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Prognostic value of the
atherogenic index of plasma in
patients with acute coronary
syndrome without standard
modifiable risk factors: a
machine learning-based
cohort study

Zheng Chen ®, Xiaoli Liu, Yan Sun, Dai Zhang, Yujing Cheng*
and Yujie Zhou™

Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of
Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical
Center for Coronary Heart Disease, Capital Medical University, Beijing, China

Background: Patients without any standard modifiable cardiovascular risk factors
(SMuRF-less) who develop acute coronary syndrome (ACS), tend to have poor
outcomes. However, the prognostic value of atherogenic index of plasma (AIP)
in these patients is unclear. Therefore, we investigated the association between
AIP and adverse outcomes in SMuURF-less patients with ACS.

Methods: This study retrospectively enrolled 722 SMuRF-less patients with ACS
receiving percutaneous coronary intervention (PCI) at Beijing Anzhen Hospital
from March 2017 to March 2018. Three patient-groups were formed using
AIP tertiles. The primary outcome, major adverse cardiovascular and
cerebrovascular events (MACCE), was a composite of all-cause mortality,
non-fatal myocardial infarction (MI), unplanned revascularization, and non-
fatal ischemic stroke. Association between AIP levels and MACCE risk was
examined using restricted cubic spline (RCS) analysis. Prognostic value of AIP
levels for MACCE was assessed using multivariable Cox regression models
and machine learning approaches.

Results: During follow-up of the 722 patients (median age, 60 years
linterquartile range, 53-67]; female, 29.8%; median follow-up duration, 59
months), 168 (23.3%) developed MACCE. The RCS results showed linear
association of progressively increasing MACCE risk with increasing AlP levels.
In multivariable Cox regression analysis, significantly higher MACCE risk
occurred with the highest AIP tertile than with the lowest (hazard ratio [HR]
2.03, 95% confidence interval [Cl]: 1.34-3.08; P<0.001). Elevated AIP level
was associated with higher risks of all-cause death (HR: 3.49, 95% CI: 1.09-
11.23; P=0.036); non-fatal Ml (HR: 3.02, 95% Cl: 1.08-8.48; P =0.035); and
unplanned revascularization (HR: 2.18, 95% Cl: 1.34-3.52; P<0.001). As a
continuous variable, higher AIP levels were significantly associated with
increased risks of MACCE (HR: 2.95, 95% CI: 1.74-4.98; P<0.001), all-cause
mortality (HR: 6.80, 95% CI: 1.85-24.96; P=0.003), non-fatal myocardial
infarction (HR: 358, 95% Cl. 1.08-11.86; P=0.037), and unplanned
revascularization (HR: 2.84, 95% Cl: 1.55-5.19; P<0.001). Machine-learning
models incorporating AIP levels improved outcome prediction. At 48 months,
the gradient boosting machine model achieved the highest AUC (0.796; 95%
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Cl: 0.703-0.889), while complementary assessments showed that the random
survival forest model provided the greatest net clinical benefit and demonstrated

excellent calibration.

Conclusion: Among SMuRF-less patients with ACS undergoing PCI, AIP level was
identified as an independent predictor of clinical prognosis.

KEYWORDS

atherogenic index of plasma, standard modifiable cardiovascular risk factors, acute coronary
syndrome, major adverse cardiovascular and cerebrovascular events, prognosis
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GRAPHICAL ABSTRACT

1 Introduction

Coronary heart disease, the most prevalent cardiovascular
illness worldwide, continues to be a major contributor to
mortality, disability, and healthcare burden (1). Standard
modifiable cardiovascular risk factor (SMuRF) less patients
refers to those without conventional modifiable risk factors,
such as hypertension, diabetes, hyperlipidemia, or smoking (2).
However, in the absence of these standard risk factors,
individuals can still develop coronary heart disease (3). Evidence

from large registry studies, including SWEDEHEART and CCC-

Abbreviations

ACS, acute coronary syndrome; ACEIL angiotensin-converting enzyme
inhibitors; AIP, atherogenic index of plasma; ALT, alanine transaminase;
ARBs, angiotensin II receptor blockers; AST, aspartate transaminase; AUC,
area under the curve; BMI, body mass index; BNP, B-type natriuretic
peptide; CABG, coronary artery bypass grafting; CCS, chronic coronary
syndrome; CI, confidence interval; CTO, chronic total occlusion; DBP,
diastolic blood pressure; DCA, decision curve analysis; FBG, fasting blood
glucose; GBM, gradient boosting machine; HbAlc, hemoglobin Alc; HDL-C,
high-density lipoprotein cholesterol; HR, hazard ratio; LAD, left anterior
descending artery; LCX, left circumflex artery; LDL-C, low-density
lipoprotein cholesterol; LVEF, left ventricular ejection fraction; MACCE,
major adverse cardiovascular and cerebrovascular events; MI, myocardial
infarction; NSTEMI, non-ST-segment elevation myocardial infarction; PCI,
percutaneous coronary intervention; plsRcox, Partial Least Squares Regression
for Cox models; RCS, restricted cubic spline; RFE, recursive feature
elimination; ROC, receiver operating characteristic; RSF, random survival
forest; SBP, systolic blood pressure; SMuRFs, standard modifiable
cardiovascular risk factors; SuperPC, supervised principal components; TC,
total cholesterol; TG, triglyceride; UA, unstable angina; Conflict of Interest.
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ACS, suggests that patients with acute coronary syndrome (ACS)
who lack standard modifiable risk factors (SMuRF-less) tend to
experience worse prognoses compared with those carrying at
least one SMuRF (4, 5). This highlights an urgent need for
prognostic markers to identify high-risk SMuRF-less patients
early, guide

their outcomes.

timely intervention, and ultimately improve

Growing evidence indicates that, beyond traditional risk
the
development of coronary heart disease. Insulin resistance (IR)

factors, other mechanisms significantly influence
and inflammatory states are among these important contributors
(6-8). The atherogenic index of plasma (AIP) level, calculated as
logio(triglyceride/high density lipoprotein cholesterol [HDL-C]),
serves as an integrated index based on the serum levels of
triglyceride and HDL-C, and it correlates with both IR and
10).

demonstrated that AIP level has prognostic value in various

systemic  inflammation (9, Previous studies have

cardiovascular conditions. AIP level could predict worse
outcomes in chronic coronary syndrome (CCS) and acute
decompensated heart failure, and it is associated with the
incidence of hypertension, carotid atherosclerosis, and ischemic
stroke (11-16). A systematic review and meta-analysis including
20,833 patients with coronary artery disease also demonstrated
significant association of higher AIP levels with increased risks
of major adverse cardiovascular events, as well as cardiovascular
(17).
However, to date, no study has specifically evaluated AIP level’s
in SMuRF-less with ACS.

death, myocardial infarction, and revascularization

prognostic  relevance patients
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Therefore, we aimed to investigate the association between AIP
level and adverse outcomes in SMuRF-less patients with ACS
intervention (PCI), to

undergoing percutaneous coronary

facilitate early risk identification and improve clinical prognosis.

2 Methods
2.1 Study population

A total of 9,768 patients with ACS undergoing PCI were
retrospectively enrolled at Beijing Anzhen Hospital from March
2017 to March 2018. ACS encompassed ST-segment elevation
myocardial (STEMI), non-ST-segment
myocardial infarction (NSTEMI), and unstable angina (UA).
ACS diagnostic criteria complied with the American College

infarction elevation

of Cardiology/American Heart Association guidelines (18).
Inclusion criteria for this study were: (1) diagnosed with ACS;
(2) underwent PCI; and (3) SMuRF-less. Patients who (1) lacked
follow-up data, (2) had missing data on triglyceride or HDL-C,
and (3) had one or more SMuRFs, were excluded. The
definitions of SMuRFs (hypertension, diabetes, hyperlipidemia,
and current smoking) are provided in Section 2.2. Of the
screened patients, 9,046 were excluded: 385 due to the lack of

10.3389/fcvm.2025.1681170

follow-up data, 355 due to missing data on triglyceride or HDL-
C concentrations, and 8,306 due to having one or more
SMuRFs. Finally, 722 SMuRF-less ACS patients were included in
the analysis. The flow diagram of patient inclusion is presented
in Figure 1. Ethical approval was granted by the Institutional
Review Board of Beijing Anzhen Hospital (No. 2025159X).

2.2 Definition of SMuRF

SMuRFs in this study included hypertension, diabetes,
hyperlipidemia, and current smoking (19). They were defined
as follows:

of
antihypertensive agents prior to admission, or a new

o Hypertension: history of hypertension, or use
diagnosis of hypertension during the hospitalization.

o Diabetes: a previous diagnosis of diabetes, use of glucose-
lowering medications prior to hospitalization, or a new
diagnosis of diabetes during the index hospitalization.

o Hyperlipidemia: known history of hyperlipidemia, use of lipid-
lowering therapy before admission, or baseline low-density
lipoprotein cholesterol (LDL-C) level > 3.5 mmol/L or total

cholesterol (TC) >5.5 mmol/L.

(
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|
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o Current smoking: defined as ongoing smoking within 30 days
before admission.

2.3 Data collection

The following were collected: demographic data (age, sex,
height, and weight); vital signs (systolic [SBP] and diastolic
blood pressure [DBP]); heart rate; ACS classification (UA,
NSTEMI, or STEMI); past medical history (of prior PCI,
coronary artery bypass grafting [CABG], carotid artery stenosis,
and  peripheral disease);
(leukocyte, hemoglobin, platelet albumin, alanine
transaminase [ALT], aspartate transaminase [AST], TC, LDL-C,
HDL-C, triglyceride, creatinine, sodium, potassium, fasting
blood glucose [FBG], hemoglobin Alc [HbAlc], and B-type
natriuretic peptide [BNP]); left ventricular ejection fraction
(LVEF);
angiotensin-converting enzyme inhibitors [ACEIs], angiotensin
[ARBs], and beta blockers);
angiographic results (triple vessel disease, left main, ostial
bifurcation lesions, chronic total occlusion [CTO],
diffuse and PCI
outcomes (target vessel numbers, target vessel distribution,

arterial laboratory  parameters

count,

medications  (aspirin,  clopidogrel, ticagrelor,

II receptor blockers statins,
disease,

calcification, lesion, in-stent restenosis);
number of stents, stent diameter, and stent length).
Body mass index (BMI) was calculated as weight in kilograms
divided by the square of height in meters. Triglyceride levels
were measured using the glycerol-3-phosphate oxidase-
peroxidase enzymatic method and HDL-C by enzymatic
colorimetry. AIP level was calculated from the first available
triglyceride and HDL-C values at admission using the formula:

AIP = log;(triglyceride/HDL-C) (20).

2.4 Patient grouping according to AIP
tertiles and the study endpoints

Based on the AIP tertiles: tertile 1 (AIP <0.01); tertile 2
(0.01 <AIP<0.25); and tertile 3 (AIP>0.25), the patients
were categorized into three groups. The primary endpoint was
major adverse cardiovascular or cerebrovascular events
(MACCE), and secondary endpoints were the individual
MACCE components. MACCE was defined as the composite of
infarction (MI),

unplanned revascularization, and non-fatal stroke (21). Non-

all-cause mortality, non-fatal myocardial
fatal MI was diagnosed using the Fourth Universal Definition
of MI (22), while non-fatal stroke was based on imaging
(computed tomography or magnetic resonance imaging)
combined with evidence of neurological deficits (23). Unplanned
revascularization was defined as rehospitalization for recurrent
angina followed by unplanned PCI or CABG. Follow-up was by
trained personnel at 1, 6, 12, 36, and 60 months post-discharge
during outpatient visits or by telephone interviews, during
which  the

were documented.

occurrence and timing of endpoint events

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1681170

2.5 Statistical analysis

Missing data on all variables, which were <10%, were imputed
using the k-nearest neighbor method (k =5, Euclidean distance)
Min-Max
imputation was performed within the training set, and the fitted

after scaling. To prevent information leakage,
model was subsequently applied to the testing set. The
proportion of missing data for each variable is provided in
Supplementary Table S1. As the missing rate was <10% on all
variables, the potential impact of imputation on the results is
expected to be minimal. Baseline variables were summarized
according to their distribution. Normally distributed continuous
data are presented as mean + standard deviation and compared
across groups using one-way analysis of variance. Non-normally
distributed variables are expressed as median (interquartile
range) and analyzed using the Kruskal-Wallis test. Categorical
variables are described using counts and percentages, with
intergroup differences assessed by the chi-square test. Kaplan—
Meier survival analysis and the log-rank test were used to assess
differences in event-free survival among groups. Restricted cubic
spline (RCS) curves with four knots placed at the 5th, 35th,
65th, and 95th percentiles of the AIP distribution were used to
assess the dose-response association between AIP level and
clinical outcomes. Cox proportional hazards regression was
used to estimate hazard ratio (HR) and 95% confidence interval
(CI) of the risk of the endpoints. The selection of covariates in
the final multivariable model was based on both clinical
relevance and univariate associations with the outcomes.
Specifically, prior studies have demonstrated that age, sex, BMI,
albumin, ACEI/ARB use, f-blocker use, CTO, and history of
CABG are significantly associated with prognosis in ACS
patients; therefore, these were prespecified as confounders
(18, 24-29). In addition, creatinine, FBG, and leukocyte count
showed significant univariate associations with the outcomes
and were thus included. Candidate variables with a P value
<0.05 in univariate analyses were considered for inclusion in the
multivariable model. In Model 1, no adjustments were made.
Model 2 was adjusted for age, sex, and BMI. Model 3 was
further adjusted for history of CABG; leukocyte count; albumin;
creatinine; FBG; use of ACEI/ARBs and beta blockers; and
presence of CTO lesions.

Patients were also stratified into subgroups by age, sex, BMI,
ACS classification, LDL-C level, and LVEEF, in subgroup analyses,
to determine whether these variables influenced the association
between AIP and MACCE. For machine learning analysis, a
correlation heatmap was first generated to detect multicollinearity.
For pairs of variables with an absolute correlation >0.8, one of
the correlated variables was excluded to avoid collinearity. The
dataset was randomly split into training (70%, n=>506) and
testing (30%, n=216) cohorts. Three feature selection methods:
Boruta algorithm, recursive feature elimination (RFE), and
XGBoost importance ranking, were used to identify important
variables. Six algorithms—CoxBoost, random survival forest
(RSF), gradient boosting machine (GBM), XGBoost, supervised
principal components (SuperPC),
regression for Cox models (plsRcox)—were used to construct

and partial least squares
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predictive models. The primary criterion for model performance
comparison was the area under the curve (AUC) from the time-
dependent receiver operating characteristic (ROC) analysis, given
its widespread use and interpretability in clinical prediction
models. Calibration plots and decision curve analysis (DCA) were
additionally applied as complementary assessments to provide a
more comprehensive evaluation of model performance. Two-
tailed P<0.05 was considered significant. Data analysis was
performed using R (version 4.5.0, R Foundation for Statistical
Computing, Vienna, Austria).

3 Results

3.1 Clinical and procedural characteristics
of the patients

A total of 722 SMuRF-less patients with ACS were included in
the analysis, in a median follow-up of 59 months. Tertile-based
grouping was performed according to AIP values. Table 1
summarizes the baseline clinical and procedural characteristics.
The patients median age was 60 years (interquartile range: 53-
67), and 215 (29.8%) were female. Compared with the lowest
tertile, patients in the highest AIP tertile had higher BMI; heart
rate; leukocyte count; levels of ALT, TC, triglyceride, and
creatinine; FBG; use of ACEI/ARBs; prevalence of CTO lesions;
and proportion of target vessel right coronary artery (P <0.05 for
all comparisons). Meanwhile, they showed lower age and HDL-C
levels (P<0.05 for all comparisons). No significant differences
were observed in the remaining variables among the groups.

3.2 Association between AIP level and
adverse outcomes

During the follow-up, 168 (23.3%) patients experienced
MACCE (Supplementary Table S2). Compared to the lower
tertiles, patients in the highest AIP tertile had significantly
higher incidence rates of MACCE (14.9% vs. 22.9% vs. 32.0%,
P<0.001); mortality (1.7% vs. 3.3% vs. 6.2%,
P=0.028); non-fatal myocardial infarction (2.1% vs. 3.8% vs.
7.1%, P=0.023); and unplanned revascularization (10.8% vs.
17.0% vs. 24.9%, P<0.001) whereas the incidence of non-fatal
stroke did not differ significantly among groups (2.5% vs. 3.3%
vs. 4.6%, P =0.456).

Event-free survival for MACCE and its components was

all-cause

significantly lower in higher AIP tertiles, as demonstrated by

Kaplan-Meier  curves (log-rank  P<0.05 for  all
comparisons; Figure 2).

RCS analyses (Figure 3) visually confirmed the relationships
between AIP and each outcome. AIP was linearly associated
with the risk of each outcome (nonlinearity tests P> 0.05), and
an upward trend in AIP was associated with a corresponding
rise in the risks of MACCE and its individual components
(overall P<0.05). The solid blue lines in Figure 3 represent the

HRs, while the shaded areas indicate the 95% Cls.
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3.3 Cox regression analysis

Cox regression models confirmed the associations between
AIP and adverse outcomes (Table 2). In unadjusted analysis,
compared to the reference group (tertile 1), tertile groups 2 and
3 HRs (95% ClIs) for MACCE were 1.57 (1.03-2.38; P=0.036)
and 2.26 (1.52-3.36; P <0.001), respectively. For all-cause death,
tertile groups 2 and 3 HRs were 1.93 (0.58-6.40; P =0.284) and
3.68 (1.22-11.08; P =0.021), respectively. For non-fatal MI, HRs
were 1.73 (0.58-5.17; P=0.324) and 3.42 (1.26-9.26; P =0.005),
respectively. For unplanned revascularization, these were 1.70
(1.04-2.76; P=0.034) and 247 (1.56-3.92; P<0.001),
respectively. Non-fatal stroke showed no significant differences
between groups.

After adjusting for age, sex, and BMI (Model 2), similar results
were observed: compared to the tertile 1 group, tertile 2 and 3
groups’ HRs were 1.57 (1.03-2.39; P=0.036) and 2.41 (1.61-
3.60; P<0.001) for MACCE; 1.99 (0.60-6.62; P=0.261) and 5.20
(1.69-16.07; P=0.004), for all-cause mortality; 1.74 (0.58-5.20;
P=0.320) and 3.27 (1.20-8.93; P=0.021) for non-fatal MI; and
1.70 (1.04-2.76; P=0.033) and 2.55 (1.60-4.07; P<0.001) for
unplanned revascularization, respectively. Non-fatal stroke
remained non-significant across models.

Further multivariate adjustment in Model 3 (including history
of CABG, leukocyte count, albumin level, creatinine level, FBG,
ACEI/ARBs and beta blockers use, and CTO lesions) yielded
consistent results: compared to the tertile 1 group, tertile 2 and
3 groups’ adjusted HRs were 1.56 (1.02-2.39; P=0.041) and
2.03 (1.34-3.08; P<0.001) for MACCE; 1.76 (0.52-5.94;
P=0.360) and 3.49 (1.09-11.23; P=0.036) for all-cause
mortality; 1.69 (0.56-5.11; P=0.350) and 3.02 (1.08-8.48;
P=0.035) for non-fatal MI; and 1.68 (1.03-2.76; P=0.038) and
2.18 (1.34-3.52; P<0.001) for unplanned revascularization,
respectively. Again, non-fatal stroke did not differ significantly
between groups in any model.

When AIP levels were analyzed as a continuous variable, we
observed that each unit increase in AIP level was associated with
an approximately 2.95-fold higher risk of MACCE (1.74-4.98;
P <0.001), a 6.80-fold higher risk of all-cause mortality (1.85-
24.96; P=0.003), a 3.58-fold higher risk of non-fatal myocardial
infarction (1.08-11.86; P=0.037), and a 2.84-fold higher risk of
(1.55-5.19; P<0.001). The
association with non-fatal stroke showed a similar trend but did
not reach statistical significance (0.97-15.62; P =0.055).

unplanned  revascularization

3.4 Subgroup analysis results

Patients were stratified by age, sex, BMI, ACS classification,
LDL-C level, and LVEF for the subgroup analyses (Figure 4).
The results showed that in the UA and NSTEMI subgroups, AIP
was significantly associated with MACCE (both P <0.05),
whereas in the STEMI subgroup the association was not
significant (P =0.206). Across subgroups stratified by age, sex,

BMI, LDL-C, and LVEF, elevated AIP was consistently
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TABLE 1 Baseline clinical and procedural characteristics by AIP tertiles.

10.3389/fcvm.2025.1681170

Variables Grouped by AIP tertiles
Overall (N =722) Tertile 1 (n = 241) Tertile 2 (n = 240) Tertile 3 (n = 241) P-value
Age, years 60 (53, 67) 62 (55, 68) 61.5 (54, 68) 58 (51, 65) 0.002
Female, n (%) 215 (29.8) 69 (28.6) 73 (30.4) 73 (30.3) 0.892
BMI, kg/m2 25.5 (23.5, 27.6) 24.5 (22.6, 26.8) 25.5 (23.5, 27.6) 26.3 (24.3, 28.3) <0.001
SBP, mmHg 124 (115, 131) 125 (115, 132) 124 (115, 130) 123 (115, 131) 0.454
DBP, mmHg 75 (69, 80) 75 (70, 80) 75 (68, 80) 75 (69, 81) 0.789
Heart rate, beat/min 70 (65, 78) 70 (65, 76) 70 (66, 76) 72 (66, 79) 0.029
ACS classification, n (%) 0.374
UA 546 (75.6) 190 (78.8) 184 (76.7) 172 (71.4)
NSTEMI 90 (12.5) 26 (10.8) 27 (11.3) 37 (15.4)
STEMI 86 (11.9) 25 (10.4) 29 (12.1) 32 (13.3)
Histories, n (%)
Prior PCI 194 (26.9) 66 (27.4) 61 (25.4) 67 (27.8) 0.820
Prior CABG 13 (1.8) 3(1.2) 4 (1.7) 6 (2.5) 0.579
Carotid artery stenosis 32 (4.4) 13 (5.4) 10 (4.2) 9 (3.7) 0.656
Peripheral artery disease 7 (1) 1 (0.4) 2 (0.8) 4 (1.7) 0.309
Laboratory parameters 0.365
Leukocyte, x10%/L 6.7 (5.66, 8.02) 6.33 (5.23, 7.44) 6.71 (5.70, 8.10) 7.04 (5.90, 8.49) <0.001
Hemoglobin, g/L 139 (126, 150) 137 (126, 147) 140 (127, 151) 139 (126, 148) 0.400
Platelets, x10°/L 221 (186, 256) 217 (183, 251) 220 (187, 256) 223 (186, 267) 0.371
Albumin, g/L 43.0+3.4 433+3.3 428+34 42.8+3.7 0.219
ALT, U/L 23 (16, 32) 20 (15, 29) 25 (18, 32) 24 (17, 34) <0.001
AST, U/L 22 (19, 28) 22 (18, 27) 23 (19, 28) 22 (18, 27) 0.090
TC, mmol/L 3.94 (3.47, 4.41) 3.74 (3.29, 4.20) 3.74 (3.32, 4.25) 4.31 (3.89, 4.68) <0.001
LDL-C, mmol/L 2.04 (1.7, 2.46) 2.03 (1.70, 2.50) 2.01 (1.71, 2.43) 2.06 (1.69, 2.44) 0.9682
HDL-C, mmol/L 1.06 (0.91, 1.22) 1.23 (1.08, 1.43) 1.02 (0.90, 1.15) 0.95 (0.83, 1.07) <0.001
TG, mmol/L 1.38 (0.96, 2.12) 0.88 (0.73, 1.02) 1.38 (1.19, 1.63) 2.42 (2.08, 2.96) <0.001
Creatinine, pmol/L 71 (61.02, 80.5) 68.9 (59.4, 78.7) 69.7 (60.5, 79.0) 74.0 (64.8, 83.6) 0.001
Na, mmol/L 139.3 (137.8, 141) 139.3 (137.6, 141.2) 139.6 (138.1, 141.0) 139.2 (137.9, 140.9) 0.670
K, mmol/L 4 (3.84, 4.23) 4 (3.85, 4.23) 4 (3.86, 4.23) 3.99 (3.82, 4.20) 0.526
FBG, mmol/L 5.39 (5.01, 5.92) 5.38 (5.01, 5.96) 531 (4.95, 5.76) 5.49 (5.10, 6.00) 0.030
HbAIC, % 5.8 (5.5, 6.1) 5.8 (5.5, 6) 5.8 (5.6, 6.1) 5.7 (5.5, 6) 0.216
BNP, pg/ml 47.5 (20, 94) 42.0 (19.0, 90.0) 52.0 (21.0, 101.5) 47.0 (21.0, 86.0) 0.303
LVEEF, % 64 (60, 66) 64 (60, 66) 63 (59, 66) 63 (60, 66) 0.738
Medications, n (%)
Aspirin 709 (98.2) 237 (98.3) 234 (97.5) 238 (98.8) 0.574
Clopidogrel 599 (83) 209 (86.7) 194 (80.8) 196 (81.3) 0.162
Ticagrelor 117 (16.2) 30 (12.4) 43 (17.9) 44 (18.3) 0.152
Statins 653 (90.4) 225 (93.4) 215 (89.6) 213 (88.4) 0.152
ACEI/ARBs 82 (11.4) 21 (8.7) 19 (7.9) 42 (17.4) 0.001
Beta blockers 428 (59.3) 135 (56.0) 136 (56.7) 157 (65.1) 0.075
Angiographic results, n (%)
Triple vessel disease 152 (21.1) 52 (21.6) 52 (21.7) 48 (19.9) 0.869
Left main 76 (10.5) 27 (11.2) 25 (10.4) 24 (10.0) 0.904
Ostial disease 107 (14.8) 31 (12.9) 37 (15.4) 39 (16.2) 0.562
bifurcation lesions 86 (11.9) 31 (12.9) 34 (14.2) 21 (8.7) 0.156
CTO 153 (21.2) 40 (16.6) 51 (21.3) 62 (25.7) 0.049
Calcification 103 (14.3) 41 (17.0) 31 (12.9) 31 (12.9) 0.328
Diffuse lesion 275 (38.1) 80 (33.2) 97 (40.4) 98 (40.7) 0.159
In-stent restenosis 24 (3.3) 8 (3.3) 7 (2.9) 9 (3.7) 0.882
PCl outcomes
Target vessel numbers, n (%) 0.816
1 588 (81.4) 199 (82.6) 195 (81.3) 194 (80.5)
2 118 (16.3) 36 (14.9) 40 (16.7) 42 (17.4)
3 15 (2.1) 6 (2.5) 5(2.1) 4 (1.7)
4 1(0.1) 0 0 1 (0.4)
(Continued)
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TABLE 1 Continued
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ariable ouped by AIP te e
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Target vessel distribution, n (%)

Left main 49 (6.8) 18 (7.5) 15 (6.3) 16 (6.6) 0.863
LAD 399 (55.3) 147 (61.0) 128 (53.3) 124 (51.5) 0.083
LCX 167 (23.1) 54 (22.4) 52 (21.7) 61 (25.3) 0.605
RCA 258 (35.7) 70 (29.0) 95 (39.6) 93 (38.6) 0.029
Number of stents, n 1(1,2) 1(1,2) 1(1,2) 1(1,2) 0.348
Stent diameter, mm 3 (2.63, 3.38) 3(2.7,3.5) 3 (2.63, 3.31) 3 (2.63, 3.38) 0.721
Stent length, mm 33 (20, 54) 30(20, 48) 33(20, 56) 33(20, 56) 0.548
AIP 0.14+0.29 —0.17£0.14 0.13+0.07 0.44+0.18 <0.001

ACEI, angiotensin converting enzyme inhibitor; ACS, acute coronary syndrome; AIP, atherogenic index of plasma; ALT, alanine transaminase; ARB, angiotensin II receptor blocker; AST,
aspartate transaminase; BMI, body mass index; BNP, B-type natriuretic peptide; CABG, coronary artery bypass grafting; CTO, chronic total occlusion; DBP, diastolic blood pressure; FBG,
fasting blood glucose; HbAlc, hemoglobin Alc; HDL-C, high-density lipoprotein cholesterol; LAD, left anterior descending artery; LCX, left circumflex artery; LDL-C, low-density
lipoprotein cholesterol; LVEF, left ventricular ejection fraction; NSTEMI, non-ST-elevation myocardial infarction; PCI, percutaneous coronary intervention; RCA, right coronary artery;
SBP, systolic blood pressure; STEMI, ST-elevation myocardial infarction; TC, total cholesterol; TG, triglyceride; UA, unstable angina.
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FIGURE 2
Kaplan—-meier curves for outcomes by atherogenic index of plasma (AIP) tertile. (A) Major adverse cardiac and cerebrovascular events (MACCE)
events. (B) All-cause mortality + non-fatal myocardial infarction. (C) Unplanned revascularization. (D) Non-fatal stroke.

associated with increased MACCE risk. No significant interaction
was observed between AIP and any subgroup variable (all
interaction P > 0.05).

3.5 Machine learning results

The correlation heatmap (Supplementary Figure S1) revealed
significant collinearity among clopidogrel vs. ticagrelor use, stent
number vs. stent length, and left main vs. target left main
lesions. To avoid multicollinearity, ticagrelor use, stent number,
and target left main lesion were excluded from the modeling.
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Then, the data were split in a ratio 7:3 into training (n=506)
and testing (n=216) sets, with similar baseline characteristics
(Supplementary Table S3).

Using the Boruta algorithm for feature selection, important
variables for predicting MACCE were identified (Figure 5A).
Features marked green, yellow, and red were confirmed
important, tentative, and unimportant, respectively. The
XGBoost importance ranking in Figure 5B and
Supplementary Table S4, highlighted the top 10 features. RFE

results shown in Figures 5C,D, reveals the names of the top 27

shown

features, which made the C-index to reach its maximum, when
included. In all three methods, AIP was consistently identified

frontiersin.org



Chen et al.

10.3389/fcvm.2025.1681170

FIGURE 3
Restricted cubic spline curves for the outcomes according to the AIP level. The solid blue line represents the estimated hazard ratio, and the shaded
area indicates the 95% confidence interval. (A) MACCE events. (B) All-cause mortality + non-fatal myocardial infarction. (C) Unplanned
revascularization. (D) Non-fatal stroke.
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TABLE 2 Cox regression analysis of the association AIP tertiles with adverse outcomes.

MACCE All-cause mortality Non-fatal Unplanned Non-fatal stroke
myocardial revascularization
infarction
HR (95% P- HR (95% Cl) P- HR (95% P- HR (95% P- HR (95% ClI) P-
Cl) value value Cl) value Cl) value value
Model 1
Tertile 1 Reference Reference Reference Reference Reference
Tertile 2 1.57 (1.03-2.38) 0.036 1.93 (0.58-6.40) 0.284 1.73 (0.58-5.17) 0.324 1.70 (1.04-2.76) 0.034 1.28 (0.44-3.68) 0.650
Tertile 3 2.26 (1.52-3.36) <0.001 3.68 (1.22-11.08) 0.021 3.42 (1.26-9.26) 0.016 2.47 (1.56-3.92) <0.001 1.79 (0.66-4.83) 0.253
Continuous | 3.95 (2.41-6.49) <0.001 7.25 (2.59-20.29) <0.001 4.54 0.005 3.96 (2.24-6.98) <0.001 2.98 (0.82-10.87) 0.097
(1.56-13.18)
Model 2
Tertile 1 Reference Reference Reference Reference Reference
Tertile 2 1.57 (1.03-2.39) 0.036 1.99 (0.60-6.62) 0.261 1.74 (0.58-5.20) 0.320 1.70 (1.04-2.76) 0.033 1.28 (0.44-3.70) 0.646
Tertile 3 2.41 (1.61-3.60) <0.001 5.20 (1.69-16.07) 0.004 3.27 (1.20-8.93) 0.021 2.55 (1.60-4.07) <0.001 1.93 (0.70-5.30) 0.201
Continuous | 4.39 (2.65-7.28) <0.001 12.76 <0.001 4.52 0.008 4.18 (2.35-7.45) <0.001 3.12 (0.89-10.95) 0.075
(4.15-39.20) (1.48-13.81)
Model 3
Tertile 1 Reference Reference Reference Reference Reference
Tertile 2 1.56 (1.02-2.39) 0.041 1.76 (0.52-5.94) 0.360 1.69 (0.56-5.11) 0.350 1.68 (1.03-2.76) 0.038 1.28 (0.44-3.74) 0.650
Tertile 3 2.03 (1.34-3.08) <0.001 3.49 (1.09-11.23) 0.036 3.02 (1.08-8.48) 0.035 2.18 (1.34-3.52) <0.001 2.05 (0.72-5.84) 0.179
Continuous | 2.95 (1.74-4.98) <0.001 6.80 (1.85-24.96) 0.003 3.58 0.037 2.84 (1.55-5.19) <0.001 3.90 (0.97-15.62) 0.055
(1.08-11.86)

AIP, atherogenic index of plasma; MACCE, major adverse cardiac and cerebrovascular events.

Model 1: unadjusted.

Model 2: adjusted for age, sex, and body mass index.

Model 3: adjusted for variables in Model 2 plus albumin, use of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers, beta blockers, history of coronary artery bypass
grafting, chronic total occlusion lesion, creatinine, fasting blood glucose, and leukocyte count.

Frontiers in Cardiovascular Medicine 08 frontiersin.org



Chen et al. 10.3389/fcvm.2025.1681170

Variables n (%) HR (95%CI) P P for interaction

All patients 722 (100.00) 3.95 (2.41 ~ 6.49) : <.001

Age ? 0.287
<65 466 (64.54) 5.05 (2.66 ~9.57) ’ <.001
> 65 256 (35.46) 2.93 (1.29 ~ 6.65) i — 0.010

Sex : 0.901
Male 215(29.78) 4.17 (1.77 ~9.82) | —0.001
Female 507 (70.22) 3.98 (2.14 ~ 7.38) i <.001

BMI i 0.711
<28 566 (78.39) 3.84 (2.12 ~ 6.96) ; <.001
>28 156 (21.61) 3.20 (1.22 ~ 8.37) P b———— 0.018

ACS ; 0.153
USTEMI 90 (12.47) 18.76 (3.26 ~ 107.88) i 0.001
UA 546 (75.62) 3.70 (2.08 ~ 6.60) <.001
STEMI 86 (11.91) 2.28 (0.63 ~ 8.22) F————— 0.206

LDI-C 0.420
>1.8 491 (68.01) 4.98 (2.37 ~ 10.46) ' <.001
<1.8 231 (31.99) 3.16 (1.57 ~6.34) : ——0.001

LVEF ’ 0.425
> 50 679 (94.04) 3.63(2.12 ~ 6.20) i <.001
<50 43 (5.96) 5.02 (1.53 ~ 16.49) | ‘ I—>| 0.008

0 1 2
Worse better
FIGURE 4

Subgroup analysis. ACS, acute coronary syndrome; BMI, body mass index; LDL-C, low-density lipoprotein cholesterol; LVEF, left ventricular ejection
fraction; NSTEMI, non-ST-elevation myocardial infarction; STEMI, ST-elevation myocardial infarction; UA, unstable angina.
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FIGURE 5

Feature selection results using boruta, XGBoost, and recursive feature elimination (RFE) algorithms. (A) Boruta algorithm selection results. Green
indicates confirmed important features, yellow indicates tentative features, and red indicates unimportant features. (B) Top 10 features ranked by
importance in XGBoost. (C) RFE method yielded the highest C-index with 27 variables. (D) Top 27 features ranked by importance from RFE.
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FIGURE 6

A 48-month performance of the machine-learning models: (A) receiver-operating-characteristic curves, (B) decision-curve analysis curves, and (C)

calibration curves.

as an important predictor. The final predictive model included the
following variables: ACEI/ARBs, age, AIP, albumin, BMI, BNP,
creatinine, FBG, in-stent restenosis, prior CABG, and leukocyte
count. Six machine learning algorithms (CoxBoost, RSF, GBM,
XGBoost, SuperPC, and plsRcox) were used to build the
predictive models. The performances of each model at 12, 24,
36, 48 and 60 months are shown in Figure 6 and Supplementary
Figures S2-S5. As AUC was predefined as the primary
performance criterion, the GBM model achieved the best
discrimination at 48 months, with the highest AUC of 0.796
(95% CIL: 0.703-0.889) (Figure 6A). In addition, DCA and
calibration curves, used as complementary assessments,
suggested that the RSF model might provide the greatest net
clinical benefit (Figure 6B) and showed good calibration, with

its curve closely following the reference line (Figure 6C).

4 Discussion

To the best of our knowledge, this is the first study to assess
the prognostic value of AIP in SMuRF-less patients with ACS.
In a single-center cohort of 722 patients who underwent PCI
and were followed up for a median of 59 months, elevated AIP
levels were significantly associated with a higher risk of
MACCE. Associations were also observed with
non-fatal MI,
A linear dose-response relationship between AIP and these

all-cause

mortality, and unplanned revascularization.
adverse outcomes was confirmed by RCS analysis. Multivariable
Cox regression further demonstrated that AIP remained an
of MACCE and its

components after adjusting for confounding factors. In addition,

independent predictor individual
machine learning models consistently ranked AIP as a key
predictive feature, and the incorporation of AIP improved the
overall predictive performance for MACCE.

SMuRF-less patients with ACS represent a distinct subgroup
factors  (2).
Approximately 6.7% to 20.1% of ACS cases in recent studies are
classified as SMuRF-less (30, 31). Previous studies reveal that

without  traditional  cardiovascular  risk
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SMuRF-less individuals with ACS may have worse clinical
outcomes compared to their counterparts with one or more
traditional risk factors. A multi-ethnic study involving 5,400
patients with ACS in Singapore reported 8.6% as SMuRF-less.
Despite being younger, SMuRF-less patients have a higher
likelihood of presenting with STEMI and experiencing markedly
worse short-term outcomes, including increased 30-day all-cause
and cardiac mortality and more frequent cardiogenic shock,
compared to those with >1 SMuRFs (32). An analysis of 89,462
ACS cases from the Chinese CCC-ACS registry reveals that
11.0% of patients were SMuRF-less and had significantly greater
in-hospital mortality than those with traditional risk factors
(33). These findings suggest that SMuRF-lessness with ACS is
often associated with rapid progression and more severe clinical
manifestations, resulting in poorer short-term outcomes. Thus,
the establishment of reliable prognostic markers is vital to
facilitate early identification of high-risk individuals and guide
timely, intensive therapeutic interventions.

AIP is a logarithmic index derived from the triglyceride/HDL-
C ratio, reflecting the balance between atherogenic and protective
lipoproteins. Previous studies show that AIP possesses predictive
value for various cardiovascular conditions. In a retrospective
observational study involving 404 patients with CCS, the
relationship between AIP and major adverse cardiac events
(MACE) was examined over a median follow-up of 35 months.
During the study period, 88 patients experienced MACE, and
the findings indicated that in patients with CCS, AIP was an
independent predictor of long-term adverse clinical outcomes
(11). Huang et al. also examined 2,250 patients with coronary
artery disease undergoing PCI with drug-eluting stents to assess
the association between AIP and target vessel revascularization
(TVR). Over a median follow-up of 29.8 months, 106 (4.7%)
patients developed TVR. A U-shaped relationship was observed
between AIP and TVR risk, with a positive correlation when
AIP exceeded 0.20 (34). Additionally, a study of 763 patients
with STEMI undergoing primary PCI, found that higher AIP
was independently associated with the no-reflow phenomenon,
and that AIP outperformed triglyceride or HDL-C alone in
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predicting the no-reflow risk (35). Beyond cardiovascular
outcomes, elevated AIP has also shown strong association with
the incidence of hypertension, carotid atherosclerosis, and
chronic kidney disease in cohort studies (12, 13, 36). Despite
growing interest in AIP as a cardiovascular risk marker, its
prognostic relevance in SMuRF-less patients with ACS remains
unexplored. This study is the first to examine the predictive
value of AIP for MACCE in a unique subset of patients.
Moreover, we employed machine learning algorithms to build
predictive models, and our findings consistently demonstrated
that AIP holds predictive significance for adverse outcomes in
this high-risk group.

The association between AIP and adverse outcomes likely
reflects underlying metabolic and inflammatory dysregulation in
SMuRF-less patients. Increasing evidence suggests that, in
addition to traditional risk factors, multiple mechanisms
continue to influence the development and progression of
coronary heart disease (37-40). Among the most significant are
IR and inflammatory processes.

IR contributes to metabolic dysregulation, characterized by the
accumulation of glucose and free fatty acids in the circulation.
Hyperglycemia directly triggers endothelial inflammation and
impairs endothelial barrier function, while lipid peroxidation
results in oxidized LDL, which deposits in the vascular intima,
stimulates macrophages to transform into foam cells, and
promotes fatty streak formation (41, 42). Additionally, IR
suppresses the PI3K/Akt signaling pathway, leading to the
buildup of reactive oxygen species (ROS) (43). These ROS
endothelial
apoptosis, and impair vascular smooth muscle cell function,

damage mitochondrial function, enhance cell
thereby accelerating atherosclerotic progression (44). Notably,
these detrimental effects occur even in individuals without
diabetes (45). Under IR conditions, an imbalance between
inflammatory and insulin signaling can activate sterol regulatory
element-binding protein-1c (SREBP-1c), increasing triglyceride
levels (46). IR also causes a decline in HDL-C, primarily due to
HDL,

lipoprotein lipase activity (47).

reduced levels of large particles and diminished

Inflammation has attracted increasing scientific interest as a

key contributor to atherosclerotic cardiovascular disease.
Accumulating evidence indicates that it plays a central role in
multiple stages of atherosclerotic plaque progression, particularly
in promoting plaque instability and triggering ACS (48, 49).
Triglyceride-rich lipoproteins can be taken up by macrophages
which

inflammatory responses and atherosclerosis progression (50).

and converted into foam cells, in turn promote
Moreover, during inflammatory states, myeloperoxidase can
mediate the oxidation of apolipoprotein Al, leading to reduced
HDL-C function and concentration. This further exacerbates
systemic inflammation and ultimately increases the risk of
atherosclerosis (51).

As a lipid-derived index, AIP reflects the interplay between
triglyceride and HDL-C levels. Prior studies have demonstrated a
strong association between the triglyceride/HDL-C ratio and IR,
as assessed by the homeostatic model, supporting its utility as a
surrogate marker for IR (52). In addition, a high triglyceride/
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HDL-C ratio has been associated with elevated levels of
inflammatory biomarkers. For example, a study involving patients
with idiopathic pulmonary arterial hypertension found that a
higher triglyceride/HDL-C ratio is significantly associated with
increased levels of inflammatory markers, including interleukin-
1B, monocyte chemoattractant protein-1, and interleukin-6,
suggesting that the triglyceride/HDL-C ratio may also reflect
systemic inflammatory status (53). In addition, emerging evidence
indicates that AIP level is associated with conditions such as sleep
apnea, genetic variations, and chronic infections (54-56). These
findings suggest that AIP level may predict adverse outcomes in
SMuRF-less populations by reflecting underlying mechanisms
such as R and inflammation. Furthermore, compared with other
indices of IR, AIP offers distinct advantages. Previous studies
have shown that AIP often demonstrates stronger associations
than other surrogate markers of IR (57). Moreover, AIP and the
triglyceride-glucose index exhibit comparable performance in
predicting the development and progression of coronary artery
disease (58). However, AIP levels can be readily calculated from
admission triglyceride and HDL-C levels, whereas triglyceride-
glucose index and the metabolic score for IR rely on glucose,
which is frequently influenced by stress hyperglycemia during the
acute phase of ACS and prone to short-term fluctuations (59).
Thus, AIP levels may serve as a simple and cost-effective tool in
real-world clinical practice. It may help clinicians rapidly identify
high-risk ~ SMuRF-less
underestimated by traditional risk scores, while a prediction

patients ~ whose  proportion s
model centered on AIP levels could further complement
conventional tools and enable more efficient risk stratification.
This, in turn, provides an opportunity to tailor follow-up
strategies and consider earlier initiation of intensive therapies,
such as lipid-lowering or anti-inflammatory treatment, thereby

potentially improving this population prognosis.

4.1 Limitations

This study has several limitations. First, as a single-center
retrospective cohort study, the findings may be subject to
selection bias and potential residual confounding. Second, AIP
level was assessed only at admission, and thus may not reflect
its temporal variation, and could have influenced the prognosis.
with AIP
trajectories are warranted. Third, part of the hyperlipidemia

Future studies longitudinal measurements or
definition relied on lipid levels measured at admission, which
may have been affected by the acute phase of ACS, leading to
potential misclassification of the SMuRF-less status. Fourth, the
number of SMuRF-less patients with ACS included in our study
was relatively small. Fifth, given multiple endpoints and
subgroup analyses, the risk of type I error cannot be excluded;
therefore, our secondary or exploratory outcome findings should
be interpreted with caution. Consequently, the findings should
be interpreted with caution, and further validation in larger
sample sizes and multi-center or independent cohorts is
warranted to strengthen the robustness and generalizability

of the results.
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5 Conclusion

AIP, a readily accessible lipid-derived marker, demonstrates
significant prognostic value in SMuRF-less patients with ACS.
Elevated AIP levels are associated with increased risk of
MACCE, highlighting its potential utility in identifying high-risk
individuals lacking conventional cardiovascular risk factors, thus
facilitating earlier clinical intervention.
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