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Hydrogen is a clean, renewable energy source, that when combined with

oxygen, produces heat and electricity with only water vapor as a biproduct.

Furthermore, it has the highest energy content by weight of all known fuels. As a

result, various strategies have engineered methods to produce hydrogen

efficiently and in quantities that are of interest to the economy. To approach

the notion of producing hydrogen from a biological perspective, we take our

attention to hydrogenases which are naturally produced in microbes. These

organisms have the machinery to produce hydrogen, which when cleverly

engineered, could be useful in cell factories resulting in large production of

hydrogen. Not all hydrogenases are efficient at hydrogen production, and those

that are, tend to be oxygen sensitive. Therefore, we provide a new perspective

on introducing selenocysteine, a highly reactive proteinogenic amino acid, as a

strategy towards engineering hydrogenases with enhanced hydrogen

production, or increased oxygen tolerance.
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1 Introduction

C1-utilizing microbes, microorganisms which rely on one carbon molecule for

survival, have been of interest to produce biofuels for industrial use (Du et al., 2011).

Advances in metabolic engineering have led to the design of biosynthetic pathways as a

means to efficiently use cellular machinery (Bar-Even et al., 2010). One application of

these engineering strategies is to utilize the activity of [NiFe]- and [FeFe]-hydrogenases in

C1 microbes. Hydrogenases are enzymes that catalyze the reversible oxidation of

hydrogen and are used for hydrogen production, a renewable source of energy. To

compete with existing chemical methods for hydrogen production, hydrogenases require

a significant hydrogen production rate (Khanna and Lindblad, 2015). Furthermore, the

highest hydrogen producing hydrogenases are also the most oxygen sensitive, reducing

their efficiency within these microbial factories. Detailed studies on the factors driving

hydrogen production and oxygen sensitivity have facilitated engineering strategies to

overcome this (Wittkamp et al., 2018). More specifically, an investigation into the role of
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FIGURE 1
Selenocysteine (Sec) tRNA structure facilitates translation and insertion of Sec. (A) Escherichia coli (Ec) tRNASec secondary structure
highlights the features which facilitate its natural biosynthesis and insertion into the growing polypeptide chain. The long variable arm and
G73 discriminator base (dark blue) are recognized by Ec seryl-tRNA synthetase (SerRS) for initial aminoacylation with Ser. Conversion of Ser to
Sec occurs through Ec selenocysteine synthase (SelA) which recognizes the D-arm and (8/5) acceptor domain (teal). This 13 bp acceptor
domain discriminates tRNASec from canonical tRNAs and enables recognition by a specialized elongation factor, Ec SelB (maroon), for
insertion into the ribosome. (B) Ec SelB also recognizes an mRNA hairpin [Sec insertion sequence (SECIS) element] that is immediately
downstream of the UGA codon for insertion of Sec. Degradation of used selenoproteins releases Sec which is a substrate for Ec Sec lyase
(SufS), converting the amino acid to alanine (Ala) and releasing selenium (Se). Se is then converted to selenophosphate (SeP) by
selenophosphate synthetase (SelD) where it re-enters the biosynthesis path. (C) allo-tRNAUTu1 secondary structure highlights the features
which facilitate a simpler biosynthesis and insertion path for Sec in bacteria. The long variable arm and G73 discriminator base (dark blue) are
recognized by Ec SerRS while the D-arm and (9/3) acceptor domain (teal) are recognized by Aeromonas salmonicida (As) SelA. Elongation of
allo-tRNAUTu1 and insertion of Sec into the polypeptide chain occurs with Ec EF-Tu (maroon) which does not require the restrictive SECIS
element. (D) The pSecUAG-Evol plasmid harbors additional enzymes that are recombinantly expressed (underlined) to promote Sec insertion
in this simplified path. Selenoprotein degradation, including that of the additional Treponema denticola (Td) Trx1 releases Sec which is
converted to Ala by both recombinant and endogenous SufS. To increase conversion of Se to SeP, both As SelD and Ec SelD are present.
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selenocysteine (Sec) in these key processes for the development of

novel hydrogenases increases the applicability for industrial

purposes (Marques et al., 2017; Evans et al., 2021).

Sec, a homolog of cysteine (Cys), is found in redox-associated

enzymes across all domains of life (Li et al., 2014). With a single

sulfur to selenium replacement compared to Cys, Sec retains

similar chemistry but with enhanced chemical properties

(i.e., increased nucleophilicity, decreased side-chain pKa, and

increased oxidation which is often reversible) (Chung and Krahn,

2022). The distinct characteristics of this amino acid and its

similarity to Cys suggests it is potential to affect the active site

electronic properties, catalytic rate, or oxygen sensitivity of

hydrogenases (Hondal et al., 2013; Marques et al., 2017; Evans

et al., 2021).

Occurring naturally in bacteria, Sec is incorporated in

proteins at a UGA codon that immediately precedes a hairpin

loop (known as the Sec insertion sequence [SECIS] element) in

the translated region of the mRNA. Biosynthesis of Sec occurs on

tRNASec, where it is first aminoacylated with serine (Ser) by seryl-

tRNA synthetase (SerRS) and then converted to Sec by

selenocysteine synthase (SelA) (Fu et al., 2018). SelA uses

selenophosphate as a substrate for this conversion, provided

by selenophosphate synthetase (SelD) (Stock and Rother,

2009). The resulting Sec-tRNASec is recognized by a

specialized elongation factor (SelB) for peptide elongation in

the ribosome. SelB resembles the canonical elongation factor EF-

Tu, but with a C-terminal extension for interaction with the

SECIS element (Stock and Rother, 2009). This complex and

highly regulated path for insertion of Sec (Figures 1A, B) has

been an obstacle for recombinant selenoprotein production (Fu

et al., 2018).

In this perspective, we discuss the details of an emerging

technology for site-specific Sec insertion in Escherichia coli and

how it can be adapted to cell factories. We focus on applying

these cell factories for hydrogen production, highlighting recent

evidence on the novel properties imparted by Sec on

hydrogenases.

2 Engineering tRNAs for SECIS-
independent selenocysteine insertion

The complicated biosynthesis of Sec is facilitated by the

tRNASec structure, its main distinguishing factor being a 13 bp

acceptor domain (acceptor stem and T-stem combined). This

promotes recognition by SelB and reduces EF-Tu binding which

favors the canonical 7/5 tRNA structure (12 bp acceptor domain)

(Krahn et al., 2020). SelB also requires recognition of the SECIS

element to facilitate insertion of Sec. This interaction controls the

position of Sec within a protein, but it restricts the ability to

overexpress these proteins or make novel selenoproteins (Cheng

and Arnér, 2017). Therefore, to remove these restrictions, it was

hypothesized that a tRNA could be engineered to biosynthesize

Sec but be inserted in the ribosome by EF-Tu (Aldag et al., 2013;

Miller et al., 2015; Thyer et al., 2015). Taking advantage of prior

knowledge on the tRNASec elements required to interact with

each protein in this pathway (Krahn et al., 2020), one can

strategically engineer a tRNA for SECIS-independent Sec

insertion.

The discovery of allo-tRNAs, a group of tRNAs with novel

secondary structure (Mukai et al., 2017), provided a scaffold for

engineering a tRNA to insert Sec in an EF-Tu dependent manner.

Allo-tRNAs are found to have 12 bp acceptor domains in a 9/3 or

8/4 configuration, unlike the 7/5 configuration of canonical

tRNAs (Figure 1C). This alternate arrangement of the

acceptor stem and T-stem does not appear to limit its binding

to EF-Tu (Mukai et al., 2017), nor does it affect the distance

between the acceptor stem and anticodon (Prabhakar et al.,

2022). The anticodon is not a recognition element for any of

the involved enzymes in Sec biosynthesis (Krahn et al., 2020),

therefore it can be manipulated for readthrough of Sec at a UAG

codon in addition to its natural suppression at a UGA codon

(Mukai et al., 2017; Mukai et al., 2018). Moreover, some allo-

tRNAs have features that resemble tRNASec, namely the

G73 discriminator base, long variable arm, and unique D-arm.

The first two features are key identity elements required for SerRS

recognition, while the latter is recognized by SelA (Figure 1C)

(Krahn et al., 2020). For these reasons, allo-tRNAs became the

backbone for tRNA engineering in a rewired Sec translation path

(Figure 1D) (Mukai et al., 2018).

Since it was confirmed that allo-tRNAs could be efficiently

recognized by EF-Tu (Mukai et al., 2017), it was imperative to

ensure that only Sec would get inserted into the protein. Unlike SelB

which preferentially recognizes Sec-tRNA over Ser-tRNA

(Leibundgut et al., 2005), EF-Tu only requires the presence of an

amino acid on the tRNA (Schrader et al., 2011). Therefore, a closer

investigation of the SelA and tRNASec interaction was required to

promote Ser to Sec conversion. In addition to theD-arm, E. coli SelA

also recognizes the 13 bp acceptor domain of tRNASec (Krahn et al.,

2020). To promote interaction with allo-tRNAs, Aeromonas

salmonicida (As), a close relative of E. coli, was found to have a

SelA enzyme able to recognize 12 bp acceptor domain tRNAs. This

major change accommodated Sec conversion on allo-tRNAs and

was further enhanced by engineering the D-arm of allo-tRNAs to

resemble that of As tRNASec (Figure 1C) (Mukai et al., 2018).

The unique 9/3 structure of allo-tRNAs facilitate Sec

biosynthesis and recognition by EF-Tu but does not provide

any evidence as to how well it is accepted by the ribosome.

Structural analysis and single-molecule translation studies

revealed that the 9/3 acceptor domain does not interfere with

translation. Instead, it was the rigidity of the variable arm

affecting translocation of the allo-tRNA from the A- to the

P-site of the ribosome. A single point mutation to disrupt the

tertiary interaction in the central loop of the tRNA increased the

flexibility of the variable arm to promote Sec insertion

(Prabhakar et al., 2022).
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The strategy of engineering allo-tRNAs for EF-Tu dependent

translation has resulted in improved Sec incorporation compared

to tRNAs engineered as a hybrid of tRNASec and tRNASer (Aldag

et al., 2013; Miller et al., 2015; Thyer et al., 2015). The structure of

allo-tRNAs has decoupled Sec translation from SelB and likewise

the SECIS-element to facilitate Sec insertion into any position in

the protein (Mukai et al., 2018). The versatility to site-specifically

insert Sec and the enhanced chemical properties imposed by this

amino acid makes it attractive for use in C1 microbial factories.

2.1 Adapting Sec translation in bacterial
cell systems

The expression of allo-tRNAs in bacterial cell systems is

mediated through a plasmid, specifically the pSecUAG-Evol

plasmid series (Mukai et al., 2018; Chung et al., 2021).

pSecUAG-Evol contains an allo-tRNA gene under an araC

promoter plus other protein genes which have been found to

enhance Sec insertion: i) As SelA to facilitate Ser to Sec

conversion on allo-tRNAs and ii) As SelD, iii) Treponema

denticola (Td) Trx1 and iv) mutant E. coli Sec lyase (SufS_

C364A) to increase available selenium. With this plasmid,

only two endogenous components from the host are required:

i) SerRS for initial Ser aminoacylation and ii) EF-Tu to facilitate

elongation in the ribosome. Endogenously expressed E. coli SelD

and SufS are not essential to the path but can assist the

recombinantly expressed proteins (As SelD and Ec SufS_

C364A) to promote Sec insertion (Figure 1D).

The effectiveness of using allo-tRNAs for Sec insertion in

E. coli suggests that they can also be adapted in bacterial cell

factories. These factories can be composed of organisms from the

genus Clostridium (Liew et al., 2016). For example, metabolically

engineered Clostridium autoethanogenum is used to increase

production of ethanol from carbon fixation (Liew et al., 2017).

C. autoethanogenum, like E. coli, contains machinery for Sec

incorporation, as seen by the presence of selenium containing

formate dehydrogenase (Abubackar et al., 2015). Therefore, some

of the proteins used for endogenous Sec insertion can also assist

in recombinant expression. Furthermore, the >70% homology of

both EF-Tu and SerRS in C. autoethanogenum compared to

E. coli suggest that allo-tRNAs can potentially be serylated and

recognized for elongation in these organisms.

The comparable machineries indicates that the pSecUAG-

Evol plasmid system used in E. coli could be adapted for use in C.

autoethanogenum. Optimization to determine the requirement

or replacement of As SelD, Td Trx1 and Ec SufS_C364A to

promote Sec insertion may be needed. These three proteins were

added to increase the amount of available selenium in the cells

without inducing cellular toxicity from additional selenium

supplementation (Mukai et al., 2018). Codon usage in E. coli

and Clostridium species also differs. Therefore, for optimal

protein expression from the pSecUAG-Evol plasmid, codon

optimization of these mRNA sequences would be preferable.

As has been observed with E. coli, the expression levels of these

additional proteins can be burdensome on the organism,

therefore is should not be assumed that maximal expression

levels are optimal (Mukai et al., 2018).

Another important consideration when adapting this system

to bacterial cell factories, is the concentration and form of

selenium donor that is being used. Some organisms tolerate

different concentrations of sodium selenite (the selenium

donor used in E. coli) before it inhibits their growth.

However, other sources of selenium, such as selenomethionine

can also be used and may be preferable for that organism (Mony

and Larras-Regard, 2000).

3 Hydrogenases as a target for
selenocysteine incorporation

Hydrogenases, found across diverse microorganisms, are a

class of enzymes that carry out essential functions in hydrogen

metabolism (Vignais and Billoud, 2007; Calusinska et al., 2010;

Peters et al., 2015; Greening et al., 2016). Two major classes of

hydrogenases named according to the metal centers in their

active site, [NiFe]- and [FeFe]-hydrogenases, catalyze the

reversible oxidation of H2 gas from electrons and protons

(2H+ + 2e− $ H2) (Figure 2) (Lubitz et al., 2014). A subset

of [NiFe]-hydrogenases, the [NiFeSe]-hydrogenase, contains Sec

in place of a Cys ligand in the active site (Garcin et al., 1999;

Marques et al., 2010; Volbeda et al., 2013). A third class of

hydrogenases, the Fe-hydrogenases, contain a mono-nuclear Fe

active site and activates H2 in the presence of the substrate

methylenetetrahydromethanopterin (Shima et al., 2008). Due

to the ability of the [NiFe]- and [FeFe]-hydrogenases to

achieve high reaction rates under ambient conditions, these

enzymes and respective active-site structures serve as design

models for bio-mimetic and bio-inspired catalysts (Simmons

et al., 2014; Schilter et al., 2016; Dutta et al., 2018; Kleinhaus et al.,

2021).

While the catalytic activation of H2 is reversible, the [NiFe]-

and [FeFe]-hydrogenases often display a catalytic bias which is

reflected by dis-proportionate reactions rates for the H2

oxidation and evolution directions (Mulder et al., 2021). This

underscores the enzymes function in H2 metabolism, making

them ideal targets for renewable H2 production and storage

technologies through coupling to other reductive or oxidative

reactions (Schuchmann et al., 2018). By example, electrons

generated by the H2 oxidation reaction from [FeFe]-

hydrogenase can be coupled to reductive processes such as

CO2 reduction to formate (Schuchmann and Müller, 2013).

Conversely, the H2 evolution reaction is often coupled to

oxidation of mobile electron-carriers such as ferredoxin or

NADPH in anaerobic fermentation. Green algae and

cyanobacteria type hydrogenases play an important role in
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photosynthetic H2 production, through coupling electrons

generated from the water splitting reaction to H2 evolution

(Akhlaghi and Najafpour-Darzi, 2020; Kosourov et al., 2021).

3.1 [NiFe]- and [NiFeSe]-hydrogenases

[NiFe]-hydrogenases contain an active site with the Ni and

Fe metals bridged together by Cys residues (Figure 2A) (Volbeda

et al., 1995; Shafaat et al., 2013; Lubitz et al., 2014; Peters et al.,

2015; Ogata et al., 2016). The Ni in the active site is coordinated

by four Cys ligands: two bridging Cys thiolate ligands connect the

Ni to the Fe and two terminal Cys thiolate ligands are located at

the Ni. Furthermore, the Fe is coordinated by two CN− molecules

and one CO molecule. The [NiFeSe]-hydrogenases share a

similar active site (Figure 2B), whereas one of the Cys ligands

is Sec. Nearby non-coordinating conserved residues by the

protein scaffold play important roles in tuning the active site

for reversible H2 oxidation reaction through hydrogen-bonding

interactions (Brooke et al., 2017). Conserved Asp and Arg

residues found distal to the bridging Cys ligands are necessary

for efficient H2 oxidation (Evans et al., 2016; Vansuch et al.,

2020), whereas a conserved Glu residue adjacent to the terminal

Cys acts as the universal proton gate to the active site (Dementin

et al., 2004; Evans et al., 2018). Outside of the active site

environment, there exist FeS clusters which allow for long-

range transfer of electrons. The O2-tolerant [NiFe]-

hydrogenases (Group 1D) contain a unique proximal [4Fe-3S]

6-Cys ligated cluster in relation to the active site that can reduce

O2 to water, preventing a loss of catalytic activity (Fritsch et al.,

2011; Goris et al., 2011; Shomura et al., 2011). On the other hand,

O2-sensitive [NiFe]-hydrogenases do not have all 6 Cys residues

present in this FeS cluster, which has been suggested to cause O2-

sensitivity. [NiFeSe]-hydrogenases (Group 1A) are reported to

have higher activity for producing H2 while [NiFe]-hydrogenases

are typically biased for H2 oxidation (Parkin et al., 2008).

The [NiFe]-hydrogenases lose much of their catalytic activity

in the presence of O2. In some [NiFe]-hydrogenases they regain

activity once the O2 dissipates, but in others they require proton

reduction before they become active again (Shafaat et al., 2013;

Ogata et al., 2016). Those enzymes capable of oxidizing H2 in the

presence of oxygen (albeit at a lower level) are deemed O2

tolerant. The catalytic mechanism of [NiFe]-hydrogenases has

been well-studied for use in biotechnological applications,

however the requirement to work in an aerobic environment

reduces the feasibility of this endeavor.

As we begin to understand the role of Sec in [NiFeSe]-

hydrogenases, there may be a solution unraveling to the O2

sensitivity roadblock. Initial studies looking at a natural

[NiFeSe]-hydrogenase, investigated the effects of Sec to Cys

substitution on its activity and O2 tolerance. The presence of

a Cys instead of a Sec at the active site reduced Ni incorporation,

H2 production activity, and O2 tolerance of the enzyme (Marques

et al., 2017). In an opposite study, effects of a Cys to Sec

substitution in a natural [NiFe]-hydrogenase were investigated

(Evans et al., 2021). Regardless of the position of the Sec

substitution in the active site, the H2 oxidation activity was

reduced, and no H2 production activity was observed. On the

other hand, substituting a Sec residue in the same position as

what is observed in natural [NiFeSe]-hydrogenases, significantly

increases the O2 tolerance (Evans et al., 2021).

These combined results suggest that the presence of Sec in the

active site is not the only factor affecting a shift to H2 production

activity. Rather the surrounding environment of the catalytic

FIGURE 2
Cut-away views of (A) the active site of the [NiFe]-hydrogenase Hyd-1 from Escherichia coli (PDB: 5A4M), (B) the active site of the [NiFeSe]-
hydrogenase from Desulfovibrio vulgaris Hildenborough (PDB: 5JSK), and (C) the H-cluster active site of the [FeFe]-hydrogenase CpI from
Clostridium pasteurianum (PDB: 3C8Y). Coloring scheme: C, white; O, red; N, blue; S, yellow-orange; Se, orange; Ni, green; Fe, rust.

Frontiers in Catalysis frontiersin.org05

Patel et al. 10.3389/fctls.2022.1089176

https://www.frontiersin.org/journals/catalysis
https://www.frontiersin.org
https://doi.org/10.3389/fctls.2022.1089176


active site also influences the capability of [NiFe]-hydrogenases

to oxidize or produce H2. However, the evidence is convincing

that the presence of selenium increases O2 tolerance. This is the

opposite to what one may expect given that selenium is readily

oxidized. While this is true, it appears that the reversibility and

ease in reduction of selenium oxides compared to sulfur oxides

plays a role in this effect (Maroney and Hondal, 2018). One

suggestion is that the selenium atom acts as a decoy, being

preferentially oxidized, and therefore avoiding oxidation and

inactivation of the [NiFe]-active site. Further investigation

into the details of this chemical behavior still need to be

uncovered. Conveying these two important details, [NiFeSe]-

hydrogenases can be a solution towards the oxidation

inactivation problem, and a promising target for growth in

C1 microbes.

3.2 [FeFe]-hydrogenases

The second major group of hydrogenases, [FeFe]-

hydrogenases, contain a complex metallocofactor active site

termed the H-cluster and are known to be very active in H2

production (Lubitz et al., 2014; Peters et al., 2015). The H-cluster

is comprised of a Cys ligated [4Fe-4S] cluster ([4Fe-4S]H) and

binuclear iron site ([2Fe]H) (Figure 2C) (Peters et al., 1998;

Nicolet et al., 1999). The two centers are bridged and

electronically linked via a Cys thiolate ligand which is the

only covalent attachment point for [2Fe]H to the protein

scaffold (Popescu and Münck, 1999). This differs from the

structure of the [NiFe]-hydrogenase active site, which contains

multiple bridging Cys ligands connecting the active site to the

protein scaffold. Similar to the [NiFe]-hydrogenase active site,

biologically unique CO and CN− ligands coordinate the Fe atoms

of [2Fe]H, in addition to a bridging azadithiolate ligand (Silakov

et al., 2007; Berggren et al., 2013; Esselborn et al., 2013). The latter

plays an important role in H2 activation. The bridgehead amine

can function as a catalytic base (Fan and Hall, 2001) to the H+

binding site at the distal Fe atom of [2Fe]H, providing a key

interaction point with a conserved proton-transfer pathway that

terminates with a Cys within H-bonding distance of the ligand

(Ginovska-Pangovska et al., 2014; Duan et al., 2018;

Kisgeropoulos et al., 2022). Numerous site-directed

mutagenesis studies have demonstrated the importance of the

surrounding protein scaffold of the H-cluster in tuning its

electronic properties and catalytic activity (Winkler et al.,

2013; Stripp et al., 2022). Similar to [NiFe]-hydrogenases, long

range potential effects on catalysis are possible through the

presence of additional FeS clusters that function in electron-

transfer (Greco et al., 2011; Rodriguez-Maciá et al., 2017; Caserta

et al., 2018). These are present in different subgroups of [FeFe]-

hydrogenases by means of ferredoxin-like binding domains

present in a modular-like fashion (Mulder et al., 2011).

Attempts have been made to introduce exogenous

hydrogenases into cyanobacteria that can either pair with the

endogenous, bidirectional Hox [NiFe]-hydrogenase or operate in

engineered strains devoid of Hox and other endogenous uptake

[NiFe]-hydrogenases (Ducat et al., 2011; Gartner et al., 2012;

Khanna and Lindblad, 2015; Avilan et al., 2018; Kosourov et al.,

2021). Success was found by expressing an [FeFe]-hydrogenase

from the energy demanding nitrogen-fixing Clostridium

acetobutylicum in non-nitrogen-fixing Synechococcus elongatus

sp. 7942 (Ducat et al., 2011).Without the need to use energy from

the sun for nitrogen fixation, the sunlight to H2 conversion was

increased. A significant challenge towards these types of

approaches is the extreme O2 sensitivity of [FeFe]-

hydrogenases. While certain [FeFe]-hydrogenases such as one

from Clostridium beijerinckii (CbA5H) are emerging with unique

O2 sensitivity properties (Morra et al., 2016; Corrigan et al., 2020;

Winkler et al., 2021; Morra, 2022), the majority of characterized

[FeFe]-hydrogenases are irreversibly inactivated by O2. As a

result, biohydrogen production must be a delicate process to

ensure that [FeFe]-hydrogenases are not inhibited by O2

produced from light-dependent reactions. This is typically

approached by regular aerobic growth of cyanobacteria to

generate internal stores of reductants before transferring to an

anaerobic atmosphere (with inactivation of photosystem III), to

facilitate hydrogenase activity (Ducat et al., 2011).

These efforts show the potential for increasing H2 production

levels of [FeFe]-hydrogenases, though deeper understanding of

the H2 metabolism in cyanobacteria is necessary (Khanna and

Lindblad, 2015; Kosourov et al., 2021). A recurring problem is

that cyanobacteria are unable to proceed with both light-

dependent reactions and [FeFe]-hydrogenase activity at the

same time. Taking into consideration the remarkable O2

tolerance gained by Sec substitution in the active site of a

[NiFe]-hydrogenase, there is a prospective application for Sec

insertion in the active site of [FeFe]-hydrogenases. Related

studies have looked at selenium substitution at the sulfide

positions of the H-cluster metal site (Noth et al., 2016; Kertess

et al., 2017). This is made possible through semi-artificial

reconstitution procedures which achieve an active [FeFe]-

hydrogenase by addition of a synthetic [2Fe]H cluster

{[Fe2(SCH2NHCH2S)(CO)4(CN)2]
2−} into an apo-form of the

enzyme only containing [4Fe-4S]H (Berggren et al., 2013;

Esselborn et al., 2013). For one selenium derivative H-cluster

containing selenium at the thiolate positions of the azadithiolate

ligand (SeCH2NHCH2Se), a slight increase in catalytic bias

toward H2 evolution was observed, however this was

accompanied by a decrease in O2 stability compared to the

native enzyme (Kertess et al., 2017). Another selenium

derivative H-cluster containing selenium at the [4Fe-4S]H
sulfide positions ([4Fe-4Se]H) displayed similar catalytic rates

for H2 evolution compared to the native enzyme (Noth et al.,

2016).
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4 Outlook

We have highlighted an emerging recombinant technology for

site-specific Sec insertion into proteins using novel allo-tRNAs in a

specially designed plasmid. Furthermore, we have shown its

application in hydrogenases and emphasize the transferability of

this system into microbial cell factories. The unique chemical

properties of Sec makes its incorporation beneficial to engineering

hydrogenases with increased or tuned catalytic activity and, perhaps

more difficult, O2 tolerance.

Evidence thus far has investigated the incorporation of Sec in

the active site, however other conserved structures such as FeS

clusters that function in electron-transfer may also play critical

roles in regulating tolerance to oxidative damage. One such

example for certain types of [NiFe]-hydrogenases which

confer extreme O2 tolerance, is the presence of a unique [4Fe-

3S] cluster proximal to the active site that contains 6 conserved

Cys residues (Dementin et al., 2004; Evans et al., 2018). O2

tolerance is lost upon two Cys to Gly mutations and growth of the

organisms in high O2 concentrations was affected (Goris et al.,

2011). Although the tendency has been to substitute Sec for Cys

in the active site, this suggests that other FeS cluster electron-

transfer centers which are widely present among diverse [NiFe]-

and [FeFe]-hydrogenases may also be suitable targets.

While we stress the substitution of Sec in hydrogenases and use in

H2 production, the unique chemical properties of Sec can be

harnessed in any protein when engineering microbial cell factories.

Specifically, enhancing catalytic properties to enzymes which use Cys

in their active site is on the top of the list.
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