysis of GLS and LVEF.

Modell

p(95% P
cl) cl)

Model2
B (95% P

Model3

B (95%
Cl)

Variables

P
LVEF —0.06 0.004 —0.06 0.008 —0.04 0.039
(=0.10 to (=0.10 to (—0.08 to
—0.02) —0.01) —0.01)

CI: Confidence Interval.

Modell: Crude.

Model2: Adjust: Gender, Age, BMI.

Model3: Adjust: Gender, Age, BMI, QRS duration, Paired PVC, Interpolated PVC,
Symptomatic PVC.

Bold values indicate P < 0.05.
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magnitude (unadjusted f=-0.08, 95% CL -0.12 to —0.04,
P<0.001; Model 2 f=-0.07, 95% CI: —0.12 to —0.03, P=0.002;
Model 3 f=-0.06, 95% CI: —0.11 to —0.02, P=0.005), indicating
that lower LVEF corresponds to attenuated GCS magnitude
(Table 4). Overall, the negative correlation between LVEF and GCS
remained statistically significant across all models, with no change
in the trend after adjusting for confounders. Across all models, the
negative associations between LVEF and both GLS and GCS
remained robust after progressive adjustment. Multicollinearity
diagnostics showed that all covariates had VIFs <2.0, and no
concerning condition indices were detected, indicating that
collinearity was not a concern (Supplementary Table S1).

3.6 Subgroup analysis of the relationship
between GLS, GCS, and LVEF

A subgroup analysis was performed based on gender, presence
diabetes alcohol
consumption, arrhythmic classification, PVC site, QRS group,

of hypertension, mellitus, smoking history,
presence of paired PVC, interpolated PVC, NSVT, and symptomatic
status. Results showed that LVEF and GLS were significantly
negatively correlated across all patients (f=—0.53; 95% CIL: —0.88 to
—0.18; P=0.004), with consistent trends across all subgroups
(Table 5). Similarly, LVEF and GCS were also significantly negatively
correlated (f=-057; 95% CI. —0.89 to -025 P=0.001).
A nominally significant interaction effect was observed in patients
with hypertension (P=0.037) and in those with wide QRS
(P=0.003) (Table 6). Interaction Analysis: In hypertensive patients,
the negative correlation between LVEF and GCS was more
pronounced (f=-121; 95% CI: —1.87 to —0.54; P<0.001). In
patients with wide QRS, the negative correlation was even stronger
(f=—1.72; 95% CIL: —2.56 to —0.89; P < 0.001) (Table 6). For all other
subgroups, the negative correlation between LVEF and GCS
remained consistent.

4 Discussion

This study compared the baseline characteristics and key
echocardiographic parameters, including GLS, GCS and LVEEF,
between patients with PVCs and healthy controls. The results

TABLE 4 Linear regression modeling analysis of GCS and LVEF.

Model2
p (95% P

Modell
p (95% P

Model3
p (95% P

Variables

Cl) (@])] Cl)
LVEF —0.08 <.001 —0.07 0.002 —0.06 0.005
(=0.12 to (=0.12 to (=0.11 to
~0.04) ~0.03) ~0.02)

CI: Confidence Interval.

Modell: Crude.

Model2: Adjust: Gender, Age, BMIL.

Model3: Adjust: Gender, Age, BMI, QRS duration, Paired PVC, Interpolated PVC,
Symptomatic PVC.

Bold values indicate P < 0.05.
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TABLE 5 Subgroup analysis of the relationship between GLS and LVEF. TABLE 6 Subgroup analysis of the relationship between GCS and LVEF.

Variables n (%) P (95%Cl) P P for Variables n (%) B (95%Cl) P P for
interaction interaction

Total 258 (100.00) | —0.53 (—0.88 to —0.18) | 0.004 Total 258 (100.00) | —0.57 (—0.89 to —0.25) | <.001
Gender 0.081 Gender 0.357
Female 120 (46.51) | —0.84 (—1.32 to —0.37) | <.001 Female 120 (46.51) | —0.70 (—1.15 to —0.26) | 0.002
Male 138 (53.49) | —0.22 (—0.74 to 0.30) | 0.403 Male 138 (53.49) | —0.40 (—0.86 to 0.06) | 0.094
Hypertension 0.600 Hypertension 0.037
No 193 (74.81) | —0.46 (—0.86 to —0.06) | 0.025 No 193 (74.81) | —0.39 (—0.75 to —0.02) | 0.039
Yes 65 (25.19) | —0.70 (—1.53 to 0.13) | 0.103 Yes 65 (25.19) | —1.21 (—1.87 to —0.54) | <.001
Diabetes 0.973 Diabetes 0.641
mellitus mellitus
No 223 (86.43) | —0.53 (—0.89 to —0.16) | 0.005 No 223 (86.43) | —0.55 (—0.88 to —0.21) | 0.001
Yes 35 (13.57) | —0.51 (—=1.78 to 0.77) | 0.440 Yes 35 (13.57) | —0.81 (=1.95 to 0.33) | 0.175
Smoking 0.815 Smoking 0.694
No 202 (78.29) | —0.50 (—0.91 to —0.10) | 0.016 No 202 (78.29) | —0.61 (—0.98 to —0.24) | 0.002
Yes 56 (21.71) | —0.60 (—1.32 to 0.12) | 0.108 Yes 56 (21.71) | —0.46 (—1.11 to 0.18) | 0.164
Drinking 0.993 Drinking 0.530
No 170 (65.89) | —0.53 (—0.98 to —0.07) | 0.025 No 170 (65.89) | —0.50 (—0.90 to —0.09) | 0.017
Yes 88 (34.11) | —0.52 (—1.08 to 0.04) | 0.070 Yes 88 (34.11) | —0.71 (—=1.25to —0.17) | 0.011
PVC course 0.205 PVC course 0.080
F-HR-PVC 151 (58.53) | —0.32 (—0.77 to 0.13) | 0.163 F-HR-PVC 151 (58.53) | —0.31 (—0.74 to 0.11) | 0.151
S-HR-PVC 41 (15.89) | —0.64 (—1.45 to 0.17) | 0.132 S-HR-PVC 41 (15.89) | —1.00 (—1.71 to —0.28) | 0.009
I-HR-PVC 66 (25.58) | —1.14 (—1.92 to —0.36) | 0.006 I-HR-PVC 66 (25.58) | —1.11 (—1.75 to —0.46) | 0.001
Origin typel 0.781 Origin typel 0.676
Right ventricle 159 (61.63) | —0.49 (—0.95 to —0.02) | 0.042 Right ventricle 159 (61.63) | —0.64 (—1.07 to —0.21) | 0.004
Left ventricle 99 (38.37) | —0.59 (—1.12 to —0.06) | 0.030 Left ventricle 99 (38.37) | —0.50 (—0.97 to —0.03) | 0.041
Origin type2 0.387 Origin type2 0.567
Outflow tract 173 (67.05) | —0.44 (—0.86 to —0.01) | 0.046 Outflow tract 173 (67.05) | —0.52 (—0.91 to —0.12) | 0.012
Non-outflow 85 (32.95) | —0.77 (—1.40 to —0.14) | 0.018 Non-outflow 85 (32.95) | —0.71 (—1.26 to —0.16) | 0.013
tract tract
QRS duration 0.078 QRS duration 0.003
<150 ms 215 (83.33) | —0.42 (—0.80 to —0.03) | 0.034 <150 ms 215 (83.33) | —0.39 (—0.74 to —0.05) | 0.025
>150 ms 43 (16.67) | —1.22 (=2.11 to —0.33) | 0.011 >150 ms 43 (16.67) | —1.72 (—2.56 to —0.89) | <.001
Paired PVC 0.479 Paired PVC 0.572
No 164 (63.57) | —0.43 (=0.87 to 0.01) | 0.057 No 164 (63.57) | —0.63 (=1.05 to —0.22) | 0.003
Yes 94 (36.43) | —0.71 (—1.34 to —0.09) | 0.027 Yes 94 (36.43) | —0.43 (—0.98 to 0.11) | 0.125
Interpolated 0.751 Interpolated 0.370
PVC PVC
No 169 (65.50) | —0.56 (—0.98 to —0.15) | 0.009 No 169 (65.50) | —0.50 (—0.88 to —0.12) | 0.011
Yes 89 (34.50) | —0.43 (—1.12 to 0.26) | 0.227 Yes 89 (34.50) | —0.86 (—1.51 to —0.21) | 0.011
NSVT 0.977 NSVT 0.590
No 212 (82.17) | —0.52 (—0.90 to —0.15) | 0.007 No 212 (82.17) | —0.61 (—0.96 to —0.27) | <.001
Yes 46 (17.83) | —0.54 (—1.62 to 0.54) | 0.336 Yes 46 (17.83) | —0.36 (—1.32 to 0.60) | 0.464
Symptomatic 0.900 Symptomatic 0.443
PVC PvC
No 114 (44.19) | —0.43 (—1.03 to 0.17) | 0.166 No 114 (44.19) | —0.35 (=0.95 to 0.25) | 0.259
Yes 144 (55.81) | —0.47 (—=0.92 to —0.03) | 0.037 Yes 144 (55.81) | —0.62 (—0.98 to —0.25) | 0.001

NSVT, non-sustained ventricular tachycardia. NSVT, non-sustained ventricular tachycardia.

Bold values indicate P < 0.05. Bold values indicate P < 0.05.

demonstrated no significant difference in LVEF between the two 4.1 Possible mechanisms and backg round
groups, whereas both GLS and GCS were significantly different, of PVCCM

suggesting that GLS and GCS may serve as more sensitive early

indicators of PVCCM than LVEEF. Therefore, we further utilized Premature ventricular complexes (PVCs) are frequently observed
GLS and GCS to assess the left ventricular (LV) function and in both individuals with and without structural heart disease.
identify risk factors associated with PVCCM. Although historically regarded as benign, accumulating evidence
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suggests that a high burden of PVCs may contribute to the
development of PVC-induced cardiomyopathy, characterized
(LV) dysfunction (34, 35).

The pathophysiological mechanisms underlying PVC-induced

by reversible left ventricular

cardiomyopathy are multifactorial and include ventricular
dyssynchrony, impaired calcium homeostasis, shortened coupling
intervals leading to mechanical inefficiency, post-extrasystolic
potentiation,  autonomic  imbalance, and  mitochondrial
dysfunction. Chronic high-burden PVCs can promote adverse left
ventricular remodeling, ultimately resulting in reversible systolic
dysfunction (3, 36-40). However, its diagnosis remains largely
retrospective and exclusionary, lacking definitive prospective
criteria. Furthermore, there is ongoing debate regarding the
management of asymptomatic patients with a high PVC burden
but preserved left ventricular ejection fraction (LVEF). This
highlights the need for early functional markers—such as strain
imaging by speckle tracking echocardiography—to detect
subclinical myocardial dysfunction and guide timely intervention.
Despite the

cardiomyopathy, population-based data have shown that PVC

association between PVC burden and

burden alone is not an independent predictor (P=0.13) (41).
This highlights the diagnostic challenge and supports the ASE/
EACVI guideline recommendation to adopt a multiparametric
approach incorporating advanced strain analysis (42). Beyond
PVC burden, morphological heterogeneity may exert distinct
pathophysiological effects. Paired PVCs, for example, aggravate
ventricular dyssynchrony and calcium handling abnormalities
compared with isolated beats (5), while interpolated PVCs, by
occurring without compensatory pauses, alter preload and
increase diastolic wall stress, thereby promoting fibrosis (5).
Non-sustained ventricular tachycardia (NSVT), as an extension
of consecutive PVCs, has been associated with more severe
electromechanical dyssynchrony, impaired myocardial perfusion,
and adverse metabolic remodeling (43). Advanced imaging
further these with NSVT
demonstrate  pronounced mechanical dyssynchrony and

supports differences: patients
abnormal global longitudinal strain even in sinus rhythm, and
cardiac MRI studies reveal a strong association between
NSVT and myocardial fibrosis (5, 7). Clinically, this translates
into divergent prognostic implications, with NSVT conferring
higher risks of malignant arrhythmias, heart failure progression,
and mortality, whereas high-burden PVCs are more closely
linked to progressive LV dysfunction (7). These findings
suggest that not only PVC burden but also morphological
patterns may play a pivotal role in the pathogenesis and
outcomes of PVCCM.

4.2 Association of GLS and GCS
with PVCCM

Correlation analysis revealed multiple factors significantly
associated with GLS and GCS deterioration, including PVC
burden, asymptomatic PVC, and specific PVC morphologies
such as interpolated PVC, paired PVC, and NSVT. Patients with

these characteristics exhibited attenuated GLS and GCS
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magnitude, indicating impaired myocardial strain and suggesting
that these
dysfunction and the development of PVCCM. Many previous

factors may contribute to early myocardial
studies have suggested that premature beat load is negatively
correlated with cardiac function, suggesting that premature beat
load is one of the risk factors for PVC cardiomyopathy (44-46),
which is consistent with our findings.

By employing various statistical methodologies, we confirmed
significant negative correlations between LVEF and both GLS
and GCS. As LVEF decreased, GLS and GCS values showed
attenuated magnitude, indicating progressive deterioration in
myocardial contractile function. LVEF measures the percentage
of blood ejected from the left ventricle per cardiac cycle,
whereas GLS evaluates longitudinal myocardial fiber contraction,
and GCS assesses circumferential fiber shortening, offering
complementary insights into myocardial mechanics and
providing a more comprehensive assessment of LV function.

Compared to LVEF, GLS and GCS are more sensitive and
earlier indicators of myocardial dysfunction. Even when LVEF
remains within the normal range, GLS can detect subclinical
myocardial impairment. In acute myocardial infarction
(AMI) patients, prior studies have demonstrated that GLS can
identify subclinical
preserved, offering prognostic information beyond LVEF alone
(19, 47). GLS has

independent predictor of adverse cardiovascular outcomes.

LV dysfunction even when LVEF is

Furthermore, been established as an
Studies in dilated cardiomyopathy (DCM) patients indicate
that GLS is a stronger predictor of adverse events than
LVEF, highlighting its value in risk stratification (19). Even in
with LVEF<35%, both GLS and GCS provide
additional prognostic information (20). In contrast, global

patients

radial strain (GRS) was not analyzed in this study due to its
limited reliability in routine transthoracic echocardiography
(48, 49). GLS and GCS demonstrate
reproducibility compared to LVEF, regardless of the operator’s

Moreover, superior
level of echocardiographic training (21). This suggests that GLS
and GCS can provide consistent and reliable assessments across
different clinical settings. Additionally, in patients undergoing
cancer therapy, GLS has been employed for early detection of
cardiotoxicity, allowing for intervention before significant LVEF
deterioration occurs. This application underscores the utility
of GLS in guiding clinical decisions to prevent irreversible
cardiac damage (50).

4.3 Subgroup analysis of GLS, GCS,
and LVEF

Further subgroup analysis revealed that the negative
correlation between GLS, GCS, and LVEF holds significant
clinical relevance in patients with hypertension and wide QRS.
Previous studies have demonstrated that GLS and GCS are
significantly reduced in hypertensive patients, indicating
impaired myocardial contractility, even when LVEF remains
within the normal range. This suggests that LVEF alone may

not be sufficient to detect early myocardial dysfunction in these
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patients. Therefore, GLS and GCS can serve as more sensitive
markers of subclinical myocardial impairment, facilitating early
detection and intervention in hypertensive populations (51).
Similarly, in patients with prolonged QRS duration, particularly
those with left bundle branch block (LBBB), GLS and GCS
reductions are associated with progressive LV dysfunction.
These strain parameters can be utilized to predict further LV
deterioration, aiding in treatment decision-making (52). While
most studies support the clinical utility of GLS and GCS, their
prognostic value may vary across specific patient populations,
necessitating further investigation (53).

4.4 Study strengths and limitations

This study has several methodological strengths. This

study has several methodological strengths. It uniquely

with
speckle-tracking analysis to quantitatively evaluate myocardial

integrates conventional echocardiographic assessment
deformation in patients with frequent premature ventricular
contractions (PVCs). By applying global longitudinal strain
(GLS) and global circumferential strain (GCS), this study
provides a more refined approach to detecting early myocardial
dysfunction. The design also incorporated a broad spectrum
of PVC PVCs,

interpolated PVCs, paired PVCs, and non-sustained ventricular

characteristics—including  asymptomatic

tachycardia (NSVT)—to assess their potential impact on
myocardial strain, which remains underexplored in existing
literature. These aspects together contribute to a more
comprehensive evaluation of strain-based risk factors for PVC-
induced cardiomyopathy (PVCCM).

However, several limitations should be acknowledged. First,
the cross-sectional design restricts the ability to infer causality
between PVC burden The

associations identified in this study should be interpreted as

and myocardial dysfunction.
correlational rather than causal, and longitudinal studies are
warranted to confirm the temporal and predictive relationships
of strain parameters with the development of PVCCM. In
particular, it remains unclear whether complex PVCs—especially
NSVT—represent early myocardial impairment due to an
underlying cardiomyopathy or are primarily induced by frequent
PVCs. This distinction is clinically important given the relatively
high prevalence of NSVT observed in our cohort compared to
typical populations. Second, the relatively small sample size may
reduce the generalizability of our findings and increase the
potential influence of outliers. Future studies with larger, more
diverse cohorts are necessary. Third, although speckle-tracking
than
conventional LVEF assessment, image quality and manual

echocardiography (STE) is less operator-dependent
selection of optimal cardiac cycles remain critical. These factors
may introduce observer variability. The implementation of
standardized imaging protocols and automated strain analysis
could enhance reproducibility. A limitation of this study is that
only intraobserver variability was assessed, whereas interobserver
reproducibility was not evaluated. Fourth, this study did not
account for potential confounding variables such as coronary
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artery disease, obstructive sleep apnea, or the use of medications
like beta-blockers and antiarrhythmics, all of which may
influence myocardial strain and PVC burden. Fifth, selection
bias may exist due to the exclusion of patients with structural
heart disease, prior electrophysiological interventions, or
ongoing antiarrhythmic therapy. These criteria, while necessary
for defining a homogeneous study population, may limit the

generalizability of our findings.

5 Conclusion

This study highlights GLS and GCS as more sensitive markers
than LVEF for detecting myocardial dysfunction associated with
frequent PVCs. The PVC burden, asymptomatic PVC, PVC
with wide QRS, and the presence of specific PVC morphologies
(including paired PVC, interpolated PVC, and NSVT) were
observed in association with attenuated GLS and/or GCS
magnitude, suggestive of impaired myocardial strain. We
observed significant negative correlations between GLS, GCS,
and LVEEF, particularly in patients with hypertension, wide QRS,
and asymptomatic PVC. Future research should focus on larger
prospective studies to further validate the utility of GLS and
GCS in risk stratification and their potential implications for
early management of PVCCM.
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