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MIMIC-IV datasets
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Background: Acute respiratory failure (ARF) and atrial fibrillation (AF) are 

common diseases. This study established a predictive model for the risk of 

atrial fibrillation in patients with ARF, aiming to provide tools for 

clinical application.

Methods: This study examined the data of 21,594 patients in the MIMIC-IV 

database, including factors such as age, vital signs, and laboratory results on 

the first day of admission. Six feature selection techniques and six machine 

learning algorithms were used to construct the prediction model, and then 

the prediction model was verified using the MIMIC-III database. Evaluate the 

performance of the model through the comparison of results.

Results: A total of 59 predictor variables were identified, among which age was 

the most important factor. These variables are used to establish predictive 

models. The verification results show that the XGBoost model (AUC: 0.816) 

and the Random Forest (RF) model (AUC: 0.822) have the best performance. 

This study presents the first predictive model for atrial fibrillation in patients 

with acute respiratory failure.

Conclusions: Both the XGBoost and RF models demonstrated outstanding 

performance. These findings will make significant contributions to the 

diagnosis of clinical complications and the resolution of public health issues.
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IV database

Introduction

Respiratory failure is a respiratory disorder characterized by hypoxemia or 

hypercapnia (1). Atrial fibrillation (AF) is the most prevalent type of persistent 

arrhythmia in the circulatory system. The incidence of AF in patients with respiratory 

failure is between 10% and 15%, and it can reach as high as 50% in patients with type 

2 respiratory failure (2, 3). Factors such as atrial fibrosis, aging, hypertension, obesity, 

diabetes, and genetic predisposition play a significant role in triggering AF (4). Bemis 

et al. propose that hypoxemia and hypercapnia are risk factors for AF. In hypercapnic 

patients, factors such as intrathoracic pressure, autonomic nervous system ,uctuations, 

atrial stretching, and remodeling play a role in the development of AF. Furthermore, 

elevated pulmonary artery pressure in respiratory failure patients leads to right 
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ventricular hypertension and right atrial enlargement, which in 

turn triggers AF (5). AF can result in serious complications, 

such as stroke, coronary heart disease, cognitive impairment, 

and even dementia, suggesting that respiratory failure may 

trigger AF by impacting the pulmonary veins (6–8).

Schüttler et al. simulated human atrial fibrillation using 

modeling techniques (9). Roussos et al. highlighted that 

patients with respiratory failure often experience neural 

suppression and neuromuscular conduction disorders, which 

may be indicative of neurotransmitter disturbances associated 

with AF and myocardial dysfunction (10). However, the 

mechanisms by which respiratory failure induces AF remain 

poorly understood.

Although the diagnosis of respiratory failure and AF is well- 

established (11–13), two-thirds of AF patients report shortness 

of breath, making it difficult to promptly identify AF in patients 

with respiratory failure (14). Consequently, developing an early 

prediction model to prevent or predict AF in these patients is 

crucial for improving clinical outcomes.

Machine learning has become a powerful tool in medicine, 

driving significant progress across various medical disciplines (15). 

Previous AF prediction models have focused on ICU patients (16) 

and are limited by cohort heterogeneity, which can reduce 

accuracy and generalizability. This study includes both ICU and 

non-ICU patients but targets a single disease, minimizing 

heterogeneity and improving the model’s sensitivity and 

applicability.To date, no predictive model exists for forecasting 

acute respiratory failure in patients with pneumonia. This study 

aims to fill this critical research gap by developing a machine 

learning-based model for early detection of AF in patients with 

acute respiratory failure. The main objective of this model is to 

help healthcare professionals proactively prevent or detect AF 

early, facilitating personalized treatment plans, improving patient 

outcomes, reducing healthcare costs, and potentially saving lives.

To date, predictive models specifically designed to identify 

atrial fibrillation (AF) in patients with acute respiratory failure 

remain scarce. Existing research has predominantly focused on 

general AF risk factors or populations with cardiovascular 

disease, leaving a critical research gap in this high-risk cohort. 

To our knowledge, this study represents the first development 

and validation of a machine learning model specifically designed 

to predict AF in this distinct population. By integrating 

comprehensive clinical, laboratory, and physiological variables, 

our model demonstrates robust predictive performance, offering 

an innovative and clinically actionable tool for early risk 

stratification in patients with acute respiratory failure.

This study utilizes the MIMIC-IV and MIMIC-III databases 

alongside machine learning techniques to create a predictive 

model for the development of AF in patients with acute 

respiratory failure.

FIGURE 1 

Flow chart.

Abbreviations  

Po2, partial pressure of oxygen; Pco2, partial pressure of carbon dioxide; PH, 
acidity; BE, base excess; Total_co2, total carbon dioxide; SPo2, peripheral 
capillary oxygen saturation; Platelets, platelet count; Wbc, white blood cell 
count; Bun, blood urea nitrogen; Inr, international normalized ratio; Pt, 
prothrombin time; Ppt, partial thromboplastin time; Alt, alanine 
aminotransferase; Alp, alkaline phosphatase; Ast, aspartate aminotransferase; 
Sbp, systolic blood pressure; Dbp, diastolic blood pressure; Mbp, mean blood 
pressure; Resp rate, respiratory rate; Gcs, glasgow coma scale; Gcs Motor, 
GCS motor response; Gcs Verbal, GCS verbal response; Gcs eyes, GCS eye 
opening; Gcs Unable, GCS unable to score; Sofa, sequential organ failure 
assessment; Apsiii, acute physiology and chronic health evaluation; Sapsii, 
simplified acute physiology score II; Oasis, open source anonymized simulator.
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TABLE 1 Internal set.

Characteristic Non-AF(n = 14,372) AF(n = 7,222) P

Age, M (Q1, Q3) 64.30 (52.98, 75.09) 76.17 (67.58, 84.06) <.001

ABG

Po2, M (Q1, Q3) 79.00 (50.00, 140.00) 77.00 (47.00, 142.00) 0.031

Pco2, M (Q1, Q3) 43.00 (36.00, 52.00) 44.00 (37.00, 53.00) <.001

Ph, M (Q1, Q3) 7.36 (7.29, 7.42) 7.36 (7.29, 7.42) <.001

Baseexcess, M (Q1, Q3) 0.00 (−4.00, 2.00) 0.00 (−4.00, 2.00) <.001

Totalco2, M (Q1, Q3) 25.00 (21.00, 29.00) 26.00 (22.00, 30.00) <.001

Lactate, M (Q1, Q3) 1.70 (1.20, 2.70) 1.70 (1.20, 2.60) 0.549

Spo2, M (Q1, Q3) 96.78 (95.00, 98.42) 96.64 (94.95, 98.21) <.001

Lab

Hematocrit, M (Q1, Q3) 34.50 (29.60, 39.70) 33.50 (29.10, 38.40) <.001

Hemoglobin, M (Q1, Q3) 11.10 (9.40, 12.90) 10.60 (9.10, 12.30) <.001

Platelets, M (Q1, Q3) 223.00 (158.00, 300.00) 211.00 (152.00, 286.00) <.001

Wbc, M (Q1, Q3) 13.10 (9.30, 18.40) 13.30 (9.50, 18.60) 0.011

Aniongap, M (Q1, Q3) 16.00 (13.00, 19.00) 16.00 (14.00, 19.00) 0.034

Bicarbonate, M (Q1, Q3) 24.00 (21.00, 27.00) 25.00 (22.00, 28.00) <.001

Bun, M (Q1, Q3) 23.00 (15.00, 39.00) 32.00 (21.00, 51.00) <.001

Calcium, M (Q1, Q3) 8.70 (8.20, 9.10) 8.60 (8.20, 9.10) 0.440

Chloride, M (Q1, Q3) 105.00 (100.00, 109.00) 104.00 (99.00, 108.00) <.001

Creatinine, M (Q1, Q3) 1.10 (0.80, 1.90) 1.40 (1.00, 2.30) <.001

Glucose, M (Q1, Q3) 154.00 (122.00, 209.00) 156.00 (125.00, 209.00) 0.058

Sodium, M (Q1, Q3) 140.00 (137.00, 143.00) 140.00 (137.00, 143.00) 0.276

Potassium, M (Q1, Q3) 4.50 (4.10, 5.10) 4.60 (4.20, 5.20) <.001

Abs Basophils, M (Q1, Q3) 0.02 (0.00, 0.05) 0.02 (0.00, 0.04) 0.021

Abs Eosinophils, M (Q1, Q3) 0.03 (0.00, 0.12) 0.03 (0.00, 0.11) 0.004

Abs Lymphocytes, M (Q1, Q3) 1.09 (0.66, 1.72) 0.98 (0.59, 1.56) <.001

Abs Monocytes, M (Q1, Q3) 0.64 (0.37, 0.99) 0.67 (0.40, 1.03) <.001

Abs Neutrophils, M (Q1, Q3) 9.73 (6.37, 14.27) 9.95 (6.71, 14.45) <.001

Inr, M (Q1, Q3) 1.30 (1.10, 1.60) 1.50 (1.20, 2.10) <.001

Pt, M (Q1, Q3) 14.00 (12.40, 17.10) 16.40 (13.70, 23.20) <.001

Ppt, M (Q1, Q3) 32.00 (28.00, 42.70) 35.70 (30.00, 52.90) <.001

Alt, M (Q1, Q3) 28.00 (17.00, 62.00) 26.00 (16.00, 60.00) <.001

Alp, M (Q1, Q3) 91.00 (67.00, 133.00) 93.00 (68.00, 134.00) 0.008

Ast, M (Q1, Q3) 42.00 (24.00, 92.00) 39.00 (24.00, 88.00) 0.006

Bilirubin Total, M (Q1, Q3) 0.60 (0.40, 1.10) 0.70 (0.40, 1.10) <.001

Vital Signs

Sbp, M (Q1, Q3) 114.90 (105.35, 127.13) 111.70 (103.67, 122.61) <.001

Dbp, M (Q1, Q3) 63.12 (56.55, 70.88) 60.95 (54.77, 68.16) <.001

Mbp, M (Q1, Q3) 77.52 (71.19, 85.46) 75.37 (69.68, 82.37) <.001

Resp Rate, M (Q1, Q3) 20.17 (17.56, 23.30) 20.40 (17.91, 23.36) <.001

Temperature, M (Q1, Q3) 36.89 (36.64, 37.22) 36.80 (36.56, 37.09) <.001

Weight, M (Q1, Q3) 78.00 (64.60, 95.30) 79.80 (65.60, 96.80) <.001

Scores

Gcs, M (Q1, Q3) 15.00 (15.00, 15.00) 15.00 (15.00, 15.00) <.001

Gcs Motor, M (Q1, Q3) 6.00 (4.00, 6.00) 6.00 (4.00, 6.00) <.001

Gcs Verbal, M (Q1, Q3) 1.00 (0.00, 5.00) 4.00 (0.00, 5.00) <.001

Gcs Eyes, n(%) <.001

1 4,190 (29.15) 1,969 (27.26)

2 1,238 (8.61) 554 (7.67)

3 1,907 (13.27) 952 (13.18)

4 7,037 (48.96) 3,747 (51.88)

Gcs Unable, n(%) <.001

0 7,778 (54.12) 4,303 (59.58)

1 6,594 (45.88) 2,919 (40.42)

Oasis, M (Q1, Q3) 34.00 (28.00, 40.00) 36.00 (30.00, 43.00) <.001

Oasis Prob, M (Q1, Q3) 0.14 (0.07, 0.25) 0.17 (0.09, 0.33) <.001

Sofa, M (Q1, Q3) 5.00 (3.00, 8.00) 6.00 (3.25, 9.00) <.001

Urineoutput, M (Q1, Q3) 1,380.00 (770.00, 2,215.00) 1,185.00 (645.00, 2,000.00) <.001

(Continued) 

Li                                                                                                                                                                          10.3389/fcvm.2025.1696609 

Frontiers in Cardiovascular Medicine 03 frontiersin.org



TABLE 1 Continued

Characteristic Non-AF(n = 14,372) AF(n = 7,222) P

Apsiii, M (Q1, Q3) 46.00 (34.00, 63.00) 52.00 (40.00, 68.00) <.001

Sapsii, M (Q1, Q3) 37.00 (28.00, 48.00) 43.00 (35.00, 53.00) <.001

Sapsii Prob, M (Q1, Q3) 0.20 (0.09, 0.41) 0.31 (0.17, 0.53) <.001

Respiration, n(%) <.001

0 2,514 (17.49) 1,047 (14.50)

1 372 (2.59) 168 (2.33)

2 6,281 (43.70) 3,462 (47.94)

3 2,661 (18.52) 1,228 (17.00)

4 2,544 (17.70) 1,317 (18.24)

Coagulation, n(%) <.001

0 9,388 (65.32) 4,501 (62.32)

1 2,536 (17.65) 1,514 (20.96)

2 1,511 (10.51) 873 (12.09)

3 716 (4.98) 247 (3.42)

4 221 (1.54) 87 (1.20)

Liver, n(%) <.001

0 11,158 (77.64) 5,466 (75.69)

1 1,311 (9.12) 919 (12.73)

2 1,195 (8.31) 626 (8.67)

3 374 (2.60) 135 (1.87)

4 334 (2.32) 76 (1.05)

Cardiovascular, n (%) <.001

0 2,661 (18.52) 825 (11.42)

1 7,857 (54.67) 4,065 (56.29)

2 43 (0.30) 55 (0.76)

3 837 (5.82) 596 (8.25)

4 2,974 (20.69) 1,681 (23.28)

Cns, n(%) <.001

0 8,900 (61.93) 4,161 (57.62)

1 2,738 (19.05) 1,626 (22.51)

2 1,016 (7.07) 572 (7.92)

3 1,024 (7.12) 535 (7.41)

4 694 (4.83) 328 (4.54)

Renal, n(%) <.001

0 6,981 (48.57) 2,449 (33.91)

1 3,060 (21.29) 1,933 (26.77)

2 1,418 (9.87) 1,049 (14.53)

3 1,456 (10.13) 951 (13.17)

4 1,457 (10.14) 840 (11.63)

Charlson

Myocardial Infarct, n(%) <.001

0 12,069 (83.98) 5,444 (75.38)

1 2,303 (16.02) 1,778 (24.62)

Congestive Heart Failure, n(%) <.001

0 10,088 (70.19) 2,786 (38.58)

1 4,284 (29.81) 4,436 (61.42)

Peripheral Vascular Disease, n(%) <.001

0 13,041 (90.74) 6,117 (84.70)

1 1,331 (9.26) 1,105 (15.30)

Cerebrovascular Disease, n(%) <.001

0 12,244 (85.19) 5,948 (82.36)

1 2,128 (14.81) 1,274 (17.64)

Dementia, n(%) <.001

0 13,660 (95.05) 6,654 (92.14)

1 712 (4.95) 568 (7.86)

Chronic Pulmonary Disease, n(%) <.001

0 9,365 (65.16) 4,480 (62.03)

1 5,007 (34.84) 2,742 (37.97)

(Continued) 
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Materials and methods

Study population

This retrospective observational study extracted data 

from patients diagnosed with acute respiratory failure (ARF) 

using the MIMIC-IV (version3.1) and MIMIC-III 

(version1.4) databases. At present, there are no international 

guidelines for diagnosing respiratory failure. However, as 

mentioned earlier, the diagnosis of respiratory failure 

and atrial fibrillation (AF) is widely recognized. The main 

purpose of this study is to rule out the diagnosis of 

TABLE 1 Continued

Characteristic Non-AF(n = 14,372) AF(n = 7,222) P

Rheumatic Disease, n(%) 0.043

0 13,879 (96.57) 6,935 (96.03)

1 493 (3.43) 287 (3.97)

Peptic Ulcer Disease, n(%) 0.282

0 13,981 (97.28) 7,007 (97.02)

1 391 (2.72) 215 (2.98)

Mild Liver Disease, n(%) <.001

0 12,117 (84.31) 6,412 (88.78)

1 2,255 (15.69) 810 (11.22)

Diabetes Without Cc, n(%) <.001

0 10,935 (76.09) 5,323 (73.71)

1 3,437 (23.91) 1,899 (26.29)

Diabetes With Cc, n(%) <.001

0 12,512 (87.06) 5,937 (82.21)

1 1,860 (12.94) 1,285 (17.79)

Paraplegia, n(%) 0.074

0 13,453 (93.61) 6,805 (94.23)

1 919 (6.39) 417 (5.77)

Renal Disease, n(%) <.001

0 11,174 (77.75) 4,422 (61.23)

1 3,198 (22.25) 2,800 (38.77)

Malignant Cancer, n(%) <.001

0 11,983 (83.38) 6,152 (85.18)

1 2,389 (16.62) 1,070 (14.82)

Severe Liver Disease, n(%) <.001

0 13,187 (91.75) 6,913 (95.72)

1 1,185 (8.25) 309 (4.28)

Metastatic Solid Tumor, n(%) <.001

0 13,183 (91.73) 6,783 (93.92)

1 1,189 (8.27) 439 (6.08)

Aids, n(%) <.001

0 14,198 (98.79) 7,208 (99.81)

1 174 (1.21) 14 (0.19)

Intervention/Status

Preiculos, M (Q1, Q3) 106.00 (47.00, 1,218.51) 125.00 (51.00, 2,338.21) <.001

O2 Flow, M (Q1, Q3) 8.00 (4.00, 10.00) 6.00 (3.00, 10.00) 0.012

Nsaid, n(%) <.001

0 8,331 (57.97) 3,227 (44.68)

1 6,041 (42.03) 3,995 (55.32)

Mechvent, n(%) <.001

0 6,105 (42.48) 3,424 (47.41)

1 8,267 (57.52) 3,798 (52.59)

Electivesurgery, n(%) <.001

0 14,294 (99.46) 7,094 (98.23)

1 78 (0.54) 128 (1.77)

Ventilation Status, n(%) <.001

0 745 (5.18) 325 (4.50)

1 4,880 (33.95) 2,872 (39.77)

2 480 (3.34) 271 (3.75)

3 406 (2.82) 237 (3.28)

4 7,861 (54.70) 3,517 (48.70)
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TABLE 2 External set.

Variables Non-AF (n = 4,274) AF (n = 1,802) P

Age, M (Q1, Q3) 61.37 (49.39, 74.51) 75.55 (65.44, 83.06) <.001

ABG

Po2, M (Q1, Q3) 100.00 (69.00, 189.00) 101.00 (68.00, 182.00) 0.740

Lactate, M (Q1, Q3) 2.10 (1.40, 3.70) 2.10 (1.40, 3.40) 0.081

Totalco2, M (Q1, Q3) 25.00 (21.00, 29.00) 26.00 (22.00, 31.00) <.001

Spo2, M (Q1, Q3) 97.38 (95.67, 98.74) 97.33 (95.74, 98.65) 0.528

LAB

Hematocrit, M (Q1, Q3) 34.70 (30.60, 39.40) 34.00 (30.33, 38.30) 0.002

Hemoglobin, M (Q1, Q3) 11.50 (10.10, 13.20) 11.20 (9.90, 12.70) <.001

Platelets, M (Q1, Q3) 235.00 (159.25, 321.00) 232.00 (170.00, 313.00) 0.406

Wbc, M (Q1, Q3) 13.00 (9.00, 18.20) 13.20 (9.30, 18.20) 0.260

Aniongap, M (Q1, Q3) 16.00 (14.00, 19.00) 16.00 (14.00, 19.00) 0.352

Bicarbonate,M (Q1, Q3) 22.00 (18.00, 25.00) 23.00 (19.00, 26.00) <.001

Bun, M (Q1, Q3) 24.00 (16.00, 41.00) 32.00 (21.00, 50.00) <.001

Chloride, M (Q1, Q3) 107.00 (103.00, 111.00) 106.00 (102.00, 111.00) <.001

Creatinine, M (Q1, Q3) 1.10 (0.80, 2.00) 1.40 (0.90, 2.20) <.001

Glucose, M (Q1, Q3) 159.00 (126.00, 214.00) 162.00 (128.00, 211.00) 0.346

Sodium, M (Q1, Q3) 141.00 (138.00, 143.00) 141.00 (138.00, 143.75) 0.450

Potassium, M (Q1, Q3) 4.50 (4.10, 5.10) 4.60 (4.10, 5.20) <.001

Abs Eosinophils, M (Q1, Q3) 0.08 (0.01, 0.23) 0.08 (0.01, 0.24) 0.256

Abs Lymphocytes, M (Q1, Q3) 1.31 (0.71, 2.27) 1.23 (0.68, 2.07) 0.006

Abs Neutrophils, M (Q1, Q3) 0.13 (0.09, 0.18) 0.13 (0.09, 0.18) 0.260

Inr, M (Q1, Q3) 1.30 (1.10, 1.60) 1.50 (1.20, 2.20) <.001

Pt, M (Q1, Q3) 14.40 (13.20, 16.90) 15.85 (13.90, 21.30) <.001

Ppt, M (Q1, Q3) 32.60 (27.50, 44.48) 35.40 (29.20, 49.30) <.001

Bilirubin Total, M (Q1, Q3) 0.60 (0.40, 1.20) 0.70 (0.40, 1.20) 0.051

Vital signs

Sbp, M (Q1, Q3) 115.22 (105.07, 128.58) 113.00 (104.51, 124.99) <.001

Dbp, M (Q1, Q3) 60.38 (53.68, 67.88) 57.76 (51.33, 64.75) <.001

Mbp, M (Q1, Q3) 76.83 (69.85, 85.03) 73.78 (67.83, 81.28) <.001

Resp Rate, M (Q1, Q3) 19.74 (16.87, 23.33) 19.90 (17.25, 22.85) 0.398

Temperature, M (Q1, Q3) 36.90 (36.45, 37.39) 36.73 (36.32, 37.20) <.001

Scores

Gcs, M (Q1, Q3) 15.00 (14.00, 15.00) 15.00 (13.00, 15.00) 0.099

Gcsmotor, M (Q1, Q3) 6.00 (4.00, 6.00) 6.00 (5.00, 6.00) 0.057

Gcsverbal, M (Q1, Q3) 1.00 (0.00, 5.00) 1.00 (0.00, 5.00) 0.002

Gcs Eyes, n(%) 0.087

1 1,076 (25.18) 409 (22.70)

2 472 (11.04) 188 (10.43)

3 1,111 (25.99) 470 (26.08)

4 1,615 (37.79) 735 (40.79)

Oasis, M (Q1, Q3) 36.00 (30.00, 43.00) 38.00 (32.00, 44.00) <.001

Oasis Prob, M (Q1, Q3) 0.17 (0.09, 0.33) 0.21 (0.11, 0.36) <.001

Sofa, M (Q1, Q3) 5.00 (3.00, 8.00) 5.00 (3.00, 8.00) 0.449

Urineoutput, M (Q1, Q3) 1,530.00 (870.00, 2,425.00) 1,310.00 (740.00, 2,058.75) <.001

Apsiii, M (Q1, Q3) 49.00 (35.00, 66.00) 53.00 (40.00, 68.00) <.001

Apsiii Prob, M (Q1, Q3) 0.11 (0.06, 0.21) 0.13 (0.07, 0.23) <.001

Sapsii, M (Q1, Q3) 40.00 (29.00, 51.00) 44.00 (36.00, 54.00) <.001

Sapsii Prob, M (Q1, Q3) 0.25 (0.10, 0.48) 0.33 (0.18, 0.55) <.001

Respiration, n(%) <.001

0 1,511 (35.35) 681 (37.79)

1 181 (4.23) 75 (4.16)

2 933 (21.83) 429 (23.81)

3 1,090 (25.50) 461 (25.58)

4 559 (13.08) 156 (8.66)

Coagulation, n (%) <.001

0 2,881 (67.41) 1,222 (67.81)

1 599 (14.01) 345 (19.15)

(Continued) 
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respiratory failure before AF, thereby laying the foundation for 

further research.

The diagnostic criteria for acute respiratory failure (ARF) are 

as follows: Type I ARF is characterized by arterial oxygen partial 

pressure (PaO2) ≤60 mmHg and arterial carbon dioxide partial 

pressure (PaCO2) ≥45 mmHg, while Type II ARF is 

characterized by PaCO2 ≥45 mmHg. In the MIMIC database, it 

is defined by specific ICD-10 and ICD-9 codes (e.g., 51881, 

J95821).

Diagnostic criteria for atrial fibrillation (AF) include a history 

of diagnosed or undiagnosed AF, an electrocardiogram (ECG) 

upon admission showing arrhythmia, irregular heartbeats, and 

absent P waves, as well as a history of AF. In leads II, III, and 

aVF, fibrillation waves replace P waves. Additionally, rapid 

ventricular response (RVR) or a normal ventricular rate may be 

present, particularly in patients with chronic atrial fibrillation.

By identifying the diagnosis through specific label (seq_num) 

in the MIMIC database, the sequence of events in the patient’s 

illness is determined, thereby establishing the occurrence of 

atrial fibrillation following acute respiratory failure. 

Furthermore, based on the label (seq_num) and diagnosis, all 

patients were free of atrial fibrillation upon admission.

Data collection

In this retrospective study, patient information was 

obtained from the MIMIC-IV (version 3.1) (17) and MIMIC- 

III (version 1.4) (18) databases. Extract the following data 

points for analysis:

Demographic information

Specific demographic details of the patient, including age, 

gender and other identifying characteristics.

TABLE 2 Continued

Variables Non-AF (n = 4,274) AF (n = 1,802) P

2 487 (11.39) 161 (8.93)

3 231 (5.40) 58 (3.22)

4 76 (1.78) 16 (0.89)

Liver, n(%) <.001

0 3,207 (75.04) 1,394 (77.36)

1 324 (7.58) 195 (10.82)

2 462 (10.81) 144 (7.99)

3 138 (3.23) 36 (2.00)

4 143 (3.35) 33 (1.83)

Cardiovascular, n(%) <.001

0 683 (15.98) 174 (9.66)

1 2,431 (56.88) 1,078 (59.82)

2 68 (1.59) 31 (1.72)

3 314 (7.35) 174 (9.66)

4 778 (18.20) 345 (19.15)

Cns, n(%) 0.013

0 2,700 (63.17) 1,087 (60.32)

1 730 (17.08) 344 (19.09)

2 289 (6.76) 147 (8.16)

3 345 (8.07) 157 (8.71)

4 210 (4.91) 67 (3.72)

Renal, n(%) <.001

0 2,071 (48.46) 671 (37.24)

1 956 (22.37) 495 (27.47)

2 459 (10.74) 267 (14.82)

3 399 (9.34) 187 (10.38)

4 389 (9.10) 182 (10.10)

Other

Preiculos, M (Q1, Q3) 1.86 (1.22, 1,032.95) 1.89 (1.27, 1,817.11) 0.028

Baseexcess, M (Q1, Q3) 0.00 (−5.00, 2.00) 0.00 (−4.00, 3.00) <.001

O2,ow, M (Q1, Q3) 4.00 (2.00, 6.00) 4.00 (2.00, 9.00) 0.207

Electivesurgery, n(%) 0.008

0 4,137 (96.79) 1,719 (95.39)

1 137 (3.21) 83 (4.61)

Mechvent, n(%) <.001

0 994 (23.26) 524 (29.08)

1 3,280 (76.74) 1,278 (70.92)
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TABLE 3 Predictor variables for the internal set obtained using six selection methods.

Methods Predictor variables

LASSO apsiii, po2, pco2, ph, totalco2, lactate, myocardial_infarct, congestive_heart_failure, peripheral_vascular_disease, cerebrovascular_disease, dementia, 

chronic_pulmonary_disease, rheumatic_disease, mild_liver_disease, diabetes_without_cc, diabetes_with_cc, paraplegia, renal_disease, malignant_cancer, 

severe_liver_disease, metastatic_solid_tumor, aids, hematocrit, hemoglobin, platelets, wbc, aniongap, bicarbonate, bun, calcium, chloride, creatinine, glucose, 

sodium, potassium, abs_basophils, abs_eosinophils, abs_lymphocytes, abs_monocytes, abs_neutrophils, inr, pt, ppt, alt, alp, ast, bilirubin_total, sofa, 

respiration, coagulation, liver, cardiovascular, cns, renal, urineoutput, sbp, dbp, mbp, resp_rate, temperature, spo2, weight, gcs, gcs_motor, gcs_verbal, 

gcs_eyes, gcs_unable, nsaid, oasis, oasis_prob, age, preiculos, mechvent, electivesurgery, o2_,ow, sapsii, sapsii_prob, ventilation_status

RF-MDA age, congestive_heart_failure, pt, inr, sapsii_prob, sapsii, bun, ppt, apsiii, bilirubin_total, creatinine, sofa, oasis, nsaid, mbp, sbp, oasis_prob, ast, totalco2, dbp, 

renal_disease, baseexcess, severe_liver_disease, platelets, myocardial_infarct, bicarbonate, hemoglobin, lactate, liver, hematocrit

RF-MDG age, congestive_heart_failure, pt, inr, sapsii_prob, sapsii, bun, ppt, apsiii, bilirubin_total, creatinine, sofa, oasis, nsaid, mbp, sbp, oasis_prob, ast, totalco2, dbp, 

renal_disease, baseexcess, severe_liver_disease, platelets, myocardial_infarct, bicarbonate, hemoglobin, lactate, liver, hematocrit

SR-FS age, congestive_heart_failure, inr, weight, sbp, mbp, electivesurgery, ph, renal_disease, oasis, nsaid, hemoglobin, cerebrovascular_disease, glucose, preiculos, 

severe_liver_disease, spo2, mechvent, gcs, po2, bicarbonate, bun, calcium, aids, ast, apsiii, cns, renal, pt, diabetes_with_cc, malignant_cancer, platelets, 

hematocrit, sodium, abs_neutrophils, aniongap, ppt, dbp, abs_eosinophils, creatinine, dementia, oasis_prob, urineoutput, abs_lymphocytes, gcs_eyes, 

temperature, chloride, peripheral_vascular_disease, mild_liver_disease, bilirubin_total, lactate, paraplegia, liver, metastatic_solid_tumor, o2_,ow, 

ventilation_status, chronic_pulmonary_disease, sapsii, potassium, sapsii_prob

SR-BS apsiii, po2, ph, lactate, congestive_heart_failure, peripheral_vascular_disease, cerebrovascular_disease, dementia, chronic_pulmonary_disease, 

mild_liver_disease, diabetes_with_cc, paraplegia, renal_disease, malignant_cancer, severe_liver_disease, metastatic_solid_tumor, aids, hematocrit, 

hemoglobin, platelets, aniongap, bicarbonate, bun, calcium, chloride, creatinine, glucose, potassium, abs_eosinophils, abs_lymphocytes, abs_neutrophils, inr, 

pt, ppt, ast, bilirubin_total, liver, cns, renal, urineoutput, sbp, dbp, mbp, temperature, spo2, weight, gcs, gcs_verbal, gcs_eyes, gcs_unable, nsaid, oasis, 

oasis_prob, age, preiculos, mechvent, electivesurgery, o2_,ow, sapsii, sapsii_prob, ventilation_status

SR-BE abs_eosinophils, abs_lymphocytes, abs_neutrophils, age, aids, aniongap, apsiii, ast, bicarbonate, bilirubin_total, bun, calcium, cerebrovascular_disease, 

chloride, chronic_pulmonary_disease, cns, congestive_heart_failure, creatinine, dbp, dementia, diabetes_with_cc, electivesurgery, gcs, gcs_eyes, glucose, 

hematocrit, hemoglobin, inr, lactate, liver, malignant_cancer, mbp, mechvent, metastatic_solid_tumor, mild_liver_disease, nsaid, o2_,ow, oasis, oasis_prob, 

paraplegia, peripheral_vascular_disease, ph, platelets, po2, potassium, ppt, preiculos, pt, renal, renal_disease, sapsii, sapsii_prob, sbp, severe_liver_disease, 

spo2, temperature, urineoutput, ventilation_status, weight

FIGURE 2 

UpSet plot.
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TABLE 4 Predictive performance metrics of different machine learning algorithms of the validation set.

Models XGBOOST RF LR DT SVM ANN

Internal validation set

AUC (95%CI) 0.816 [0.804–0.829] 0.81 [0.796–0.823] 0.802 [0.789–0.816] 0.734 [ 0.719–0.75] 0.806 [ 0.793–0.819] 0.759 [ 0.744–0.774 ]0.779

Cutoff value 0.27 0.32 0.33 0.17 0.01 0.01

SEN (95%CI) 0.626 (0.601–0.651) 0.673 (0.648–0.697) 0.642 (0.618–0.667) 0.512 (0.486–0.538) 0.597 (0.572–0.622) 0.649 (95% CI: 0.624–0.673)

SPE (95%CI) 0.800 (0.785–0.815) 0.786 (0.771–0.810) 0.787 0.772–0.8) 0.840 (0.826–0.853) 0.827 (0.813–0.841) 0.666 (0.649–0.684)

PLR (95%CI) 3.133 (2.882–3.405) 3.148 (3.040–3.256) 3.009 (2.778–3.260) 3.194 (2.897–3.521) 3.447 (3.149–3.773) 1.944 (1.824–2.073)

NLR (95%CI) 0.467 (0.436–0.501) 0.416 (0.378–0.450) 0.455 (0.423–0.489) 0.581 (0.550–0.614) 0.487 (0.457–0.520) 0.527 (0.489–0.568)

PPV (95%CI) 0.610 (0.585–0.635) 0.611 (0.596–0.646) 0.600 (0.587–0.635) 0.614 (0.587–0.642) 0.632 (0.607–0.658) 0.492 (0.470–0.515)

NPV (95%CI) 0.811 (0.797–0.825) 0.828 (0.813-0.842) 0.815 (0.813–0.842) 0.775 (0.761–0.790) 0.804 (0.790–0.819) 0.792 (0.776–0.808)

F1 score 0.6267 0.6332 0.627 0.4685 0.5571 0.6811

External validation set

AUC (95%CI) 0.771:0.758–0.784) 0.822 (0.811–0.834) 0.742 (0.729–0.755) 0.685 (0.671–0.697) 0.750 (0.737–0.764) 0.739 (0.725-0.752)

Cutoff value 0.17 0.36 0.26 0.28 0.66 0.229

SEN (95%CI) 0.704 (0.684–0.725) 0.748 (0.728–0.766) 0.752 (0.734–0.771) 0.644 (0.621–0.667) 0.691 (0.651–0.729) 0.658 (0.636–0.677)

SPE (95%CI) 0.702 (0.689–0.716) 0.741 (0.727–0.754) 0.620 (0.606–0.634) 0.677 (0.663–0.690) 0.744 (0.732–0.755) 0.700 (0.687–0.713)

PLR (95%CI) 2.366 (2.247–2.501) 2.889 (2.718–3.057) 1.981 (1.900–2.074) 1.993 (1.889–2.110) 2.696 (2.657–2.718) 2.191 (2.071–2.313)

NLR (95%CI) 0.421 (0.390–0.452) 0.341 (0.315–0.368) 0.400 (0.367–0.431) 0.526 (0.491–0.561) 0.416 (0.359–0.477) 0.489 (0.458–0.521)

PPV (95%CI) 0.499 (0.478–0.520) 0.549 (0.529–0.569) 0.455 (0.439–0.472) 0.457 (0.438–0.475) 0.216 (0.197–0.236) 0.480 (0.460–0.500)

NPV (95%CI) 0.849 (0.838–0.860) 0.874 (0.864–0.884) 0.856 (0.844–0.867) 0.818 (0.806–0.831) 0.959 (0.953–0.965) 0.829 (0.817–0.840)

F1 score 0.58 0.63 0.57 0.53 0.22 0.56

FIGURE 3 

Confusion matrix- XGBoost.
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Vital signs and laboratory results on the first 
day of admission

Vital signs: body temperature, respiratory rate, systolic blood 

pressure, diastolic blood pressure, mean arterial pressure, weight.

Laboratory inspection White blood cell count, hemoglobin, 

platelet count, urea nitrogen, serum creatinine, blood glucose, 

serum sodium, serum chlorine, serum potassium, hematocrit, 

eosinophils, basophils, neutrophils, monocytes, lymphocytes, 

serum calcium, international normalized ratio, prothrombin 

time, activated partial thromboplastin time, bicarbonate 

concentration, anion gap Alanine aminotransferase, aspartate 

aminotransferase, alkaline phosphatase, bilirubin.

Scores and Indices:

Glasgow Coma Scale (GCS)

Simplified Acute Physiology Score II (SAPS II)

Acute Physiology Score III (APS III)

Sequential Organ Failure Assessment (SOFA)

Oxford Acute Severity of Illness Score (OASIS)

Comorbidities:

Congestive heart failure

Cerebrovascular disease

Liver disease

Kidney disease

AIDS

Chronic lung disease

Diabetes

Paralysis

Malignancies

Metastatic solid tumors

Peptic ulcer

Dementia

Rheumatic diseases

Blood Gas Analysis:

Partial pressure of oxygen (PaO2)

Partial pressure of carbon dioxide (PaCO2)

Oxygen saturation

Lactate

pH

Base excess

Total carbon dioxide (TCO2)

Other Variables:

Mechanical ventilation status

Oxygen ,ow rate

Whether elective surgery was performed

Length of hospitalization prior to ICU admission

FIGURE 4 

Confusion matrix-random forest.
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FIGURE 5 

Confusion matrix-XGBoost (external validation).

FIGURE 6 

Confusion matrix-random forest (external validation).
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Handling missing data

Variables with missing values exceeding 20% will be excluded 

from the analysis. For variables with missing values of 20% or less, 

multiple substitutions will be applied using the “mice” package in 

R (version 4.5.1).Missing values in the dataset were handled using 

multiple imputation methods from the mice package in 

R. Specifically, five imputed datasets (m = 5) were generated via the 

random forest method (method = “rf”), which preserves nonlinear 

relationships and interactions between variables. The second 

imputed dataset was selected as the representative sample for 

subsequent analyses [“complete(imputed_data, 2)”], while the 

consistency of results across all imputed datasets was verified.

This method ensures thorough data processing while adhering 

to best practices for handling missing data in clinical research.

Statistical analysis

Continuous variables will be summarized using the median 

and interquartile range (IQR). The normality of continuous 

variables was evaluated using the Kolmogorov–Smirnov (K-S) 

test, and the rank sum test was used for inter-group 

comparisons. Categorical variables will be expressed in terms of 

frequency and percentage, and chi-square tests will be used for 

inter-group comparisons. The MIMIC-IV dataset will be divided 

into a training set and an internal validation set in a ratio of 4:1 

(or 8:2), while the MIMIC-III dataset will serve as the external 

validation set. This study did not employ K-fold cross-validation 

or bootstrapping methods, but no statistically significant 

differences were observed between the internal training set and 

the internal validation set.

Feature selection will employ a variety of methods, including 

LASSO, MDA, MDG, FS, BS and BE. The intersection of the 

selected variables will be used to develop models for XGBoost, 

random forest, logistic regression, decision tree, support vector 

machine and artificial neural network.

The performance of the model was evaluated by using ROC 

curve, calibration curve, decision curve analysis, f1 score, 

sensitivity, specificity, PLR, NLR, PPV, NPV and cutoff analysis. 

The model with the highest ROC performance was selected as 

the main model. SHAP analysis will be used to explain the 

final model.

All statistical analyses were conducted using R software 

(version 4.5.1), p < 0.05 is considered statistically significant.

Ethics approval and consent to participate

The Collaborative Institution Training Program (CITI) 

certification has been completed, meeting the database access 

FIGURE 7 

ROC plot.
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requirements. All the databases used in this study contain de- 

identified data, so patient consent is not required. All 

procedures comply with relevant guidelines and regulations.

Result

A total of 21,723 patients with acute respiratory failure were 

extracted from the MIMIC-IV (v3.1) database. After excluding 

patients under 18 years old and those diagnosed with atrial 

fibrillation before the onset of acute respiratory failure, the final 

cohort included 21,594 patients diagnosed with acute respiratory 

failure, as shown in Figure 1.

Patients in the MIMIC-IV database were divided into two 

groups based on the presence of atrial fibrillation. Tables 1, 2

presents a comparison of baseline characteristics between the 

atrial fibrillation group and the non-atrial fibrillation group.

Baseline characteristics of patients with 
acute respiratory failure, with or without 
atrial fibrillation

Some clinical and laboratory indicators of patients with atrial 

fibrillation are significantly higher than those of non-atrial 

fibrillation patients, including age, pCO2, pH, alkali excess, 

TCO2, SpO2, Hct, Hgb, PLT, WBC, AG, HCO3, BUN, Cl, Cr, K, 

absolute basophils and absolute eosinophils. In addition, 

variables such as different blood cell counts, coagulation 

indicators, liver function tests, vital signs, GCS, OASIS, SOFA, 

APS III, SAPS III, Charlson comorbidity index, and Preiculos 

score were also recorded. As well as therapeutic factors such as 

oxygen ,ow rate, the use of non-steroidal anti-in,ammatory 

drugs, mechanical ventilation and elective surgery.

There were statistically significant differences in ALP, total 

bilirubin, respiratory rate, body weight, OASIS, SOFA, APS III, 

SAPS III, and Preiculos scores between the two groups. The 

scores were higher in the atrial fibrillation group, while the 

other indicators were either comparable or lower.

Supplementary Figure 1 shows the correlations among the 

variables in the internal dataset, and Supplementary Table 2

presents the collinearity analysis. Hemoglobin and hematocrit 

(r = 0.959, P < 0.001), PT and INR (r = 0.920, P < 0.001), DBP 

and MBP (r = 0.909, P < 0.001); There was a strong correlation 

among 0.001), and there were significant correlations between 

SOFA and APSIII (r = 0.724), total CO2 and alkali excess 

(r = 0.884), bicarbonate and alkali excess (r = 0.722), AST and 

ALT (r = 0.819), etc. (all P < 0.001).

The variance in,ation factor (VIFs) showed significant 

multicollinearity in base excess, total CO2, hematocrit, 

FIGURE 8 

ROC plot.
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hemoglobin, SOFA, SAPSII, DBP and MBP (VIFs ranged from 

11.20 to 29.73). However, the VIFs of bicarbonate, AST, ALT, 

total bilirubin, liver function, PT, INR and systolic blood 

pressure were all below 10, indicating that there was no 

significant multicollinearity.

Table 3 presents the selected predictor variables. Due to the 

differences between the MIMIC-IV and MIMIC-III databases 

and the lack of data on variables such as PCO2, pH, calcium, 

absolute basophils, absolute neutrophils, ALT, ALP, AST, body 

weight, and non-steroidal anti-in,ammatory drugs, despite these 

differences, the performance of the model was not 

significantly affected.

Selection of predictor variables

The predictor variables selected by six methods are. The 

specific parameters of the six methods, namely LASSO, RF- 

MDA, RF-MDG, SR-FS, SR-BS and SR-BE, are detailed in 

Supplementary Tables 3–7, Supplementary Figures 3–12. 

Figure 2 shows the intersection of six groups of predictor 

variables. Select the features that appear in at least four of the 

six methods as the final predictor variables.

Table 3 shows various performance metrics of the six 

models on both the internal validation set and the external 

validation set.

Model development and comparison

All internal datasets are divided into training sets and 

validation sets in a ratio of 4:1. Supplementary Table 6

summarizes the baseline characteristics of these two groups, 

showing comparable distributions. The Logistic regression (LR) 

results, including odds ratio and p value, are shown in 

Supplementary Tables 7, 8, and the corresponding forest plots 

are presented in Supplementary Figures 6, 7.

Table 4 presents the evaluation metrics for the internal and 

external validation sets along with their 95% confidence 

intervals. The AUC range for the internal set was 0.734–0.816, 

while that for the external set was 0.685–0.822. Delong tests 

(Supplementary Tables 9–11) identified XGBoost and Random 

Forest (RF) as the top performers on the internal and external 

datasets, respectively. Specifically, XGBoost achieved AUC values 

of 0.816 [0.804–0.829] and 0.771 [0.758–0.784], with SEN, SPE, 

PLR, NLR, PPV, NPV, and F1-score at 0.626 (0.601–0.651), 

0.800 (0.785–0.815), 3.133 (2.882–3.405), 0.467 (0.436–0.501), 

0.610 (0.585–0.635), 0.811 (0.797–0.825), 0.6267; 0.704 (0.684– 

0.725), 0.702 (0.689–0.716), 2.366 (2.247–2.501), 0.421 (0.390– 

0.452), 0.499 (0.478–0.520), 0.849 (0.838–0.860), 0.58. The 

corresponding values for the Random Forest model are 0.810 

[0.796–0.823], 0.822[0.811–0.834], 0.673 (0.648–0.697), 0.786 

(0.771–0.810), 3.148 (3.040–3.256), 0.416 (0.378–0.450), 0.611 

(0.596–0.646), 0.828 (0.813–0.842), 0.6332. 0.748 (0.728–0.766), 

FIGURE 9 

Calibration curves.
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0.741 (0.727–0.754), 2.889 (2.718–3.057), 0.341 (0.315–0.368), 

0.549 (0.529–0.569), 0.874 (0.864–0.884), 0.63. Both models 

performed excellently across multiple metrics, with the Random 

Forest model showing a slight overall advantage over XGBoost.

Figures 3–6 displays the confusion matrices for the internal 

validation set and external validation set of the two optimal 

models (XGBOOST and RF).

For the internal validation set, the RF metric is: Sensitivity 

(SEN) 0.673[0.648–0.697], specificity (SPE) 0.786[0.771–0.810], 

positive likelihood ratio (PLR) 3.148[3.040–3.256], negative 

likelihood ratio (NLR) 0.416[0.378–0.450] The positive predictive 

value (PPV) was 0.611[0.596–0.646], the negative predictive value 

(NPV) was 0.828 [0.813–0.842], and the f1 score was 0.633. For 

the external validation set, the metrics of the RF model are: 

SEN = 0.748 [0.728–0.766], SPE = 0.741 [0.727–0.754], PLR = 2.889 

[2.718–3.057], NLR = 0.341 [0.315–0.368] PPV = 0.549 [0.529– 

0.569], NPV = 0.874 [0.864–0.884], F1-Score = 0.63.

The ROC curves, correction curves and DCA curves of the six 

models in the internal validation set and the external validation set 

are shown in Figures 7–12.

The superior performance of XGBoost and Random Forest 

(RF) models can be attributed to several factors. Firstly, the 

AUC values of both models are relatively high (XGBoost: 0.816, 

RF: 0.831), indicating that the classification capabilities of the 

two models are strong and they have a good ability to 

distinguish between atrial fibrillation and non-atrial fibrillation 

patients. Secondly, their calibration curves are closely aligned 

with the ideal diagonal, indicating a more accurate probability 

estimation compared to other models. Finally, the two models 

demonstrated higher net benefits in the decision curve analysis 

(DCA) within the threshold probability range, indicating that 

they have greater clinical utility in guiding decision-making. 

These advantages highlight the accuracy, reliability and practical 

value of XGBoost and RF in predicting atrial fibrillation in 

patients with acute respiratory failure.

Optimal model interpretability

This study developed two dynamic graphs (available at 

http://127.0.0.1:7312) to visualize the impact of various variables 

on disease outcomes and to assist clinicians in quickly 

determining the likelihood of atrial fibrillation (Supplementary 

Figures 13–16). Variables with extreme values (representing a 

small portion of the data) were not excluded because determining 

the upper limit of clinical trial indicators is challenging.

To better understand the in,uence of different variables on 

atrial fibrillation, we used the SHapley Additive explanation 

FIGURE 10 

Calibration curves.
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diagram (Figure 13). As shown in Figures 8A,B, age is the most 

important factor in,uencing the development of atrial 

fibrillation. Figure 13B also highlights the intensity and direction 

of the in,uence of each variable. For the convenience of local 

interpretation, Figures 8C,D show how specific variables increase 

or decrease the risk of atrial fibrillation.

The clinical application of this model (highlighted by the 

SHAP summary graph) provides valuable insights into how 

individual characteristics can contribute to prediction and 

thereby assist in clinical decision-making. Key characteristics, 

such as age, blood glucose level and platelet count, play a crucial 

role in the prognosis of patients. The high interpretability of this 

model enables clinicians to understand the impact of each 

feature on risk prediction, thereby supporting informed real- 

time decision-making during patient management.

For instance, clinicians can guide the treatment adjustments of 

diabetic or metabolic patients based on the blood sugar levels 

predicted by the model to prevent complications. Systolic blood 

pressure (SBP) and body weight can be monitored to enable 

targeted intervention for patients with cardiovascular risk. Age 

is regarded as a key predictive feature that can assist clinicians 

in assessing high-risk patients, as it is closely related to chronic 

diseases such as hypertension, diabetes and cardiovascular 

diseases. This allows for more personalized care and effective 

treatment strategies.

For elderly patients, especially those with a history of heart 

failure, this model provides insights that help clinicians assess 

the risks and benefits of specific intervention measures. By 

combining age-related risks with other clinical data such as AST 

levels and systolic blood pressure, clinicians can make timely 

and accurate treatment decisions, prevent over-prescripting, and 

ensure that high-risk situations are addressed.

In addition, the model also provides predictive insights into 

biomarkers such as AST levels, which are potential signals of 

liver dysfunction. This enables clinicians to proactively adjust 

treatment methods and prevent health problems from escalating. 

Integrating these insights into clinical practice can enhance the 

accuracy of diagnosis and improve the ability of clinicians to 

intervene effectively at an early stage.

In conclusion, this model enhances clinical decision-making 

by providing real-time, data-driven insights. It enhances the 

accuracy of intervention, helps identify high-risk patients at an 

early stage, and optimizes treatment plans, all of which 

contribute to improving the prognosis of patients. Its ability to 

offer tailor-made proactive care makes it a valuable tool for 

patient management

Discussion

This study is the first to propose a predictive model for acute 

respiratory failure combined with atrial fibrillation, integrating six 

feature selection methods with real-world vital signs to identify 

key risk factors. Unlike previous research, no comparison model 

FIGURE 11 

DCA plot.
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was included, as no predictive models for this condition currently 

exist. Instead, the study systematically identifies the most relevant 

risk factors using multiple methods, ensuring model robustness 

and reliability.

Schüttler et al. simulated human atrial fibrillation using 

modeling techniques (9). Roussos et al. highlighted that patients 

with respiratory failure often experience neural suppression and 

neuromuscular conduction disorders, which may be indicative 

of neurotransmitter disturbances associated with AF and 

myocardial dysfunction (10). However, the mechanisms by 

which respiratory failure induces AF remain poorly understood.

Interestingly, the predictive performance of our machine 

learning models was slightly higher in the external validation 

cohort compared with the internal validation cohort. This 

finding may re,ect differences in the distribution of patient 

characteristics between datasets, or suggest that the models are 

robust and generalizable across independent patient populations. 

Nevertheless, careful interpretation is warranted, and further 

prospective validation is needed to confirm model stability and 

clinical applicability. Given the large sample size of this study, 

the likelihood of model overfitting is relatively low. Large-scale 

datasets can adequately re,ect the variability and 

representativeness of the underlying population, enabling 

machine learning algorithms to capture true patterns rather than 

noise. Nevertheless, external validation remains crucial for 

confirming the model’s robustness and generalization capabilities.

Six machine learning algorithms were applied, with 

performance evaluated using various metrics. XGBoost and 

Random Forest (RF) emerged as the top performers. A key 

innovation of this study is its novel approach to addressing a 

gap in existing research. The model’s interpretability was 

enhanced through SHAP values and visualizations, making it a 

valuable tool for healthcare professionals. The study found that 

age is the primary risk factor for atrial fibrillation, consistent 

with previous research (21). Age plays a crucial role in the 

development of atrial fibrillation (AF) in patients with acute 

respiratory failure (ARF). As age increases, the heart’s atrial 

structure undergoes dilation and fibrosis, leading to instability in 

atrial electrophysiological properties and an increased risk of 

AF. Elderly patients often have comorbid chronic conditions 

such as hypertension, diabetes, and coronary heart disease, with 

hypertension, in particular, causing left atrial enlargement and 

electrical remodeling, further promoting the occurrence of AF. 

Additionally, the aging process is accompanied by a decline in 

the heart’s self-regulation ability, making elderly patients more 

susceptible to electrophysiological abnormalities during acute 

pathological states such as hypoxia and acid-base imbalance. 

The mechanisms through which ARF leads to AF primarily 

include hypoxemia, acid-base imbalance, and hypercapnia. 

Hypoxia triggers instability in cardiac electrical activity, acid- 

base imbalance (e.g., metabolic acidosis) alters myocardial 

electrical activity, and hypercapnia causes atrial dilation and 

FIGURE 12 

DCA plot.
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increased load, all of which contribute to the onset of AF. 

Furthermore, ARF-induced hemodynamic changes, particularly 

in patients with concomitant heart failure, increase atrial 

pressure and stretch the atrial walls, further exacerbating the 

risk of AF. Pulmonary hypertension and elevated left atrial 

pressure also play key roles. The interaction of these 

pathological mechanisms makes ARF a significant trigger for 

AF, and understanding these mechanisms better helps in the 

prevention and management of these patients. Additionally, 

factors such as prothrombin time (PT), international normalized 

ratio (INR), blood pressure (DBP and SBP), body weight, 

glucose, hemoglobin, partial thromboplastin time (PPT), 

aspartate aminotransferase (AST), and bilirubin were identified 

as reversible risk factors for atrial fibrillation. For patients 

without other systemic issues, these values should be carefully 

managed within an appropriate range.

Other studies have shown that when patients develop atrial 

fibrillation, certain indicators can be used to predict the 

likelihood of their atrial fibrillation resolving (19). Age, gender, 

duration of AF, and other factors are important predictive 

indicators that can be used to assess a patient’s recovery from AF.

Limitations

This study has several limitations. Firstly, the external 

validation set lacks some predictors, which may affect the 

performance of the model. Future research should utilize more 

comprehensive external databases and improve data collection to 

reduce missing values, possibly through advanced imputation or 

multi-center data.

Thirdly, The respiratory and circulatory system diseases 

discussed in this study are both strongly associated with 

smoking (20). However, due to certain limitations in the 

MIMIC database, the inability to obtain this important 

characteristic represents a significant shortcoming of this research.

Secondly, factors not related to acute respiratory failure, such 

as previous cardiovascular diseases, medications or genetics, may 

affect the occurrence of atrial fibrillation. Future research should 

incorporate more covariates and consider multi-factor models or 

propensity scoring methods to address confusion.

Finally, the samples are from the MIMIC database and may 

not represent the global population, which limits their 

universality. More diverse populations need to be studied to 

validate the model in different regions.

Conclusion

Six feature selection methods and six machine learning algorithms 

are adopted to establish the model. XGBoost and Random Forest 

demonstrated the best performance in external validation. Vital signs 

and laboratory data can assist in timely clinical decision-making, 

reduce complications and improve outcomes.

FIGURE 13 

SHAP plot.
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