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Background: There have been sufficient previous studies demonstrating that 

hyperuricemia (HUA) is closely associated with the occurrence of atrial 

fibrillation (AF).The incidence of AF in patients with hyperuricemia is higher 

than that in the general population. Therefore, it is meaningful to explore the 

serum markers of AF in the HUA population and establish early 

warning indicators.

Objective: To preliminarily explore the correlation between HUA and AF at the 

metabolomics level, and to identify a group of metabolites with potential 

predictive power for AF that can be used for further large-scale studies.

Methods: This study used untargeted metabolomics technology to detect 

serum metabolites of patients with AF, patients with AFHUA, and control 

group. Receiver operator characteristic (ROC) curve were used to analyze 

differential metabolites.

Results: Ultimately, multiple metabolites such as L-Threonine, DL-Malic acid, L- 

Valine, L-Cysteine were identified as early warning markers of AF in patients with 

HUA. Combined ROC curve using these four metabolites between the AFHUA/ 

Control comparison group and the AFHUA/AF comparison group showed good 

predictive efficacy, with Area Under the ROC Curve (AUC) = 0.923 (P < 0.001) in 

the AFHUA/Control comparison group and AUC = 0.714 (P < 0.001) in the 

AFHUA/AF comparison group. This provides an early predictive method for 

patients who may develop atrial fibrillation among those with hyperuricemia. 

And offers new approaches for the prevention and treatment of atrial fibrillation.

Conclusion: This study indicates that serum metabolomics can be specifically 

used to predict the probability of AF occurrence in individuals with HUA, and 

has identified metabolites such as L-Threonine, DL-Malic acid, L-Valine, and 

L-Cysteine that possess potential predictive efficacy.
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GRAPHICAL ABSTRACT

The mechanism of action of DL-Malic acid and the TCA in the development of atrial fibrillation.

1 Introduction

Atrial fibrillation (AF) is the most common type of arrhythmia 

worldwide (1). There are approximately 33.5 million people with 

atrial fibrillation worldwide, and the incidence rate in China is 

1–2 percent (2). Atrial fibrillation can significantly affect the 

quality of life of patients because it is associated with serious 

complications such as stroke, heart failure, cognitive impairment 

and cardiac arrest (3). Although the clinical manifestations of 

atrial fibrillation are diverse. Its pathogenesis is not yet fully 

understood. It is currently believed to involve a combination of 

factors, including structural remodeling, electrical remodeling, 

in)ammatory response, and oxidative stress (4). Hyperuricemia 

(HUA) is a metabolic disease caused by an imbalance of purine 

metabolism and uric acid production-excretion (5). HUA is 

defined as uric acid levels >7.0 mg/dl in men and >5.7 mg/dl in 

women (6). As is well-known, HUA leads to the formation and 

deposition of monosodium urate crystals in and around the 

joints, which in turn triggers gout (7). However, recent studies 

have found that HUA has been confirmed to be associated with 

the onset of multiple cardiovascular diseases. Our previous 

study found a significant link between HUA and the occurrence 

of AF. Leonardo Tamariz et al. also found that serum uric acid 

levels were significantly associated with new-onset atrial 

fibrillation in a concentration-dependent manner (8). To further 

investigate this association, we used non-targeted metabolomics 

techniques to conduct serum metabolomics analyses of different 

populations in three groups: the Control group, the atrial 

fibrillation group (AF), and the atrial fibrillation with 

hyperuricemia group (AFHUA), to explain this association at 

the metabolomics level.

2 Methods

The procedure of this experiment is shown in Figure 1.

2.1 Study design and population

This study protocol was reviewed and approved by the Ethics 

Committee of the Affiliated Hospital of Shandong University of 

Traditional Chinese Medicine on September 13, 2023. The ethics 

approval number: (2023) Review No. (111) - KY. All 

experimental procedures were conducted in accordance with the 

relevant guidelines and regulations. Before the collection of 
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blood samples, all participants provided written informed consent. 

Serum samples were prospectively collected from AF patients 

(N = 22), AFHUA patients (N = 16), and the Control group 

(N = 11) from April 2024 to January 2025 and frozen. In this 

experiment, the coefficient of variation is controlled at 30% (9). 

The preset fold change is 1.5 μ (10). Then the standard 

deviation σ = 0.3 μ, and the The expected difference between the 

two groups is 0.5 μ. The calculation formula is as follows:

nij ¼
(Z1�a=(2T) þ Z1�b)2

� (s2
1 þ s2

2)

s2
ij 

n ¼ max{nij, pairs(i, j)} 

nij represents the required sample size for pairwise comparison 

between the i-th group and the j-th group. T represents the 

total number of pairwise comparisons. s2
1, s2

2 represent the 

population variances of the i-th group and the j-th group, 

respectively, re)ecting the dispersion of the data in both 

groups, s1 ¼ s2 ¼ 0:3m. sij represents the expected difference 

between the i-th group and the j-th group, which is taken as 

0.5μ in this case. μ represents the mean. α = 0.05, β = 0.1. The 

final result is n = 10. In this study, the sample size for each 

group is greater than 10, which theoretically ensures a power 

greater than 0.9.

2.2 Sample collection

2.2.1 Inclusion and exclusion criteria
2.2.1.1 Inclusion criteria

1. Age 18 years or older. 2. Diagnosed with atrial fibrillation 

(AF) by a physician at the level of attending physician or above, 

according to the “Atrial Fibrillation: Current Knowledge and 

Treatment Recommendations - 2018.” [For the AFHUA group, 

in addition to being diagnosed with AF, patients must also be 

diagnosed with hyperuricemia (HUA) by a physician at the level 

of attending physician or above, according to the “Chinese 

Guidelines for the Diagnosis and Treatment of Hyperuricemia 

and Gout (2019).” The Control group must exclude both AF 

and HUA.) 3. Individuals who provide informed consent and 

sign the consent form.

FIGURE 1 

Experimental workflow diagram.
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2.2.1.2 Exclusion criteria

1. Presence of congenital intellectual disability or diagnoses of 

vascular dementia, Alzheimer’s disease, and other 

dementias. 2. Patients diagnosed with severe hepatic and renal 

insufficiency, acute myocardial infarction, severe heart disease, 

malignant tumors, cerebrovascular accidents, severe trauma, or 

post-major surgery. 3. Pregnant or intending-to-pregnant 

individuals and breastfeeding women. 4. Individuals with mental 

illness, alcohol abuse, or dependence on psychoactive substances.

2.2.2 Patient source
All enrolled patients were inpatients from the Department of 

Cardiology at the Affiliated Hospital of Shandong University of 

Traditional Chinese Medicine between April 2024 and January 

2025. The control group consisted of patients hospitalized in the 

Department of Cardiology for other diseases. The baseline 

characteristics of all participants are shown in Table 1.

2.2.3 Sample collection method
Blood samples were collected from all eligible subjects after 

fasting overnight. All blood samples were collected with the 

informed consent and permission of the patients. After standing 

for 1 h, the blood samples were centrifuged at 3,000 g for 

15 min to separate the serum and blood cells. The collected 

serum was placed in a standard serum collection tube and 

stored at −80°C until the test was conducted.

2.3 Metabolomics analysis

2.3.1 Reagents and Instruments
The instruments and reagents used in the metabolomics 

analysis are shown in Supplementary Table S1.

2.3.2 Metabolite extraction
The experimental sample was thawed at 4°C. After thawing, 

the sample was vortexed for 1 min to ensure thorough mixing. 

Subsequently, an appropriate amount of the sample was 

precisely transferred into a 2 ml centrifuge tube, and 400 µl of 

methanol solution was added, followed by vortexing for another 

minute. The mixture was then centrifuged at 12,000 rpm at 4°C 

for 10 min. The entire supernatant was collected and transferred 

to a new 2 ml centrifuge tube for concentration and drying. 

After that, 150 µl of a 2-chloro-L-phenylalanine (4 ppm) 

solution prepared with 80% methanol water was accurately 

added to remix the sample. The supernatant was then filtered 

through a 0.22 µm membrane, and the filtrate was transferred to 

a test bottle for Liquid Chromatography and Mass Spectrometry 

(LC-MS) detection (11).

2.3.3 On-machine inspection
2.3.3.1 Chromatographic conditions

The Liquid Chromatography (LC) analysis was performed on 

a Vanquish Ultra-High Performance Liquid Chromatography 

(UPLC) System (Thermo Fisher Scientific, USA). The High 

Strength Silica (HSS) T3 column was maintained at 40°C. The 

)ow rate and injection volume were set at 0.3 ml/min and 2 μl 

respectively. For LC- Electrospray Ionization (ESI)(+)-MS 

analysis, the mobile phases consisted of (B2) 0.1% formic acid 

in acetonitrile (v/v) and (A2) 0.1% formic acid in water (v/v). 

Separation was conducted under the following gradient: 0– 

1 min, 8% B2; 1–8 min, 8%–98% B2; 8–10 min, 98% B2; 10– 

10.1 min, 98%–8% B2; 10.1–12 min, 8% B2. For LC-ESI (-)-MS 

analysis, the analytes were carried out with (B3) acetonitrile and 

(A3) ammonium formate (5 mM). Separation was conducted 

under the following gradient: 0–1 min, 8% B3; 1–8 min, 8%– 

98% B3; 8–10 min, 98% B3; 10–10.1 min, 98%–8% B3; 10.1– 

12 min, 8% B3 (12).

2.3.3.2 Mass spectrometry conditions

Mass spectrometric (MS) detection of metabolites was 

performed on Q Exactive Focus (Thermo Fisher Scientific, USA) 

with Electrospray Ionization (ESI) ion source. Simultaneous 

First-Level Mass Spectrometry (MS1) and Tandem Mass 

Spectrometry (MS/MS) (Full MS-ddMS2 mode, data-dependent 

MS/MS) acquisition was used. The parameters were as follows: 

sheath gas pressure, 40 arb; aux gas )ow, 10 arb; spray voltage, 

3.50 kV and −2.50 kV for ESI(+) and ESI(−) respectively; 

capillary temperature, 325 °C; MS1 range, m/z 100–1,000; MS1 

resolving power, 70,000 FWHM; number of data dependant 

scans per cycle, 3; MS/MS resolving power, 17,500 FWHM; 

normalized collision energy, 30 eV; dynamic exclusion time, 

utomatic (9).

TABLE 1 Participants’ baseline characteristics.

Baseline characteristics Control AF AFHUA P value

Age, years 63.36 ± 11.07 68.55 ± 9.94 71.13 ± 11.78 0.195

Total cholesterol, mmol/L 4.33 ± 1.23 4.20 ± 1.05 3.91 ± 0.96 0.557

Low-density Lipoprotein Cholesterol, mmol/L 2.42 ± 0.86 2.39 ± 0.78 2.06 ± 0.84 0.409

BMI, kg/m2 27.29 ± 3.21 24.98 ± 3.29 24.61 ± 3.69 0.201

Fasting blood glucose, mmol/L 5.38 ± 1.03 5.50 ± 1.10 6.03 ± 1.97 0.547

Hypertension 8 (72.73%) 15 (68.18%) 9 (56.25%) 0.687

Coronary artery disease 7 (63.64%) 16 (72.73%) 13 (81.25%) 0.589

Smoking 0 (0.00%) 3 (13.64%) 3 (18.75%) 0.392

Drinking 1 (9.09%) 1 (4.55%) 2 (12.50%) 0.808

Male sex 5 (45.45%) 10 (45.45%) 9 (56.25%) 0.814
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2.3.4 Data processing and analysis
2.3.4.1 Data preprocessing

Use the MSConvert tool in the Proteowizard package 

(v3.0.8789) to convert the original mass spectrometer off- 

machine file to mzXML file format (13). Peak detection, peak 

filtering and peak alignment were performed using the R XCMS 

package (14), with bw = 2, ppm = 15, peakwidth = c(5, 30), 

mzwid = 0.015, mzdiff = 0.01, method = “centWave” to obtain a 

quantitative list of metabolites. Then support vector regression 

correction based on quality control (QC) samples was used to 

eliminate systematic errors. Then the substances with a 

Coefficient of Variance (CV) of less than 30% (9) in the QC 

samples were retained for subsequent analysis.

Principal Component Analysis (PCA) and Orthogonal Partial 

Least Squares Discriminant Analysis (OPLS-DA) models were 

employed to visualize the metabolic changes among different 

groups. Unlike PCA, which is an unsupervised model, OPLS- 

DA is a supervised model that begins performing the model 

after pre-defined grouping information is provided (10). The 

metabolic profiles could be shown as a score plot, with each 

point representing a sample. The descriptive performance of the 

OPLS-DA model is determined by the parameter R-squared for 

Y (R2Y), which is used to describe the percentage of variance in 

the y-variable that is explained by the model. The closer the 

R2Y value is to 1, the more variance is explained, indicating a 

better fit of the model to the data. Simultaneously, the OPLS- 

DA model undergoes cross-validation to assess its predictive 

capability. The closer the model parameter Q-squared (Q2) is to 

1, the stronger the predictive power of the model. In this 

experiment, the models displayed high cross-validation 

predictability and goodness-of-fit values. To further verify the 

reliability of the model, all the models were evaluated for 

overfitting with methods of the permutation test. The results 

showed that the intercept of the Q2 regression line with the 

Y-axis was less than 0, indicating the reliability of the models 

(Supplementary Figure S1).

2.3.4.2 Quality control (QC) and quality assurance (QA)

In metabolomics studies based on mass spectrometry 

technology, quality control (QC) is necessary to obtain reliable 

and high-quality metabolomics data (15). QC is an essential step 

to achieve stable and accurate metabolomics results. Preparation 

of QC Samples: A portion of the extracted samples to be tested 

is taken and mixed to form QC samples, which are used to 

correct the deviations in the analysis results of the mixed 

samples and the errors caused by the analytical instruments 

themselves. Principal component analysis (PCA) is employed to 

assess the reliability of the results. In the PCA score plot, the 

QC samples cluster in both ESI+ and ESI− modes, indicating 

good reproducibility of the method used. Additionally, the 

Relative Standard Deviation (RSD) (coefficient of variation) of 

potential characteristic peaks in QC samples must fall within 

30% when identifying biomarkers. Therefore, quality assurance 

(QA) is usually performed to remove the characteristics of poor 

repeatability in QC samples after quality control to obtain a 

higher-quality data set (15). The ratio of characteristic peaks 

with RSD less than 30% reach about 65%, indicating the 

reliability and precision of the data (16) (Supplementary 

Figure S2).

2.3.4.3 Substance identification

The metabolites were identified by accuracy mass and MS/MS 

data which were matched with HMDB (http://www.hmdb.ca) (17), 

massbank (http://www.massbank.jp/) (18), KEGG (https://www. 

genome.jp/kegg/) (19), LipidMaps (http://www.lipidmaps.org) 

(20), mzcloud (https://www.mzcloud.org) (21) and the 

metabolite database bulid by Panomix Biomedical Tech Co., Ltd. 

(Shuzhou, China). The molecular weight of metabolites was 

determined according to the m/z (mass-to-charge ratio) of 

parent ions in MS data. Molecular formula was predicted by 

adduct ion, and then matched with the database. At the same 

time, the MS/MS data from quantitative table of MS/MS data, 

were matched with the fragment ions and other information of 

each metabolite in the database, so as to realize the MS/MS 

identification of metabolites. A total of 1,570 metabolites were 

identified in this test.

2.4 Statistical analysis

The data were analyzed using SPSS 27.0 and GraphPad Prism 

10 statistical software. All normally distributed data were 

expressed as mean ± SD. Nonnormally distributed data were 

expressed as median (interquartile range). For continuous 

variables, pairwise comparisons are made using the independent 

two-sample t-test. When comparing three groups, one-way 

analysis of variance (ANOVA) is used, followed by post hoc 

multiple comparisons tests. For categorical variables, the chi- 

square test or Fisher’s exact test is used. The p-value was 

adjusted for multiple testing via the false-discovery rate (FDR) 

using the Benjamini-Hochberg method.

For the identified differential metabolites, further screening 

was conducted under the conditions of P < 0.05, value of 

variable importance in projection (VIP) > 1 (22), and 

enrichment to significant metabolic pathways (impact value 

>0.05, P < 0.05) (10). Then ROC curves were used to evaluate 

the predictive power of these differential metabolites for AFHUA.

3 Results

3.1 Identification of differential metabolites

A total of 1,570 metabolites were detected in this test. With 

p < 0.05 and VIP > 1 as the screening criteria (22). A total of 186 

metabolites were significantly up-regulated or down-regulated in 

the AF/Control comparison group. A total of 203 metabolites 

were significantly up-regulated or down-regulated in the 

AFHUA/Control comparison group. A total of 132 metabolites 

were significantly up-regulated or down-regulated in the 

AFHUA/AF comparison group. Volcano maps (Figure 2) and 

differential molecular heat maps (Figure 3) show the differences 
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of metabolites up and down in different comparison groups.For 

the detected differential metabolites, we plotted correlation heat 

maps (Figure 4) of differential metabolites to more intuitively 

observe the intensity of correlation among various metabolites 

in different comparison groups.

3.2 Path enrichment of differential 
metabolites

According to the KEGG database and MetaboAnalyst 

software, the metabolic pathways of the differential metabolites 

in each comparison group were analyzed. Significant alterations 

in the metabolic pathways were found in three comparison 

groups. Bubble plots of the top 20 differential metabolic 

pathways in different comparison groups were plotted based on 

P values (Figure 5). Meanwhile, statistical bar graphs (Figure 6) 

of the number of differential metabolites enriched in each 

pathway were drawn. The pathways reaching the significance 

threshold (impact value >0.05, P < 0.05) were selected as the 

targets for further analysis. There were 10 pathways in the AF/ 

Control comparison group. 21 differential metabolites were 

enriched in these 10 pathways. These differential metabolites 

and the differential pathways they were enriched in are shown 

in Supplementary Table S2. There were 10 pathways in the 

AFHUA/Control comparison group. 21 differential metabolites 

enriched in these 10 pathways. These differential metabolites 

and the differential pathways they enriched in are shown in 

FIGURE 2 

(A) Volcano plot of the differential metabolites in the AF/control group, with the X-axis being the multiple change of the log 2 transformation and the 

Y-axis being the p-value of the -log 10 transformation. The larger the absolute value of the X-axis, the greater the multiple difference in the 

expression of a certain metabolite between the two samples; the larger the vertical value, the more significant the differential expression. Blue 

indicates down-regulated significantly differentially expressed metabolites, red indicates up-regulated significantly differentially expressed 

metabolites, and gray dots indicate metabolites that do not meet the differential screening criteria. The size of the dots indicates the size of the 

VIP value. (B) Volcano plot of differential metabolites in the AFHUA/Control group. (C) Volcanic plot of differential metabolites in the AFHUA/ 

AF group.
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Supplementary Table S3. There were 7 pathways in the AFHUA/ 

AF comparison group. 12 differential metabolites were enriched 

in these 7 pathways. These differential metabolites and the 

differential pathways which they were enriched in are shown in 

Supplementary Table S4.

3.3 Biomarker screening

ROC curve analysis was used to verify the predictive value of 

these differential metabolites in clinical practice. Among the 21 

differential metabolites screened out from the AFHUA/Control 

comparison group, 19 were tested with P < 0.05, as shown in 

Table 2. Among them, L-Threonine had the best detection 

efficacy because its sensitivity = 0.816, specificity = 0.873, Youden 

index = 0.689, AUC = 0.91. To determine whether multiple 

metabolites can be used to jointly predict individuals in the 

AFHUA and Control groups. Binary logistic regression and 

ROC curve analysis were employed to select the four 

metabolites with the highest AUC values from the AFHUA/ 

Control comparison group for the combined predict curve. The 

combination of L-Threonine, L-Histidine, L-Phenylalanine and 

Pyridoxate was found to have an AUC of 0.955 in differentiating 

individuals from AFHUA and Control (Figure 7A), which was 

significantly higher than that of any single metabolite. The 12 

differential metabolites selected from the AFHUA/AF 

FIGURE 3 

(A) Molecular heat map of the differential metabolites in the AF/control group. (B) Molecular heat map of the differential metabolites in the AFHUA/ 

Control group. (C) Molecular heat map of the differential metabolites in the AFHUA/AF group.
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comparison group were verified by ROC curve analysis to be 

suitable for differential discrimination between AFHUA and AF 

individuals (P < 0.05), as shown in Table 3. Four of the 12 

metabolites with the highest AUC values were selected for joint 

prediction by binary logistic regression and ROC curve. These 

four metabolites are: Estrone, ST 18_3; O3, L-Threonine, 

L-Isoleucine, The results showed that the AUC value of the joint 

prediction curve for these four metabolites reached 0.808 

(Figure 7B). The detection ability was higher than that of any 

single metabolite.

In addition, the intersection of 19 metabolites from the 

AFHUA/Control comparison group and 12 metabolites from the 

FIGURE 4 

(A) Correlation of differential metabolites in the AF/control group, red indicates positive correlation, blue indicates negative correlation, and the 

darker the color, the higher the correlation. (B) Correlation of differential metabolites in the AFHUA/Control group. (C) Correlation of differential 

metabolites in the AFHUA/AF group.
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AFHUA/AF comparison group resulted in four common 

metabolites. The four common metabolites are L-Threonine, DL- 

Malic acid, L-Valine, and L-Cysteine. Joint prediction curves 

using these four metabolites between the AFHUA/Control 

comparison group and the AFHUA/AF comparison group 

showed good diagnostic efficacy. With AUC = 0.923 in the 

AFHUA/Control comparison group (Figure 7C) and AUC = 0.714 

in the AFHUA/AF comparison group (Figure 7D). This indicates 

that L-Threonine, DL-Malic acid, L-Cysteine and L-Valine can be 

used as common predictive metabolites in both the AFHUA/ 

Control comparison group and the AFHUA/AF comparison 

group. The content relationship of these four metabolites in each 

group is as follows: the contents of L-Threonine, DL-Malic acid 

and L-Cysteine in each group: AFHUA > AF, AFHUA > Control, 

the contents of L-Valine in each group: Control > AFHUA, 

AF > AFHUA, the reason for this result may be due to HUA. 

(Figure 8) (Note: The construction of the above ROC curve 

models did not adjust for confounding factors.).

3.4 Findings

The levels of L-Threonine, DL-Malic acid, L-Valine, and 

L-Cysteine were significantly altered in both the AFHUA/AF 

and AFHUA/Control comparison groups. The combined ROC 

curve constructed using these four metabolites effectively 

FIGURE 5 

(A) Bubble plots of the top 20 differential metabolic pathways in the AF/control comparison groups. (B) Bubble plots of the top 20 differential 

metabolic pathways in the AFHUA/control comparison groups. Bubble plots of the top 20 differential metabolic pathways in the AFHUA/AF 

comparison groups.
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FIGURE 6 

(A) AF/control comparison groups. (B) AFHUA/control comparison groups. (C) AFHUA/AF comparison groups. In the bubble plot, the horizontal axis 

represents the Impact value and the vertical axis represents the enrichment path. Point size indicates the number of metabolites corresponding to the 

path. The redder the color, the smaller the P value; the bluer the color, the higher the p-value. In the bar chart, the horizontal axis represents the 

number of metabolites, the vertical axis represents enrichment pathways, red represents up-regulation, and blue represents down-regulation.

TABLE 2 The ROC analysis between the AFHUA/Control comparison groups.

Compound Sensitivity Specificity Youden index AUC P-value

L-Threonine 0.816 0.873 0.689 0.91 <0.001

L-Histidine 0.724 0.891 0.615 0.847 <0.001

L-Phenylalanine 0.816 0.727 0.543 0.838 <0.001

Pyridoxate 0.618 0.873 0.491 0.805 <0.001

Fumaric acid 0.697 0.855 0.552 0.799 <0.001

Xanthine 0.566 0.909 0.475 0.78 <0.001

Pyridoxal 5’-phosphate 0.579 0.909 0.488 0.759 <0.001

DL-Malic acid 0.553 0.927 0.480 0.743 <0.001

Pyridoxine 5’-phosphate 0.592 0.855 0.447 0.742 <0.001

L-Cysteine 0.763 0.673 0.436 0.74 <0.001

L-Methionine 0.855 0.582 0.437 0.737 <0.001

L-Valine 0.818 0.684 0.502 0.735 <0.001

Caffeine 0.566 0.818 0.384 0.731 <0.001

L-Kynurenine 0.632 0.764 0.396 0.73 <0.001

Glyoxylic acid 0.673 0.671 0.344 0.698 <0.001

Oxaloacetate 0.474 0.927 0.401 0.661 0.002

3-Methylxanthine 0.355 0.982 0.337 0.66 0.002

5-Acetylamino-6-formylamino-3-methyluracil 0.526 0.782 0.308 0.647 0.004

L-Tryptophan 0.803 0.491 0.294 0.646 0.005
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distinguished samples from AFHUA and AF, with an AUC of 

0.714, sensitivity of 73.7%, specificity of 62.9%, and Youden’s 

index of 0.366. In the AFHUA/Control comparison group, the 

AUC was 0.923, sensitivity was 75.0%, specificity was 96.4%, and 

Youden’s index was 0.714.

4 Discussion

In this study, we compared serum metabolites in AF/Control 

comparison group, AFHUA/Control comparison group, and 

AFHUA/AF comparison group. (1) Results showed that 186 

FIGURE 7 

(A) In the AFHUA/control comparison group, the combined ROC prediction curve using L-threonine, L-histidine, L-phenylalanine, and pyridoxate. (B) 

In the AFHUA/AF comparison group, the combined ROC prediction curve using Estrone, ST 18_3; O3, L-Threonine, and L-Isoleucine. (C) In the 

AFHUA/Control comparison group, the combined ROC prediction curve using L-Threonine, DL-Malic acid, L-Valine, and L-Cysteine. (D) In the 

AFHUA/AF comparison group, the combined ROC prediction curve using L-Threonine, DL-Malic acid, L-Valine, and L-Cysteine.

TABLE 3 The ROC analysis between the AFHUA/AF comparison groups.

Compound Sensitivity Specificity Youden index AUC P-value

Estrone 0.553 0.876 0.429 0.735 <0.001

ST 18_3; O3 0.566 0.886 0.452 0.726 <0.001

L-Threonine 0.592 0.752 0.344 0.687 <0.001

L-Isoleucine 0.571 0.816 0.387 0.673 <0.001

L-Aspartic acid 0.447 0.829 0.276 0.653 <0.001

Citrulline 0.566 0.762 0.328 0.652 <0.001

L-Valine 0.562 0.724 0.286 0.639 0.001

L-Arginine 0.526 0.752 0.278 0.628 0.003

Carbon dioxide 0.514 0.763 0.277 0.611 0.011

DL-Malic acid 0.289 0.924 0.213 0.591 0.038

L-Cysteine 0.368 0.829 0.197 0.589 0.041

Progesterone 0.343 0.842 0.185 0.586 0.048
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metabolites were significantly up-regulated or down-regulated in 

the AF/Control comparison group. 203 metabolites were 

significantly up-regulated or down-regulated in the AFHUA/ 

Control comparison group. 132 metabolites were significantly 

up-regulated or down-regulated in the AFHUA/AF comparison 

group. (2) Differential metabolites were screened from the 

AFHUA/Control comparison group, AFHUA/AF comparison 

group, and AF/Control comparison group on the condition that 

P < 0.05, VIP > 1 and enrichment in significant metabolic 

pathways. As a result, 21 differential metabolites were screened 

from the AFHUA/ Control comparison group. 12 differential 

metabolites from the AFHUA/AF comparison group. 21 

differential metabolites from the AF/Control comparison group. 

(3) ROC curve analysis was performed on the differential 

metabolites selected from the AFHUA/Control comparison 

group and the AFHUA/AF comparison group. The results 

showed that 19 differential metabolites in the AFHUA/Control 

comparison group had Predictive value, and L-Threonine had 

the best Predictive efficacy. Among the AFHUA/AF comparison 

group, 12 metabolites have predictive value. The four 

metabolites with the highest AUC values in the AFHUA/Control 

comparison group and the AFHUA/AF comparison group were 

selected for combined prediction in both comparison groups. It 

was found that the efficacy of combined prediction in both 

comparison groups was better than that of any single metabolite 

in each group. (4) The intersection of 19 metabolites in the 

AFHUA/Control comparison group and 12 metabolites in the 

AFHUA/AF comparison group resulted in L-Threonine, DL- 

Malic acid, L-Cysteine, and L-Valine. Combined prediction of 

these four metabolites in the AFHUA/Control and AFHUA/AF 

comparison groups showed good predictive efficacy in 

both groups.

4.1 The role of DL-Malic acid in atrial 
fibrillation

DL-Malic acid, a naturally occurring acid with the chemical 

formula C4H6O5. It can be produced by many species and 

participates in the tricarboxylic acid cycle (TCA). Baseline 

FIGURE 8 

(A) The barplot of L-threonine levels in the AFHUA and control groups. (B) The barplot of L-Threonine levels in the AFHUA and AF groups. (C) The 

barplot of DL-Malic acid levels in the AFHUA and Control groups. (D) The barplot of DL-Malic acid levels in the AFHUA and AF groups. (E) The barplot 

of L-Cysteine levels in the AFHUA and Control groups. (F) The barplot of L-Cysteine levels in the AFHUA and AF groups. (G) The barplot of L-Valine 

levels in the AFHUA and Control groups. (H) The barplot of L-Valine levels in the AFHUA and AF groups. The Y-axis represents the concentration of 

the substance, while the X-axis indicates different groups.
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fasting plasma levels of 2-hydroxyglutaric acid, fumaric acid and 

malic acid in the tricarboxylic acid cycle were found to be 

significantly associated with a higher risk of cardiovascular 

disease (23). Other studies found that intermediate metabolites 

of TCA such as malic acid was significantly associated with a 

higher incidence of AF (24). This may be because )uctuations 

in metabolic function can lead to the accumulation of 

metabolites in the TCA, including malic acid (25). Metabolic 

changes in the heart may increase myocardial oxidative stress 

(26), which adversely affects atrial structure, electrical 

remodeling, and myocardial function and leads to atrial 

fibrillation (27). Other related studies have also found that 

dysregulation of the TCA cycle is associated with diseases 

related to oxidative stress, such as cardiovascular disease (28). 

Earlier evidence pointed out that uric acid (UA) enters the cell 

through UA transporters, and intracellular UA increases the 

activity of xanthine oxidase (XO) and NADPH oxidase (NOX) 

(29). As a result, these activities promote the formation of 

superoxide. The NOX produces reactive oxygen species (ROS) 

by transferring electrons from NADPH to molecular oxygen 

(30). XO is deemed to be a key enzyme in UA metabolism, 

which is also a critical source of reactive oxygen species (ROS), 

free radicals responsible for oxidative damage in cardiovascular 

diseases (31, 32). A study that involved a histochemical staining 

technique based on the reduction of nitro blue tetrazolium to 

formazan by superoxide radical also revealed the presence of XO 

activity in human hearts (33). Autonomic nervous system 

activation can induce significant and heterogeneous changes of 

atrial electrophysiology and induce atrial tachyarrhythmias, 

including atrial tachycardia and AF (34). Recently, some 

researchers showed that a continuous 4 weeks inhibition of XO 

in infarcted rats down-regulated sympathetic innervation (35). 

This suggests that UA involves in sympathetic nerve activity via 

sympathetic innervation probably through a superoxide- 

dependent pathway, which eventually contributes to arrhythmia 

(30). The elevation of uric acid levels can increase the risk of 

myocardial oxidative damage by activating the renin-angiotensin 

system (30). An experimental test by Corry et al. found that the 

mRNA and intracellular protein of angiotensin II were upgraded 

after 48 h of UA stimulation of vascular smooth muscle cells 

(36). Landmesser et al. also have proved that angiotensin II 

induces the increased activity of NOX and XO, and eventually 

causes oxidative damage (37).

In addition, malic acid is an important substance in the 

glucagon signaling pathway. Malic acid promotes the transport 

of intracellular glucose to the extracellular space through 

glycolysis and gluconeogenesis, which raise blood glucose levels. 

Some studies have shown that the level of oxidative stress and 

atrial fibrosis were markedly increased in the subgroup of mice 

with wide glycemic variability and were strongly associated with 

enhanced AF inducibility in electrophysiological evaluation (38). 

Elevated extracellular blood glucose also promotes the formation 

of advanced glycation end products (AGEs). AGES are produced 

by the non-enzymatic condensation of the carbonyl group of a 

reducing sugar with the free amine group of a nucleic acid, 

protein or lipid, and then further rearrangement to produce a 

stable and irreversible end product (39). A large amount of 

evidence suggests that oxidative stress and in)ammation are the 

central mediators of AF in the heart under metabolic stress 

(40–42). AGES can promote oxidative stress and in)ammatory 

responses by altering its structure and function through binding 

to cell surface receptors or cross-linking to body proteins, 

thereby exerting pathological effects (43). KATO T reported a 

significant increase of atrial fibrosis and AGE-E2 expression in 

diabetic rats that was induced by streptozotocin, and that 

fibrosis in the model was partially reversed after treatment with 

AGES inhibitors. That suggested a causal relationship between 

AGE levels, atrial fibrosis and AF (44). Additional studies have 

shown that insulin deficiency and glycemic variability impair 

Phosphatidylinositol 3-kinase (PI3K) signaling pathway and 

bring about ionic and metabolic dysregulations capable of 

triggering atrial arrhythmias (45).

4.2 The role of L-Threonine and L-Valine in 
the development of atrial fibrillation

L-Threonine is one of the four configurations of threonine and 

it is the main biologically active form of threonine in the human 

body. There are few reports on the relationship between threonine 

and atrial fibrillation. Threonine undergoes three different 

metabolic pathways (46): Threonine dehydrase pathway: 

Threonine in the liver is catalyzed by threonine dehydrase to 

form α -ketobutyric acid and ammonia, and then α -ketobutyric 

acid is decarboxylated to form propionyl-coA, which enters the 

tricarboxylic acid cycle (TCA cycle). Ammonia is expelled from 

the body through the urea cycle. Threonine dehydrogenase 

pathway: Threonine is converted into 2-amino-3-ketobutyric 

acid under the action of threonine dehydrogenase. This 

intermediate is further catalyzed by 2-amino-3-ketobutyric acid 

coenzyme A ligase to produce acetyl-CoA and glycine. Acetyl- 

coA enters the tricarboxylic acid cycle to provide energy to the 

cell, while glycine participates in the one-carbon metabolism. 

Threonine aldoxylase pathway: Threonine is cleaved to produce 

glycine and acetaldehyde under the catalysis of threonine 

aldoxylase. Acetaldehyde is further oxidized to acetic acid and 

eventually to acetyl-coA. Acetyl-coA enters the tricarboxylic acid 

cycle. Studies have found (47) significant changes in L-threonine 

levels in the plasma of patients with atrial fibrillation compared 

to the Control group, and these changes have diagnostic value. 

Enrichment analysis has found a significant association between 

atrial fibrillation and the degradation pathways of threonine and 

2-oxybutyric acid (α-ketobutyric acid) (P < 0.001, FDR 

q < 0.001). This suggests that threonine metabolism may play a 

significant role in the pathogenesis of atrial fibrillation. In 

summary, it can be found that the metabolic pathways of 

threonine in organisms are closely related to the tricarboxylic 

acid cycle. Therefor, threonine may affect the occurrence of 

atrial fibrillation by participating in the tricarboxylic acid cycle 

through its metabolites and in)uencing the energy metabolism 

of cardiomyocytes.
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In this study, the content of L-Valine in the Control group and 

the AF group was higher than that in the AFHUA group. The 

ROC curve showed that the content of L-Valine was negatively 

correlated with the occurrence of atrial fibrillation. Katarzyna 

Mitrega’s study also showed that L-Valine had a significant 

antiarrhythmic effect (48). L-Valine, as a branched-chain amino 

acid, is metabolized mainly in peripheral tissues such as skeletal 

and cardiac muscles and can protect skeletal muscles from 

damage after intense exercise. In addition, studies have shown 

that branched-chain amino acids in isolated rat hearts have 

enhanced post-ischemic pressure recovery, improved post- 

ischemic myocardial contraction and relaxation functions, and 

delayed ischemic myocardial contracture time (49). The 

ischemic protective effect on the myocardium may be the cause 

of L-Valine’s anti-arrhythmic effect.

4.3 Clinical implications

The differential metabolite changes identified in this study 

reveal the metabolic disturbances in the development of AF, 

providing new insights for the clinical management and 

treatment of AF. On one hand, the abnormal changes in these 

metabolite levels can be used to infer the pathogenesis of AF, 

offering new theoretical underpinnings for its development and 

progression, and thus new strategies for the prevention and 

treatment of AF. On the other hand, for patients with abnormal 

metabolite levels, targeted metabolic regulation therapies could 

be considered in conjunction with traditional anticoagulant and 

antiarrhythmic drugs, potentially achieving a more effective 

comprehensive treatment plan.

4.4 Inference

Hyperuricemia, as a metabolic disorder, is closely associated 

with the occurrence of atrial fibrillation. The specific mechanism 

involves energy metabolism including the tricarboxylic acid 

cycle, glucose metabolism, amino acid metabolism, etc. By 

causing a series of metabolic changes, it leads to oxidative stress 

and in)ammatory responses in the body, which in turn causes 

structural and electrical remodeling of cardiac cells to induce 

atrial fibrillation. In this study, metabolites such as L-Threonine, 

DL-Malic acid, and L-Valine were found to be early warning 

indicators of AF in patients with HUA.

4.5 Limitations

As a metabolomics study, the present study may have certain 

statistical biases due to the limited number of participants. 

However, as an initial exploratory study, it has preliminarily 

validated some metabolites with potential predictive value. 

Subsequently, we will conduct a larger - scale, multi - omics 

study to verify the findings of this exploration.

5 Conclusion

In this study, Metabolomics analysis revealed that the levels of 

metabolites such as L-threonine, DL-malic acid, and L-valine in 

individuals with AFHUA showed significant changes compared 

to the control group. The significant alterations in these 

metabolites not only provide new biomarkers for the early 

warning of AF but also offer new insights for the prevention 

and treatment of AF. The combined ROC curve analysis further 

validated the early warning potential of these metabolites, 

demonstrating good efficacy. In summary, this study not only 

elucidates the metabolic connections between hyperuricemia and 

AF but also provides new tools and methods for the early 

detection and clinical management of AF. Future research 

should further validate the application value of these metabolites 

in larger populations and explore their specific roles in the 

development of AF, with the aim of developing more effective 

strategies for the prevention and treatment of AF.
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