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Background: There have been sufficient previous studies demonstrating that
hyperuricemia (HUA) is closely associated with the occurrence of atrial
fibrillation (AF).The incidence of AF in patients with hyperuricemia is higher
than that in the general population. Therefore, it is meaningful to explore the
serum markers of AF in the HUA population and establish early
warning indicators.

Objective: To preliminarily explore the correlation between HUA and AF at the
metabolomics level, and to identify a group of metabolites with potential
predictive power for AF that can be used for further large-scale studies.
Methods: This study used untargeted metabolomics technology to detect
serum metabolites of patients with AF, patients with AFHUA, and control
group. Receiver operator characteristic (ROC) curve were used to analyze
differential metabolites.

Results: Ultimately, multiple metabolites such as L-Threonine, DL-Malic acid, L-
Valine, L-Cysteine were identified as early warning markers of AF in patients with
HUA. Combined ROC curve using these four metabolites between the AFHUA/
Control comparison group and the AFHUA/AF comparison group showed good
predictive efficacy, with Area Under the ROC Curve (AUC) = 0.923 (P < 0.001) in
the AFHUA/Control comparison group and AUC =0.714 (P<0.001) in the
AFHUA/AF comparison group. This provides an early predictive method for
patients who may develop atrial fibrillation among those with hyperuricemia.
And offers new approaches for the prevention and treatment of atrial fibrillation.
Conclusion: This study indicates that serum metabolomics can be specifically
used to predict the probability of AF occurrence in individuals with HUA, and
has identified metabolites such as L-Threonine, DL-Malic acid, L-Valine, and
L-Cysteine that possess potential predictive efficacy.
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1 Introduction

Atrial fibrillation (AF) is the most common type of arrhythmia
worldwide (1). There are approximately 33.5 million people with
atrial fibrillation worldwide, and the incidence rate in China is
1-2 percent (2). Atrial fibrillation can significantly affect the
quality of life of patients because it is associated with serious
complications such as stroke, heart failure, cognitive impairment
and cardiac arrest (3). Although the clinical manifestations of
atrial fibrillation are diverse. Its pathogenesis is not yet fully
understood. It is currently believed to involve a combination of
factors, including structural remodeling, electrical remodeling,
inflammatory response, and oxidative stress (4). Hyperuricemia
(HUA) is a metabolic disease caused by an imbalance of purine
metabolism and uric acid production-excretion (5). HUA is
defined as uric acid levels >7.0 mg/dl in men and >5.7 mg/dl in
women (6). As is well-known, HUA leads to the formation and
deposition of monosodium urate crystals in and around the
joints, which in turn triggers gout (7). However, recent studies
have found that HUA has been confirmed to be associated with
the onset of multiple cardiovascular diseases. Our previous
study found a significant link between HUA and the occurrence
of AF. Leonardo Tamariz et al. also found that serum uric acid
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levels were significantly associated with new-onset atrial
fibrillation in a concentration-dependent manner (8). To further
investigate this association, we used non-targeted metabolomics
techniques to conduct serum metabolomics analyses of different
populations in three groups: the Control group, the atrial
fibrillation group (AF), and the fibrillation ~with

hyperuricemia group (AFHUA), to explain this association at

atrial

the metabolomics level.

2 Methods

The procedure of this experiment is shown in Figure 1.

2.1 Study design and population

This study protocol was reviewed and approved by the Ethics
Committee of the Affiliated Hospital of Shandong University of
Traditional Chinese Medicine on September 13, 2023. The ethics
(2023) Review No. (111) - KY. Al
experimental procedures were conducted in accordance with the

approval number:

relevant guidelines and regulations. Before the collection of
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FIGURE 1
Experimental workflow diagram.

blood samples, all participants provided written informed consent.
Serum samples were prospectively collected from AF patients
(N=22), AFHUA patients (N=16), and the Control group
(N=11) from April 2024 to January 2025 and frozen. In this
experiment, the coefficient of variation is controlled at 30% (9).
The preset fold change is 1.5p (10). Then the standard
deviation 6=0.3 p, and the The expected difference between the
two groups is 0.5 . The calculation formula is as follows:

_ (Zywen + Zi_p)’ x (07 + 02)
nij = 0_2

ij

n = max{ny, pairs(i, j)}

n;; represents the required sample size for pairwise comparison
between the i-th group and the j-th group. T represents the
total number of pairwise comparisons. 0%, 0% represent the
population variances of the i-th group and the j-th group,
respectively, reflecting the dispersion of the data in both
groups, 01 = 03 = 0.3u. oy represents the expected difference
between the i-th group and the j-th group, which is taken as
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0.5u in this case. u represents the mean. a=0.05, f=0.1. The
final result is #»=10. In this study, the sample size for each
group is greater than 10, which theoretically ensures a power
greater than 0.9.

2.2 Sample collection

2.2.1 Inclusion and exclusion criteria
2.2.1.1 Inclusion criteria

1. Age 18 years or older. 2. Diagnosed with atrial fibrillation
(AF) by a physician at the level of attending physician or above,
according to the “Atrial Fibrillation: Current Knowledge and
Treatment Recommendations - 2018.” [For the AFHUA group,
in addition to being diagnosed with AF, patients must also be
diagnosed with hyperuricemia (HUA) by a physician at the level
of attending physician or above, according to the “Chinese
Guidelines for the Diagnosis and Treatment of Hyperuricemia
and Gout (2019).” The Control group must exclude both AF
and HUA.) 3. Individuals who provide informed consent and
sign the consent form.
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2.2.1.2 Exclusion criteria

1. Presence of congenital intellectual disability or diagnoses of
other
dementias. 2. Patients diagnosed with severe hepatic and renal

vascular  dementia,  Alzheimer’s  disease, and

insufficiency, acute myocardial infarction, severe heart disease,
malignant tumors, cerebrovascular accidents, severe trauma, or
3.
individuals and breastfeeding women. 4. Individuals with mental

post-major surgery. Pregnant or intending-to-pregnant

illness, alcohol abuse, or dependence on psychoactive substances.

2.2.2 Patient source

All enrolled patients were inpatients from the Department of
Cardiology at the Affiliated Hospital of Shandong University of
Traditional Chinese Medicine between April 2024 and January
2025. The control group consisted of patients hospitalized in the
Department of Cardiology for other diseases. The baseline
characteristics of all participants are shown in Table 1.

2.2.3 Sample collection method

Blood samples were collected from all eligible subjects after
fasting overnight. All blood samples were collected with the
informed consent and permission of the patients. After standing
for 1h, the blood samples were centrifuged at 3,000 g for
15min to separate the serum and blood cells. The collected
serum was placed in a standard serum collection tube and
stored at —80°C until the test was conducted.

2.3 Metabolomics analysis

2.3.1 Reagents and Instruments
The instruments and reagents used in the metabolomics
analysis are shown in Supplementary Table S1.

2.3.2 Metabolite extraction

The experimental sample was thawed at 4°C. After thawing,
the sample was vortexed for 1 min to ensure thorough mixing.
Subsequently, an appropriate amount of the sample was
precisely transferred into a 2 ml centrifuge tube, and 400 pl of
methanol solution was added, followed by vortexing for another
minute. The mixture was then centrifuged at 12,000 rpm at 4°C

TABLE 1 Participants’ baseline characteristics.
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for 10 min. The entire supernatant was collected and transferred
to a new 2ml centrifuge tube for concentration and drying.
After that,
solution prepared with 80% methanol water was accurately

150 il of a 2-chloro-L-phenylalanine (4 ppm)

added to remix the sample. The supernatant was then filtered
through a 0.22 um membrane, and the filtrate was transferred to
a test bottle for Liquid Chromatography and Mass Spectrometry
(LC-MS) detection (11).

2.3.3 On-machine inspection
2.3.3.1 Chromatographic conditions

The Liquid Chromatography (LC) analysis was performed on
a Vanquish Ultra-High Performance Liquid Chromatography
(UPLC) System (Thermo Fisher Scientific, USA). The High
Strength Silica (HSS) T3 column was maintained at 40°C. The
flow rate and injection volume were set at 0.3 ml/min and 2 pl
LC- Electrospray Ionization (ESI)(+)-MS
analysis, the mobile phases consisted of (B2) 0.1% formic acid
in acetonitrile (v/v) and (A2) 0.1% formic acid in water (v/v).

respectively. For

Separation was conducted under the following gradient: 0-
1 min, 8% B2; 1-8 min, 8%-98% B2; 8-10 min, 98% B2; 10-
10.1 min, 98%-8% B2; 10.1-12 min, 8% B2. For LC-ESI (-)-MS
analysis, the analytes were carried out with (B3) acetonitrile and
(A3) ammonium formate (5 mM). Separation was conducted
under the following gradient: 0-1 min, 8% B3; 1-8 min, 8%-—
98% B3; 8-10 min, 98% B3; 10-10.1 min, 98%-8% B3; 10.1-
12 min, 8% B3 (12).

2.3.3.2 Mass spectrometry conditions

Mass spectrometric (MS) detection of metabolites was
performed on Q Exactive Focus (Thermo Fisher Scientific, USA)
with Electrospray Ionization (ESI) ion source. Simultaneous
First-Level Mass Spectrometry (MS1) and Tandem Mass
Spectrometry (MS/MS) (Full MS-ddMS2 mode, data-dependent
MS/MS) acquisition was used. The parameters were as follows:
sheath gas pressure, 40 arb; aux gas flow, 10 arb; spray voltage,
3.50kV and —-2.50kV for ESI(+) and ESI(—) respectively;
capillary temperature, 325 °C; MS1 range, m/z 100-1,000; MS1
resolving power, 70,000 FWHM; number of data dependant
scans per cycle, 3; MS/MS resolving power, 17,500 FWHM;
normalized collision energy, 30 eV; dynamic exclusion time,
utomatic (9).

| Bascline characterstics _________Contol ___AF_____ AFHUA

Age, years 63.36 +11.07
Total cholesterol, mmol/L 433+1.23
Low-density Lipoprotein Cholesterol, mmol/L 2.42+0.86
BMI, kg/m* 27.29 £3.21
Fasting blood glucose, mmol/L 5.38+1.03

Hypertension 8 (72.73%)

Coronary artery disease 7 (63.64%)

Smoking 0 (0.00%)
Drinking 1 (9.09%)
Male sex 5 (45.45%)
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04

68.55 +9.94 71.13+11.78 0.195
420+1.05 3.91+0.96 0.557
2.39+0.78 2.06+0.84 0.409
2498 +3.29 24.61 +3.69 0.201
550+ 1.10 6.03 +1.97 0.547
15 (68.18%) 9 (56.25%) 0.687
16 (72.73%) 13 (81.25%) 0.589
3 (13.64%) 3 (18.75%) 0.392
1 (4.55%) 2 (12.50%) 0.808
10 (45.45%) 9 (56.25%) 0.814
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2.3.4 Data processing and analysis
2.3.4.1 Data preprocessing

Use the MSConvert tool in the Proteowizard package
(v3.0.8789) to convert the original mass spectrometer off-
machine file to mzXML file format (13). Peak detection, peak
filtering and peak alignment were performed using the R XCMS
package (14), with bw=2, ppm=15, peakwidth=c(5, 30),
mzwid = 0.015, mzdiff =0.01, method = “centWave” to obtain a
quantitative list of metabolites. Then support vector regression
correction based on quality control (QC) samples was used to
eliminate systematic errors. Then the substances with a
Coefficient of Variance (CV) of less than 30% (9) in the QC
samples were retained for subsequent analysis.

Principal Component Analysis (PCA) and Orthogonal Partial
Least Squares Discriminant Analysis (OPLS-DA) models were
employed to visualize the metabolic changes among different
groups. Unlike PCA, which is an unsupervised model, OPLS-
DA is a supervised model that begins performing the model
after pre-defined grouping information is provided (10). The
metabolic profiles could be shown as a score plot, with each
point representing a sample. The descriptive performance of the
OPLS-DA model is determined by the parameter R-squared for
Y (R?Y), which is used to describe the percentage of variance in
the y-variable that is explained by the model. The closer the
R?Y value is to 1, the more variance is explained, indicating a
better fit of the model to the data. Simultaneously, the OPLS-
DA model undergoes cross-validation to assess its predictive
capability. The closer the model parameter Q-squared (Q?) is to
1, the stronger the predictive power of the model. In this
experiment, the models displayed high cross-validation
predictability and goodness-of-fit values. To further verify the
reliability of the model, all the models were evaluated for
overfitting with methods of the permutation test. The results
showed that the intercept of the Q” regression line with the
Y-axis was less than 0, indicating the reliability of the models
(Supplementary Figure S1).

2.3.4.2 Quality control (QC) and quality assurance (QA)

In metabolomics studies based on mass spectrometry
technology, quality control (QC) is necessary to obtain reliable
and high-quality metabolomics data (15). QC is an essential step
to achieve stable and accurate metabolomics results. Preparation
of QC Samples: A portion of the extracted samples to be tested
is taken and mixed to form QC samples, which are used to
correct the deviations in the analysis results of the mixed
samples and the errors caused by the analytical instruments
themselves. Principal component analysis (PCA) is employed to
assess the reliability of the results. In the PCA score plot, the
QC samples cluster in both ESI+ and ESI- modes, indicating
good reproducibility of the method used. Additionally, the
Relative Standard Deviation (RSD) (coefficient of variation) of
potential characteristic peaks in QC samples must fall within
30% when identifying biomarkers. Therefore, quality assurance
(QA) is usually performed to remove the characteristics of poor
repeatability in QC samples after quality control to obtain a
higher-quality data set (15). The ratio of characteristic peaks
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with RSD less than 30% reach about 65%, indicating the
reliability and precision of the data (16)

Figure S2).

(Supplementary

2.3.4.3 Substance identification

The metabolites were identified by accuracy mass and MS/MS
data which were matched with HMDB (http://www.hmdb.ca) (17),
massbank (http://www.massbank.jp/) (18), KEGG (https://www.
genome.jp/kegg/) (19), LipidMaps (http://www.lipidmaps.org)
(20), mazcloud (21) and the
metabolite database bulid by Panomix Biomedical Tech Co., Ltd.
(Shuzhou, China). The molecular weight of metabolites was

(https://www.mzcloud.org)

determined according to the m/z (mass-to-charge ratio) of
parent ions in MS data. Molecular formula was predicted by
adduct ion, and then matched with the database. At the same
time, the MS/MS data from quantitative table of MS/MS data,
were matched with the fragment ions and other information of
each metabolite in the database, so as to realize the MS/MS
identification of metabolites. A total of 1,570 metabolites were
identified in this test.

2.4 Statistical analysis

The data were analyzed using SPSS 27.0 and GraphPad Prism
10 statistical software. All normally distributed data were
expressed as mean+ SD. Nonnormally distributed data were
expressed as median (interquartile range). For continuous
variables, pairwise comparisons are made using the independent
two-sample t-test. When comparing three groups, one-way
analysis of variance (ANOVA) is used, followed by post hoc
multiple comparisons tests. For categorical variables, the chi-
square test or Fisher’s exact test is used. The p-value was
adjusted for multiple testing via the false-discovery rate (FDR)
using the Benjamini-Hochberg method.

For the identified differential metabolites, further screening
was conducted under the conditions of P<0.05, value of
(VIP)>1 (22),
enrichment to significant metabolic pathways (impact value
>0.05, P<0.05) (10). Then ROC curves were used to evaluate
the predictive power of these differential metabolites for AFHUA.

variable importance in projection and

3 Results
3.1 Identification of differential metabolites

A total of 1,570 metabolites were detected in this test. With
p<0.05 and VIP > 1 as the screening criteria (22). A total of 186
metabolites were significantly up-regulated or down-regulated in
the AF/Control comparison group. A total of 203 metabolites
were significantly up-regulated or down-regulated in the
AFHUA/Control comparison group. A total of 132 metabolites
in the
AFHUA/AF comparison group. Volcano maps (Figure 2) and

were significantly up-regulated or down-regulated

differential molecular heat maps (Figure 3) show the differences
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FIGURE 2

AF group.
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(A) Volcano plot of the differential metabolites in the AF/control group, with the X-axis being the multiple change of the log 2 transformation and the
Y-axis being the p-value of the -log 10 transformation. The larger the absolute value of the X-axis, the greater the multiple difference in the
expression of a certain metabolite between the two samples; the larger the vertical value, the more significant the differential expression. Blue
indicates down-regulated significantly differentially expressed metabolites, red indicates up-regulated significantly differentially expressed
metabolites, and gray dots indicate metabolites that do not meet the differential screening criteria. The size of the dots indicates the size of the
VIP value. (B) Volcano plot of differential metabolites in the AFHUA/Control group. (C) Volcanic plot of differential metabolites in the AFHUA/
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of metabolites up and down in different comparison groups.For
the detected differential metabolites, we plotted correlation heat
maps (Figure 4) of differential metabolites to more intuitively
observe the intensity of correlation among various metabolites
in different comparison groups.

3.2 Path enrichment of differential
metabolites

According to the KEGG database and MetaboAnalyst
software, the metabolic pathways of the differential metabolites
in each comparison group were analyzed. Significant alterations
in the metabolic pathways were found in three comparison
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groups. Bubble plots of the top 20 differential metabolic
pathways in different comparison groups were plotted based on
P values (Figure 5). Meanwhile, statistical bar graphs (Figure 6)
of the number of differential metabolites enriched in each
pathway were drawn. The pathways reaching the significance
threshold (impact value >0.05, P<0.05) were selected as the
targets for further analysis. There were 10 pathways in the AF/
Control comparison group. 21 differential metabolites were
enriched in these 10 pathways. These differential metabolites
and the differential pathways they were enriched in are shown
in Supplementary Table S2. There were 10 pathways in the
AFHUA/Control comparison group. 21 differential metabolites
enriched in these 10 pathways. These differential metabolites
and the differential pathways they enriched in are shown in
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(A) Molecular heat map of the differential metabolites in the AF/control group. (B) Molecular heat map of the differential metabolites in the AFHUA/
Control group. (C) Molecular heat map of the differential metabolites in the AFHUA/AF group.

Supplementary Table S3. There were 7 pathways in the AFHUA/
AF comparison group. 12 differential metabolites were enriched
in these 7 pathways. These differential metabolites and the
differential pathways which they were enriched in are shown in
Supplementary Table S4.

3.3 Biomarker screening

ROC curve analysis was used to verify the predictive value of
these differential metabolites in clinical practice. Among the 21
differential metabolites screened out from the AFHUA/Control
comparison group, 19 were tested with P <0.05, as shown in
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Table 2. Among them, L-Threonine had the best detection
efficacy because its sensitivity = 0.816, specificity = 0.873, Youden
index=0.689, AUC=091. To determine whether multiple
metabolites can be used to jointly predict individuals in the
AFHUA and Control groups. Binary logistic regression and
ROC curve analysis were employed to select the four
metabolites with the highest AUC values from the AFHUA/
Control comparison group for the combined predict curve. The
combination of L-Threonine, L-Histidine, L-Phenylalanine and
Pyridoxate was found to have an AUC of 0.955 in differentiating
individuals from AFHUA and Control (Figure 7A), which was
significantly higher than that of any single metabolite. The 12
differential from the AFHUA/AF

metabolites  selected
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FIGURE 4

metabolites in the AFHUA/AF group.

(A) Correlation of differential metabolites in the AF/control group, red indicates positive correlation, blue indicates negative correlation, and the
darker the color, the higher the correlation. (B) Correlation of differential metabolites in the AFHUA/Control group. (C) Correlation of differential

comparison group were verified by ROC curve analysis to be
suitable for differential discrimination between AFHUA and AF
individuals (P<0.05), as shown in Table 3. Four of the 12
metabolites with the highest AUC values were selected for joint
prediction by binary logistic regression and ROC curve. These
ST 18_3; O3, L-Threonine,

four metabolites are: Estrone,

Frontiers in Cardiovascular Medicine

L-Isoleucine, The results showed that the AUC value of the joint
prediction curve for these four metabolites reached 0.808
(Figure 7B). The detection ability was higher than that of any
single metabolite.

In addition, the intersection of 19 metabolites from the
AFHUA/Control comparison group and 12 metabolites from the
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comparison groups.

(A) Bubble plots of the top 20 differential metabolic pathways in the AF/control comparison groups. (B) Bubble plots of the top 20 differential
metabolic pathways in the AFHUA/control comparison groups. Bubble plots of the top 20 differential metabolic pathways in the AFHUA/AF

(B)

resulted
metabolites. The four common metabolites are L-Threonine, DL-

AFHUA/AF  comparison group in four common
Malic acid, L-Valine, and L-Cysteine. Joint prediction curves
using these four metabolites between the AFHUA/Control
comparison group and the AFHUA/AF comparison group
showed good diagnostic efficacy. With AUC=0.923 in the
AFHUA/Control comparison group (Figure 7C) and AUC =0.714
in the AFHUA/AF comparison group (Figure 7D). This indicates
that L-Threonine, DL-Malic acid, L-Cysteine and L-Valine can be
used as common predictive metabolites in both the AFHUA/
Control comparison group and the AFHUA/AF comparison
group. The content relationship of these four metabolites in each
group is as follows: the contents of L-Threonine, DL-Malic acid
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and L-Cysteine in each group: AFHUA > AF, AFHUA > Control,
the contents of L-Valine in each group: Control > AFHUA,
AF > AFHUA, the reason for this result may be due to HUA.
(Figure 8) (Note: The construction of the above ROC curve
models did not adjust for confounding factors.).

3.4 Findings

The levels of L-Threonine, DL-Malic acid, L-Valine, and
L-Cysteine were significantly altered in both the AFHUA/AF
and AFHUA/Control comparison groups. The combined ROC
curve constructed using these four metabolites effectively
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(A) AF/control comparison groups. (B) AFHUA/control comparison groups. (C) AFHUA/AF comparison groups. In the bubble plot, the horizontal axis
represents the Impact value and the vertical axis represents the enrichment path. Point size indicates the number of metabolites corresponding to the
path. The redder the color, the smaller the P value; the bluer the color, the higher the p-value. In the bar chart, the horizontal axis represents the
number of metabolites, the vertical axis represents enrichment pathways, red represents up-regulation, and blue represents down-regulation.

TABLE 2 The ROC analysis between the AFHUA/Control comparison groups.

Compound Sensitivity Specificity Youden index

L-Threonine 0.816 0.873 0.689 0.91 <0.001
L-Histidine 0.724 0.891 0.615 0.847 <0.001
L-Phenylalanine 0.816 0.727 0.543 0.838 <0.001
Pyridoxate 0.618 0.873 0.491 0.805 <0.001
Fumaric acid 0.697 0.855 0.552 0.799 <0.001
Xanthine 0.566 0.909 0.475 0.78 <0.001
Pyridoxal 5’-phosphate 0.579 0.909 0.488 0.759 <0.001
DL-Malic acid 0.553 0.927 0.480 0.743 <0.001
Pyridoxine 5’-phosphate 0.592 0.855 0.447 0.742 <0.001
L-Cysteine 0.763 0.673 0.436 0.74 <0.001
L-Methionine 0.855 0.582 0.437 0.737 <0.001
L-Valine 0.818 0.684 0.502 0.735 <0.001
Caffeine 0.566 0.818 0.384 0.731 <0.001
L-Kynurenine 0.632 0.764 0.396 0.73 <0.001
Glyoxylic acid 0.673 0.671 0.344 0.698 <0.001
Oxaloacetate 0.474 0.927 0.401 0.661 0.002
3-Methylxanthine 0.355 0.982 0.337 0.66 0.002
5-Acetylamino-6-formylamino-3-methyluracil 0.526 0.782 0.308 0.647 0.004
L-Tryptophan 0.803 0.491 0.294 0.646 0.005
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(A) In the AFHUA/control comparison group, the combined ROC prediction curve using L-threonine, L-histidine, L-phenylalanine, and pyridoxate. (B)
In the AFHUA/AF comparison group, the combined ROC prediction curve using Estrone, ST 18_3; O3, L-Threonine, and L-Isoleucine. (C) In the
AFHUA/Control comparison group, the combined ROC prediction curve using L-Threonine, DL-Malic acid, L-Valine, and L-Cysteine. (D) In the
AFHUA/AF comparison group, the combined ROC prediction curve using L-Threonine, DL-Malic acid, L-Valine, and L-Cysteine.

TABLE 3 The ROC analysis between the AFHUA/AF comparison groups.

Compound Sensitivity Specificity Youden index

Estrone 0.553 0.876 0.429 0.735 <0.001
ST 18_3; 03 0.566 0.886 0.452 0.726 <0.001
L-Threonine 0.592 0.752 0.344 0.687 <0.001
L-Isoleucine 0.571 0.816 0.387 0.673 <0.001
L-Aspartic acid 0.447 0.829 0276 0.653 <0.001
Citrulline 0.566 0.762 0.328 0.652 <0.001
L-Valine 0.562 0.724 0.286 0.639 0.001
L-Arginine 0.526 0.752 0.278 0.628 0.003
Carbon dioxide 0.514 0.763 0277 0.611 0.011
DL-Malic acid 0.289 0.924 0213 0.591 0.038
L-Cysteine 0.368 0.829 0.197 0.589 0.041
Progesterone 0.343 0.842 0.185 0.586 0.048

distinguished samples from AFHUA and AF, with an AUC of
0.714, sensitivity of 73.7%, specificity of 62.9%, and Youden’s
index of 0.366. In the AFHUA/Control comparison group, the
AUC was 0.923, sensitivity was 75.0%, specificity was 96.4%, and
Youden’s index was 0.714.

4 Discussion

In this study, we compared serum metabolites in AF/Control
comparison group, AFHUA/Control comparison group, and
AFHUA/AF comparison group. (1) Results showed that 186
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FIGURE 8
(A) The barplot of L-threonine levels in the AFHUA and control groups. (B) The barplot of L-Threonine levels in the AFHUA and AF groups. (C) The
barplot of DL-Malic acid levels in the AFHUA and Control groups. (D) The barplot of DL-Malic acid levels in the AFHUA and AF groups. (E) The barplot
of L-Cysteine levels in the AFHUA and Control groups. (F) The barplot of L-Cysteine levels in the AFHUA and AF groups. (G) The barplot of L-Valine
levels in the AFHUA and Control groups. (H) The barplot of L-Valine levels in the AFHUA and AF groups. The Y-axis represents the concentration of
the substance, while the X-axis indicates different groups.

metabolites were significantly up-regulated or down-regulated in
the AF/Control comparison group. 203 metabolites were
significantly up-regulated or down-regulated in the AFHUA/
Control comparison group. 132 metabolites were significantly
up-regulated or down-regulated in the AFHUA/AF comparison
group. (2) Differential metabolites were screened from the
AFHUA/Control comparison group, AFHUA/AF comparison
group, and AF/Control comparison group on the condition that
P<0.05, VIP>1 and enrichment in significant metabolic
pathways. As a result, 21 differential metabolites were screened
from the AFHUA/ Control comparison group. 12 differential
from the AFHUA/AF comparison group. 21
differential metabolites from the AF/Control comparison group.

metabolites

(3) ROC curve analysis was performed on the differential
metabolites selected from the AFHUA/Control comparison
group and the AFHUA/AF comparison group. The results
showed that 19 differential metabolites in the AFHUA/Control
comparison group had Predictive value, and L-Threonine had
the best Predictive efficacy. Among the AFHUA/AF comparison
group, have The four

12 metabolites predictive  value.
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metabolites with the highest AUC values in the AFHUA/Control
comparison group and the AFHUA/AF comparison group were
selected for combined prediction in both comparison groups. It
was found that the efficacy of combined prediction in both
comparison groups was better than that of any single metabolite
in each group. (4) The intersection of 19 metabolites in the
AFHUA/Control comparison group and 12 metabolites in the
AFHUA/AF comparison group resulted in L-Threonine, DL-
Malic acid, L-Cysteine, and L-Valine. Combined prediction of
these four metabolites in the AFHUA/Control and AFHUA/AF
showed good predictive in

comparison  groups efficacy

both groups.

4.1 The role of DL-Malic acid in atrial
fibrillation

DL-Malic acid, a naturally occurring acid with the chemical
formula C4H605. It can be produced by many species and
participates in the tricarboxylic acid cycle (TCA). Baseline
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fasting plasma levels of 2-hydroxyglutaric acid, fumaric acid and
malic acid in the tricarboxylic acid cycle were found to be
significantly associated with a higher risk of cardiovascular
disease (23). Other studies found that intermediate metabolites
of TCA such as malic acid was significantly associated with a
higher incidence of AF (24). This may be because fluctuations
in metabolic function can lead to the accumulation of
metabolites in the TCA, including malic acid (25). Metabolic
changes in the heart may increase myocardial oxidative stress
(26), which
remodeling, and myocardial function and leads to atrial
fibrillation (27). Other related studies have also found that
dysregulation of the TCA cycle is associated with diseases

adversely affects atrial structure, electrical

related to oxidative stress, such as cardiovascular disease (28).
Earlier evidence pointed out that uric acid (UA) enters the cell
through UA transporters, and intracellular UA increases the
activity of xanthine oxidase (XO) and NADPH oxidase (NOX)
(29). As a result, these activities promote the formation of
superoxide. The NOX produces reactive oxygen species (ROS)
by transferring electrons from NADPH to molecular oxygen
(30). XO is deemed to be a key enzyme in UA metabolism,
which is also a critical source of reactive oxygen species (ROS),
free radicals responsible for oxidative damage in cardiovascular
diseases (31, 32). A study that involved a histochemical staining
technique based on the reduction of nitro blue tetrazolium to
formazan by superoxide radical also revealed the presence of XO
activity in human hearts (33). Autonomic nervous system
activation can induce significant and heterogeneous changes of
atrial electrophysiology and induce atrial tachyarrhythmias,
including atrial tachycardia and AF (34). Recently, some
researchers showed that a continuous 4 weeks inhibition of XO
in infarcted rats down-regulated sympathetic innervation (35).
This suggests that UA involves in sympathetic nerve activity via
through
dependent pathway, which eventually contributes to arrhythmia

sympathetic innervation probably a superoxide-
(30). The elevation of uric acid levels can increase the risk of
myocardial oxidative damage by activating the renin-angiotensin
system (30). An experimental test by Corry et al. found that the
mRNA and intracellular protein of angiotensin II were upgraded
after 48 h of UA stimulation of vascular smooth muscle cells
(36). Landmesser et al. also have proved that angiotensin II
induces the increased activity of NOX and XO, and eventually
causes oxidative damage (37).

In addition, malic acid is an important substance in the
glucagon signaling pathway. Malic acid promotes the transport
of intracellular glucose to the extracellular space through
glycolysis and gluconeogenesis, which raise blood glucose levels.
Some studies have shown that the level of oxidative stress and
atrial fibrosis were markedly increased in the subgroup of mice
with wide glycemic variability and were strongly associated with
enhanced AF inducibility in electrophysiological evaluation (38).
Elevated extracellular blood glucose also promotes the formation
of advanced glycation end products (AGEs). AGES are produced
by the non-enzymatic condensation of the carbonyl group of a
reducing sugar with the free amine group of a nucleic acid,
protein or lipid, and then further rearrangement to produce a
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stable and irreversible end product (39). A large amount of
evidence suggests that oxidative stress and inflammation are the
central mediators of AF in the heart under metabolic stress
(40-42). AGES can promote oxidative stress and inflammatory
responses by altering its structure and function through binding
to cell surface receptors or cross-linking to body proteins,
thereby exerting pathological effects (43). KATO T reported a
significant increase of atrial fibrosis and AGE-E2 expression in
diabetic rats that was induced by streptozotocin, and that
fibrosis in the model was partially reversed after treatment with
AGES inhibitors. That suggested a causal relationship between
AGE levels, atrial fibrosis and AF (44). Additional studies have
shown that insulin deficiency and glycemic variability impair
Phosphatidylinositol 3-kinase (PI3K) signaling pathway and
bring about ionic and metabolic dysregulations capable of
triggering atrial arrhythmias (45).

4.2 The role of L-Threonine and L-Valine in
the development of atrial fibrillation

L-Threonine is one of the four configurations of threonine and
it is the main biologically active form of threonine in the human
body. There are few reports on the relationship between threonine
and atrial fibrillation. Threonine undergoes three different
(46):
Threonine in the liver is catalyzed by threonine dehydrase to

metabolic  pathways Threonine dehydrase pathway:
form o -ketobutyric acid and ammonia, and then o -ketobutyric
acid is decarboxylated to form propionyl-coA, which enters the
tricarboxylic acid cycle (TCA cycle). Ammonia is expelled from
the body through the urea cycle. Threonine dehydrogenase
pathway: Threonine is converted into 2-amino-3-ketobutyric
This

intermediate is further catalyzed by 2-amino-3-ketobutyric acid

acid under the action of threonine dehydrogenase.

coenzyme A ligase to produce acetyl-CoA and glycine. Acetyl-
coA enters the tricarboxylic acid cycle to provide energy to the
cell, while glycine participates in the one-carbon metabolism.
Threonine aldoxylase pathway: Threonine is cleaved to produce
glycine and acetaldehyde under the catalysis of threonine
aldoxylase. Acetaldehyde is further oxidized to acetic acid and
eventually to acetyl-coA. Acetyl-coA enters the tricarboxylic acid
cycle. Studies have found (47) significant changes in L-threonine
levels in the plasma of patients with atrial fibrillation compared
to the Control group, and these changes have diagnostic value.
Enrichment analysis has found a significant association between
atrial fibrillation and the degradation pathways of threonine and
acid) (P<0.001, FDR
q<0.001). This suggests that threonine metabolism may play a

2-oxybutyric acid (a-ketobutyric
significant role in the pathogenesis of atrial fibrillation. In
summary, it can be found that the metabolic pathways of
threonine in organisms are closely related to the tricarboxylic
acid cycle. Therefor, threonine may affect the occurrence of
atrial fibrillation by participating in the tricarboxylic acid cycle
through its metabolites and influencing the energy metabolism

of cardiomyocytes.
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In this study, the content of L-Valine in the Control group and
the AF group was higher than that in the AFHUA group. The
ROC curve showed that the content of L-Valine was negatively
correlated with the occurrence of atrial fibrillation. Katarzyna
Mitrega’s study also showed that L-Valine had a significant
antiarrhythmic effect (48). L-Valine, as a branched-chain amino
acid, is metabolized mainly in peripheral tissues such as skeletal
and cardiac muscles and can protect skeletal muscles from
damage after intense exercise. In addition, studies have shown
that branched-chain amino acids in isolated rat hearts have
enhanced post-ischemic pressure recovery, improved post-
ischemic myocardial contraction and relaxation functions, and
(49). The
ischemic protective effect on the myocardium may be the cause
of L-Valine’s anti-arrhythmic effect.

delayed ischemic myocardial contracture time

4.3 Clinical implications

The differential metabolite changes identified in this study
reveal the metabolic disturbances in the development of AF,
providing new insights for the clinical management and
treatment of AF. On one hand, the abnormal changes in these
metabolite levels can be used to infer the pathogenesis of AF,
offering new theoretical underpinnings for its development and
progression, and thus new strategies for the prevention and
treatment of AF. On the other hand, for patients with abnormal
metabolite levels, targeted metabolic regulation therapies could
be considered in conjunction with traditional anticoagulant and
antiarrhythmic drugs, potentially achieving a more effective
comprehensive treatment plan.

4.4 Inference

Hyperuricemia, as a metabolic disorder, is closely associated
with the occurrence of atrial fibrillation. The specific mechanism
involves energy metabolism including the tricarboxylic acid
cycle, glucose metabolism, amino acid metabolism, etc. By
causing a series of metabolic changes, it leads to oxidative stress
and inflammatory responses in the body, which in turn causes
structural and electrical remodeling of cardiac cells to induce
atrial fibrillation. In this study, metabolites such as L-Threonine,
DL-Malic acid, and L-Valine were found to be early warning
indicators of AF in patients with HUA.

4.5 Limitations

As a metabolomics study, the present study may have certain
statistical biases due to the limited number of participants.
However, as an initial exploratory study, it has preliminarily
validated some metabolites with potential predictive value.
Subsequently, we will conduct a larger - scale, multi - omics
study to verify the findings of this exploration.
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5 Conclusion

In this study, Metabolomics analysis revealed that the levels of
metabolites such as L-threonine, DL-malic acid, and L-valine in
individuals with AFHUA showed significant changes compared
to the control group. The significant alterations in these
metabolites not only provide new biomarkers for the early
warning of AF but also offer new insights for the prevention
and treatment of AF. The combined ROC curve analysis further
validated the early warning potential of these metabolites,
demonstrating good efficacy. In summary, this study not only
elucidates the metabolic connections between hyperuricemia and
AF but also provides new tools and methods for the early
detection and clinical management of AF. Future research
should further validate the application value of these metabolites
in larger populations and explore their specific roles in the
development of AF, with the aim of developing more effective
strategies for the prevention and treatment of AF.
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