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We have recently shown that simple ammonium ferrates are competent catalyst

for the cycloaddition reaction of CO2 to epoxides under moderate reaction

conditions (T = 100°C, P(CO2) = 0.8 MPa). We report here that ammonium

zincates of general formulae [TBA]2 [ZnX4] (TBA = tetrabutylammonium), simply

obtained by treating an ethanolic solution of an appropriate zinc(II) salt with two

equivalents of tetrabutylammonium halides, outperform ammonium ferrates in

the synthesis of cyclic carbonates under milder reaction conditions (room

temperature and atmospheric CO2 pressure). Using [TBA]2[ZnBr4] complex

as homogeneous catalyst at 100°C and P(CO2) = 0.8 MPa a 52% conversion of

styrene oxide with complete selectivity in styrene carbonate in just 15 min was

observed, corresponding to a Turnover frequency (TOF) of 416 h−1. The same

catalyst proved to be very active even at room temperature and atmospheric or

very moderate CO2 pressures (0.2 MPa), with a quite broad range of substrates,

especially in the case of terminal epoxides, with high selectivity towards cyclic

carbonate products. The difference in reactivity of terminal and internal

epoxides could be exploited using 4-vinylcyclohexene dioxide, where the

endocyclic epoxide remained untouched when reacted at room

temperature and the formation of the di-carbonate product was observed

only at harsher conditions. A multigram scale conversion of propylene oxide

was achieved (46 mmol) and the catalyst also proved to be recyclable (3 cycles)

by distillation of the product and subsequent addition of fresh reagent,

maintaining high conversion values and complete selectivity for propylene

carbonate. This simple zinc-based catalytic system, which outperform the

recently reported iron-based one by working at much milder conditions,

could represent a valuable prospect in both laboratory and industrial scale,

combining an inherent cheapness and synthetic easiness that should be deeply

considered when the goal is to give value to a waste product as CO2.
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Introduction

The growing interest in the use of greenhouse gas CO2 as

C1 building block in organic synthesis is strongly correlated to

the urgent need to find a solution towards the challenges that we

are facing in terms of global carbon emission and the new

paradigm in managing the carbon cycle (Martens et al., 2017;

Das, 2020). Obviously, the replacement of fossil fuels-based

chemistry cannot be the sole solution, but the new

technologies based on the substitution of non-sustainable

feedstock into renewable ones will help to the transition to a

circular economy (Gabrielli et al., 2020; Modak et al., 2020). In

this regard, ring strained small heterocycles, such as aziridines

and epoxides play a prominent role in the field (Intrieri et al.,

2019), since due to the high energy associated with these

molecules, reaction with thermodynamically stable CO2 occurs

smoothly (Dalpozzo et al., 2019). In particular, the selective

formation of cyclic carbonates (Sit et al., 2005; Aomchad

et al., 2021a) or polycarbonates (Inoue et al., 1969; Inoue,

1979) from the coupling reaction of epoxides with carbon

dioxide represents a highly coveted target and it is amongst

the few processes that employ CO2 as C1 feedstock that has been

industrialized until now (Liu et al., 2015; Pescarmona, 2021). One

the one side, the use of high energy substrates such as epoxides

provides the necessary driving force to overcome the

thermodynamical stability and kinetic inertness associated

with the CO2 molecule, which is the most oxidized form of

carbon (Bai et al., 2021). On the other side, in order to achieve a

close carbon cycle, catalysis and catalyst design are critical aspect

in order to lower the energetic requirements of the reaction and

to limit the use of harsh reaction conditions (Keijer et al., 2019).

For that reason, a continuous effort, especially in the last decade,

has been made to develop new catalysts to promote this useful

transformation under mild working conditions and with high

efficiency (Shaikh et al., 2018). Generally, both a Lewis acid (LA)

and a Lewis base are necessary respectively to activate the epoxide

and for the nucleophilic attack that causes its ring opening

(Pescarmona, 2021; Bhat and Darensbourg, 2022). Following

that, the ring-opened epoxide can undergo either CO2 insertion

to form a carbonate or repetitive insertion to lead to polyether

formation (Kamphuis et al., 2019b). Especially in the case of less

hindered terminal epoxides, once the carbonate is formed after

CO2 insertion, a fast backbiting leads to the formation of

industrially relevant cyclic carbonates (Schäffner et al., 2010;

Besse et al., 2013; Aresta et al., 2016; Sathish et al., 2016). Several

very efficient catalytic systems, either homogeneous (Castro-

Osma et al., 2016; Rintjema and Kleij, 2017; Della Monica

et al., 2018; Della Monica et al., 2019a; Della Monica et al.,

2019b; Driscoll et al., 2019; Kamphuis et al., 2019a; Damiano

et al., 2020; Della Monica et al., 2020; Maquilón et al., 2020;

Aomchad et al., 2021b) or heterogeneous (Liang et al., 2019;

Sodpiban et al., 2019, 2021; Wang et al., 2019; Singh Dhankhar

et al., 2020; Liu F. et al., 2022; Liu M. et al., 2022), have recently

been developed, where the former generally possess higher

activities but lack in recyclability. Very often the actual

catalyst act as the Lewis acid and in most cases a co-catalyst,

typically organic halides, such as quaternary ammonium (Caló

et al., 2002; Wang et al., 2012, 2021; Montoya et al., 2015) or

bis(triphenylphosphine)iminium salts (Sit et al., 2005), was

added to observe good reactivities. It is worth to note that in

past literature, when a combination of a Lewis acid (catalyst) and

a Lewis base (co-catalyst) have been used to promote the

coupling reaction between CO2 and epoxides, TOF values

have been calculated only considering the amount of added

catalyst, neglecting the role played by the sole Lewis base

(Campisciano et al., 2020). In the search of more efficient

catalysts, many recent efforts have been done in the design of

materials embedding both Lewis acidic and basic catalytic sites,

for the CO2 cycloaddition reaction under milder reaction

conditions, without the addition of any co-catalyst and both

homogeneous (Tong et al., 2022) and heterogeneous catalysts

(Nguyen et al., 2022; Su et al., 2022) have been reported especially

in the last years. It should be noted that most of these catalysts

work under solvent-free and ambient pressure CO2 reaction

conditions, however the temperatures required to observe good

conversion of the starting epoxide are in the range 80–120°C.

We have recently exploited the reactivity of

tetrabutylammonium ferrates of the general formulae [TBA]

[FeX3Y] (TBA = nBu4N, X, Y = Cl, Br), that can be obtained

from inexpensive chemicals such as tetrabutylammonium halides

and ferric salts (Wyrzykowski et al., 2006, 2007), as stand-alone

catalysts in the CO2 cycloaddition to epoxides (Panza et al.,

2022). The effect of the experimental factors (reaction

temperature, CO2 pressure, type of nucleophile and recycling

of the catalyst), together with a full set of theoretical calculations,

were studied in depth. Good yields of cyclic carbonates were

obtained, especially for terminal epoxides with a broad reaction

scope. Reaction conditions employed were quite mild, however,

CO2 pressures between 0.4 and 0.8 MPa and temperatures

between 100 and 150°C were needed in order to observe full

conversion with high selectivity. We report here that analogous

tetrabutylammonium zincates are competent catalysts for the

same selective transformation even at room temperature.

Results and discussion

Synthesis of the ammonium zincates
[TBA]2 [ZnX4] (X = cl, Br, I)

A series of ammonium zincates, [TBA]2[ZnX4], (X = Cl, Br,

I) was synthesized by simply treating an ethanolic solution of

2 equivalents of the appropriate tetrabutylammonium halide

with 1 equivalent of the zinc salt. As detailed in the Materials

and methods section and in the Supplementary Material,

ammonium zincates were obtained in good yields and purity
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by simple recrystallization from cold methanol (-20°C). The

purity was confirmed by elemental analyses, whilst accurate

high resolution mass spectra were carried out in CH3CN with

the double aim to assess the proposed structure and to study the

equilibria between the undissociated dianion [ZnX4]
2- and the

solvated forms ([ZnX3]
- + X−) and (ZnX2 + 2X−). This kind of

equilibria between “ate” and neutral salts and its relevance to the

nucleophilic ring opening of epoxides has been already disclosed

by us in the case of the tetrabutylammonium ferrates (Panza

et al., 2022), and it was already predicted by Capacchione and co-

workers in the case of [FeBr4]
- anion (Della Monica et al., 2019b).

Recently it has been also disclosed the existence of such an

equilibrium by Baalbaki et al. in the case of indium bromide

(Baalbaki et al., 2021). In the case of the tetrabutylammonium

zincates, by ESI(-)-HRMS the expected dianion [ZnX4]
2- was not

found, but instead a more persistent monoanion [ZnX3]
- was

detected in the case of X = Cl, Br, while in the case of [ZnI4]
2- only

I− and I3- were detectedmost likely due to the higher lability of the

compound. Table 1 collects the yields of the

tetrabutylammonium zincates synthesized and used as catalyst

in the CO2 cycloaddition to epoxides, whilst for their synthesis

and characterization (elemental analyses and HRMS), the reader

is referred to the Supplementary Material.

Zincates catalyzed cyclic carbonate
synthesis

We used styrene epoxide (SO), 1a, as the benchmark

substrate to optimize the reaction conditions by employing

the different tetrahalogenozincates salts in solvent-free

conditions. Since the optimized conditions with the recently

reported “ferrate” catalysts were found to be 0.5 mol% catalyst

loading at 100°C and under 0.8 MPa of CO2, initially we set there

the starting point for the optimization using tetrachloro-,

tetrabromo- and tetraiodo-zincates. Under the previously

described conditions, when using [TBA][FeCl3Br] as the

catalyst, 83% of SO was converted into styrene carbonate

(SC), 2a, in 4 h with 95% selectivity (Panza et al., 2022). To

our delight, all the zincate catalysts tested gave instead

quantitative conversions of the starting epoxide in 4 h reaction

time, with excellent selectivity in the case of the bromide and

iodide salts (94 and 95% respectively, entries 2 and 3, Table 2).

We should emphasize, however, that in this case 0.5 mol% of the

catalyst contains the double of equivalents of the ammonium

cation with respect to the monoanionic ferrates analogues, but we

already showed that its role is limited essentially to a rigid shift of

all energies towards lower values (Panza et al., 2022). When we

reduced the reaction time at 2h, we still observed a quantitative

conversion, except for [TBA]2[ZnCl4] as catalyst, with selectivity

in the range 91–98% (entries 4–6, Table 2). The most promising

catalyst resulted to be the [TBA]2[ZnBr4] complex, that in just

1 h of reaction converted 98% of starting 1a with 96% selectivity

in 2a (entry 8, Table 2). As we already noticed in the case of

[Zn(II)pyclen] complexes reported recently as efficient catalysts

for the chemical fixation of CO2 with epoxides (Cavalleri et al.,

2021), the chloro-zincate salt was the less active one. Among the

three zincates, the activity increased in the order X = Cl− < I− <
Br− (compare entries 7, 8 and 9, Table 2) and this trend can be

rationalized considering the following considerations regarding

the overall catalytic activity: 1) lability of the halide from the

zincate anion (vide supra, ESI(-)-HRMS analyses); 2) the

nucleophilicity of the halide in the ring opening of the epoxide;

and 3) the halide leaving group ability, in order to promote the

cyclic carbonate formation in the ring closing step (Kamphuis

et al., 2019a). Given the aprotic media in which the reactions are

run, we must assume that the nucleophilicity increases in the order

I− < Br− < Cl−, whereas the leaving ability decreases in the same

order. Bromide seemed to provide the best balance between these

three properties, as already observed by us also for related ferrate

complexes (Panza et al., 2021), thus leading to the best observed

catalytic activities. For instance, using [TBA]2[ZnBr4] salt as

catalyst, a 52% conversion in just 15 min was observed,

corresponding to the remarkable Turnover frequency (TOF) of

416 h−1 (Entry 14, Table 2).

It is worth to note that, as known from the literature, the activity

of simple quaternary ammonium halides, i.e., TBAX, in this reaction

is not negligible (Caló et al., 2002; Wang et al., 2012; Montoya et al.,

2015).However, we have already shown that under the same reaction

conditions, both TBACl and TBABr are underperforming, albeit

maintaining very high selectivity (Panza et al., 2022). We repeated

the reaction under the same catalytic conditions by using TBAI that

performed comparably to the others ammonium halides and gave

only a 42% conversion with 95% selectivity in 2a (See Supplementary

Material). Finally, it should be pointed out that it has been reported

thatmixtures ofmetal halides and alkylammonium iodides can act as

suitable catalyst in the cyclic carbonate synthesis (Kisch et al., 1986).

However, ammonium zincates are less hygroscopic and easier to

handle than the respective starting materials (zinc and tetrabutyl

ammonium halides) and we have recently shown that in the case of

tetrabutyl ammonium ferrates (Panza et al., 2022), a mixture of an

iron (III) salt with tetrabutyl ammonium halides indeed act as a

catalyst, but with lower conversion and TOF with respect to the pre-

formed ammonium ferrate, so that there is no advantage in their in

situ synthesis.

TABLE 1 Synthesis and characterization of the ammonium zincatesa.

ZnX2 [TBA]X [TBA]2 [ZnX4] Yield %

ZnCl2 [TBA]Cl [TBA]2[ZnCl4] 63

ZnBr2 [TBA]Br [TBA]2[ZnBr4] 71

ZnI2 [TBA]I [TBA]2[ZnI4] 88

aReaction conditions and details reported in the Supplementary Material.
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TABLE 2 Cycloaddition of CO2 to styrene oxide catalysed by the tetrahalogenozincate-saltsa.

Entry Cat. 0.5 mol% t (h) Con. 1a % Sel. 2a % TON[b] TOFb (h−1)

1 [TBA]2[ZnCl4] 4 97 86 194 49

2 [TBA]2[ZnBr4] 4 >99 94 200 50

3 [TBA]2[ZnI4] 4 >99 95 200 50

4 [TBA]2[ZnCl4] 2 82 98 164 82

5 [TBA]2[ZnBr4] 2 >99 95 200 99

6 [TBA]2[ZnI4] 2 >99 91 200 99

7 [TBA]2[ZnCl4] 1 56 95 112 112

8 [TBA]2[ZnBr4] 1 98 96 196 196

9 [TBA]2[ZnI4] 1 78 85 156 156

10 [TBA]2[ZnCl4] 0.5 30 93 60 120

11 [TBA]2[ZnBr4] 0.5 87 99 174 348

12 [TBA]2[ZnI4] 0.5 42 99 84 168

13 [TBA]2[ZnCl4] 0.25 11 >99 22 88

14 [TBA]2[ZnBr4] 0.25 52 92 104 416

15 [TBA]2[ZnI4] 0.25 21 86 42 168

16 TBACl 4 41 99 82 21

17 TBABr 4 33 99 66 17

18 TBAI 4 42 99 84 21

19 none - 3 n.d. 6 2

aReactions performed in an autoclave. Reaction conditions: styrene oxide (SO) 250 μl (2.19 mmol); cat. 0.5 mol%; P(CO2) = 0.8 MPa; T = 100°C; Conversion and selectivity determined by
1H NMR, using mesitylene as the internal standard.
bTurnover number (mol1a(converted)·molcat

−1) and Turnover frequency (mol1a(converted)·molcat
−1·reaction time−1).

TABLE 3 Cycloaddition of CO2 to styrene oxide: Effect of the pressure and the temperaturea.

Entry Cat. T (°C) P(CO2) (MPa) Con. 1a % Sel. 2a % TON[b] TOFb (h−1)

1 [TBA]2[ZnCl4] 100 0.1 63 89 126 31.5

2 [TBA]2[ZnBr4] 100 0.1 87 63 174 43.5

3 [TBA]2[ZnI4] 100 0.1 80 83 160 40

4 [TBA]2[ZnCl4] 50 0.1 11 91 22 5.5

5 [TBA]2[ZnBr4] 50 0.1 47 96 94 23.5

6 [TBA]2[ZnI4] 50 0.1 22 82 44 11

7c [TBA]2[ZnCl4] 30 0.8 11 73 11 0.7

8c [TBA]2[ZnBr4] 30 0.8 95 >99 95 5.9

9c [TBA]2[ZnI4] 30 0.8 >99 >99 100 6.2

aReaction performed in sealed vials with a CO2 balloon. Reaction conditions: Styrene oxide (SO) 2.19 mmol; cat. 0.5 mol%; t = 4 h. Conversion and selectivity determined by 1H NMR,

using mesitylene as the internal standard.
bTurnover number (mol1a(converted)·molcat−1) and Turnover frequency (mol1a(converted)·molcat−1·reaction time−1).
cCat loading 1 mol%; t = 16 h. Reaction performed in an autoclave.
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Effect of the temperature and the CO2
pressure

With the aim to find milder reaction conditions, we next

studied the effect of lower temperatures and CO2 pressures on the

reaction outcome. Initially we reduced the CO2 pressure to

0.1 MPa and reactions were performed in sealed vials with a

CO2 balloon at 100°C. In all cases lower conversion but especially

lower selectivity, due to competing rearrangement side reactions

of the starting SO, were observed (entries 1–3, Table 3).When the

same reactions were repeated at T = 50°C, given to the better

solubility of CO2 under these conditions, selectivity was again

improved, albeit at the cost of lower conversion (entries 4–6,

Table 3). Finally, we tested the reactivity of the catalytic system at

room temperature (we set an equilibrating bath at 30°C in order

to have reproducible results) and under CO2 pressure (0.8 MPa)

in autoclave. In this case we used a 1 mol% catalyst loading and

we extended the reaction time to 16 h. Again, the less active

catalyst resulted to be the chloro-zincate salt, that gave only a

11% conversion of the starting epoxide (entry 7, Table 3), whilst

both [TBA]2[ZnBr4] and [TBA]2[ZnI4] gave almost quantitative

conversions with full selectivity towards 2a (entries 8 and 9,

Table 3).

Effect of the catalyst loading

Since the best compromise between activity and selectivity

was always found with [TBA]2[ZnBr4] as the catalyst, we decided

to further optimize the reaction conditions and to study the scope

of the reaction using this complex. Our aim was to find the

mildest conditions to run the reaction, with the best compromise

between catalyst loading, temperature and CO2 pressure. To do

so, we initially set room temperature (25°C) and atmospheric

CO2 pressure as the target and we changed the catalyst loading in

order to maximize the yield of SC 2a. Reactions were performed

by assuring CO2 atmosphere with a balloon. We noticed that in

24 h of reactions, the conversion observed of starting SO 1a was

not linearly correlated with the catalyst loading. If 0.5 mol% of

catalyst at 25°C converted 34% of the starting epoxide with good

selectivity, with a reasonable TOF of 2.8 h−1, a double amount of

the catalyst gave only the 47% of conversion, with a TOF of

2.0 h−1 (entries 1 and 2, Table 4). Surprisingly, a 5 mol% amount

of catalyst gave the same conversion (entry 3, Table 4),

corresponding to a TOF of only 0.4 h−1. This negative result

was not justified by solubility limits of the zincate salt in neat

epoxide 1a. We reasoned that this effect might be due to

inhibition of the catalyst by the product formation or to the

fact that despite the presence of the balloon, CO2 concentration

after prolonged reaction times started to diminish. It is known

that rubber balloons are not gas-tight and that carbon dioxide

may leak through (Edwards and Pickering, 1920). To test this

hypothesis, we repeated the same reaction, but working under

CO2 flow at atmospheric pressure and we observed an increased

conversion (69%) of starting 1a, with complete selectivity in favor

of the SC, 2a, and with an increased TOF of 4.3 h−1 (entry 5,

Table 4).

Since the CO2 wasted working under constant bubbling is

however a limiting factor, we next monitored the effect of the

catalyst loading working at room temperature but increasing

TABLE 4 Cycloaddition of CO2 to styrene oxide: Effect of the catalyst loadinga.

Entry Cat. loading (mol%) P(CO2) (MPa) t (h) Con. 1a % Sel. 2a % TON[b] TOFb (h−1)

1 0.5 0.1 24 34 97 68 2.8

2 1 0.1 24 47 >99 47 2.0

3 5 0.1 24 47 >99 9.4 0.4

4 1 0.1 16 42 98 42 2.6

5c 1 0.1 16 69 >99 69 4.3

6d 0.1 0.8 16 5 >99 50 3.1

7d 0.5 0.8 16 58 97 116 7.3

8d 1 0.8 16 87 98 87 5.4

9d 1 0.2 16 88 >99 88 5.5

aReaction performed in sealed vials with a CO2 balloon. Reaction conditions: styrene oxide (SO) 2.19 mmol; T = 25°C; Conversion and selectivity determined by 1H NMR, using mesitylene

as the internal standard.
bTurnover number (mol1a(converted)·molcat−1) and Turnover frequency (mol1a(converted)·molcat−1·reaction time−1).
cReaction performed under CO2 flow.
dReactions performed in an autoclave.
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TABLE 5 Reaction scopea.

 

Entry Substrate Product T (°C) P(CO2)
(MPa)

t (h) Con.
1a %

Sel.
2a %

TOFb

(h−1)

1 30 0.2 16 64 >99 4.0

2 30 0.2 16 88 99 5.5

3c 30 1.0 16 94 99 5.9

4 30 0.2 16 86 >99 5.4

5 30 0.2 16 >99 >99 6.2

6 30 0.2 16 85 >99 5.3

7d 30 0.2 16 75 76 4.7

8d 30 0.2 16 75 76 4.7

9 30 0.2 16 99 97 6.2

10 30 0.2 16 87 96 5.4

11e 30 0.2 16 - - -

12e 100 1.6 16 6 80 0.4

13f 100 0.8 2 56 77 28.0

(Continued on following page)
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CO2 pressure up to 0.8 MPa in autoclave (entries 6–8, Table 4). A

loading of just 0.1 mol% of the catalyst was too low and only a 5%

of conversion was observed, whilst even at room temperature a

gratifying TOF of 7.3 h−1 was observed with a 0.5 mol% of

[TBA]2[ZnBr4]. The best compromise between conversion

and selectivity was obtained by using a 1 mol% loading of the

catalyst. When we repeated the same reaction with just 0.2 MPa

of CO2 pressure, we obtained almost identical results (entry 9,

Table 4), proving that pressure is not a limiting factor while

providing a sufficient quantity of CO2 and thus we set those as the

optimal conditions to further study the reaction scope.

Reaction scope

Having in hand the best catalyst, [TBA]2[ZnBr4], and the

optimized reaction conditions, room temperature (T = 30°C),

solvent free and 0.2 MPa of CO2 pressure, we next studied the

reaction scope by changing the steric and electronic factors of the

starting epoxide. Results are summarized in Table 5. All terminal

epoxides tested were well tolerated and cyclic carbonates were

formed in good to excellent yields. Surprisingly, the activated

epichlorohydrin 1b, in the optimized reaction conditions gave

only a modest 64% conversion, albeit with full selectivity for the

cyclic carbonate 2b (entry 1, Table 5). Linear alkyl substituted

epoxides, 1c-e, were all transformed with high selectivities

(>99%) into cyclic carbonates, 2c-e. The best results in terms

of conversion, with a remarkable TOF of 6.2 h−1, were observed

in the case of 1,2-epoxyhexane 2e (entry 5, Table 5). The

observed reactivity trend is the opposite to that we have

found for the related cycloaddition reaction of CO2 to epoxide

catalyzed by [TBA][FeCl3Br], where we observed a decreased

reactivity of the catalytic system in less polar media (Panza et al.,

2022). We thus repeated the reaction of propylene epoxide, 1c, at

the same temperature but with an increased CO2 pressure

(1 MPa) and we observed a slightly improved conversion rate

(entry 3, Table 5). Several glycidyl ethers, 1f-j, were also tested

and very high conversion with excellent selectivity in favor of the

cyclic carbonate was observed (entries 6–10, Table 5). The only

exceptions were phenyl glycidyl ether, 1g, and 2-methylphenyl

glycidyl ether, 1h, were an off-white tar, most probably due to

polymeric material, was also formed in 24% selectivity. The

presence of a coordinating heterocyclic group such as in the

case of furfuryl glycidyl ether, 1j, was well tolerated and a TOF of

5.4 h−1 was observed (entry 10, Table 5). Internal or more

sterically hindered epoxides, as expected (Kamphuis et al.,

2019a), gave less satisfactory results and trans-Stilbene

epoxide, 1k, almost failed to react (entry 12, Table 5). It

should be noted, however, that in this case, since this product

is solid at room temperature, CH3CN (0.5 ml) was added to the

reaction mixture as the solvent. 1,2-Epoxy-methylpropane, 1l,

and cyclohexene oxide, 1m, on the other hand could be converted

to the corresponding cyclic carbonates only under harsher

reaction conditions (T = 100°C, P(CO2) = 0.8 MPa, entries

13 and 15, Table 5). However, it should be emphasized that,

especially in the case of cyclohexene oxide, generally considered a

less reactive epoxide (Della Monica et al., 2019a), when

increasing the pressure to 1.6 MPa and running the reaction

for 16 h we observed a remarkable yield (80%; 89% selectivity) of

cyclic carbonate 2i, and no formation of any polymeric material

TABLE 5 (Continued) Reaction scopea.

 

Entry Substrate Product T (°C) P(CO2)
(MPa)

t (h) Con.
1a %

Sel.
2a %

TOFb

(h−1)

14 30 0.2 16 12 - 0.8
15 100 0.8 2 18 99 9.0

16 100 1.6 16 90 89 5.6

17 100 0.8 2 12 - 6.0

aReaction performed in autoclave. Reaction conditions: epoxide 250 μl; cat. 1 mol%. Conversion and selectivity determined by 1H NMR, using mesitylene as the internal standard.
bTurnover frequency (mol1(converted)·molcat−1·reaction time−1).
cIsolated yield.
dUnidentified by-products, possibly of polymeric nature, accounted for the rest of the mass balance.
eCH3CN (0.5 ml) was added to solubilize 1 k.
fIso-butyraldehyde was also formed, accounting for the rest of mass balance.
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(entry 16, Table 5). A trisubstituted epoxide such as limonene

oxide, 1n, failed to react also under those harsher reaction

conditions (entry 17, Table 5).

This difference in reactivity between terminal and more

sterically hindered epoxides could be switched from a

disadvantage to a selective useful tool. For example, when we

reacted 4-vinylcyclohexene dioxide, 1o, containing both a

terminal and an internal epoxide, at room temperature and

low CO2 pressure, (0.2 MPa), we observed a 78% conversion

of the starting material with the selective formation of the cyclic

carbonate at the less substituted epoxide, 2o (Scheme 1A). When

the reaction was repeated with a double amount of catalyst (1 mol

% of [TBA]2[ZnBr4] for each epoxide present in the substrate)

and under harsher reaction conditions, T = 100°C and 0.8 MPa of

CO2, we observed a quantitative conversion of the starting

epoxide, with a 72% selectivity in favor of the mono-cyclic

carbonate, 2o, and a 28% selectivity for the di-carbonate

product 2o’ (Scheme 1B), proving that modulating the

reaction conditions can affect strongly the chemo-selectivity of

such reaction.

Finally, other two terminal di-epoxides were tested as

substrates for their possible application as non-isocyanate

polyurethane monomers (Rix et al., 2016). In both cases,

CH3CN was successfully employed as solvent and 2 mol% of

catalyst loading was employed (1 mol% per mol of epoxide

moiety). The bis-carbonate of (bisphenol-A)diglycidyl ether

(BADGE), 2p, was obtained in 64% yield (85% selectivity,

75% conversion of starting 1p) in 16 h at 30°C. To the best of

our knowledge, this is the highest yield obtained under such mild

reaction conditions for this very interesting product (Scheme 2).

Under the same reaction conditions, 1,4-bis(benzyloxy)diglycidyl

ether was converted in the bis-carbonate product 2q with a 52%

yield (91% selectivity, 57% conversion of starting 1o, Scheme 3),

outperforming our previously reported synthesis employing

ferrates as catalysts (Panza et al., 2022).

Scale-up and recycling

The ability of a catalytic system to undergo a scale-up

reaction is an important feature that gives a preliminary idea

about a possible industrial application. For this reason, we tested

[TBA]2[ZnBr4] in the cycloaddition of propylene oxide 1c and

CO2 in a multigram scale reaction, using 1 mol% catalyst loading

and 3.24 ml (46 mmol) of PO at 1.0 MPa CO2 pressure, T = 30°C

for 16 h. The product mixture was weighted and analyzed by 1H

NMR analysis. At the end of the reaction only propylene

carbonate 2c was recovered with a remarkable isolated yield

of 94%, corresponding to 4.250 g of PC. Moreover, the possibility

to recycle the catalyst for further reactions is indeed crucial, even

SCHEME 1
Selective synthesis of mono (A) and di-cyclic carbonates (B) of 4-vinylcyclohexene dioxide, 1°. Reaction conditions: epoxide 250 μl
(1.94 mmol); cat. 1 or 2 mol%. Conversion and selectivity determined by 1H NMR using mesitylene as the internal standard. Turnover frequency
(mol1o(converted)·molcat

−1·reaction time−1).

SCHEME 2
Selective synthesis of bis-carbonate of (bisphenol-A)diglycidyl ether (BADGE), 2p. Reaction conditions: epoxide, 1p, (340 mg, 1 mmol)
dissolved in CH3CN (0.5 ml); cat. 2 mol%. Conversion and selectivity determined by 1H NMR using mesitylene as the internal standard. Turnover
frequency (mol1p(converted)·molcat

−1·reaction time−1).
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if not always simple in the case of homogeneous systems. In our

case, the product of the scale up reaction was distilled in vacuum

to obtain pure propylene carbonate and pure [TBA]2[ZnBr4]. To

the latter, 46 mmol of fresh propylene oxide were added and the

mixture was subjected to the same procedure described before.

The product was obtained and analyzed as previously detailed,

obtaining again propylene carbonate as the sole product

(selectivity for 2c >99%). The robustness of the catalyst was

assured for a total of three cycles, after which a total of amount of

12.65 g of pure 2c was obtained (results are summarized in the

Supplementary Material) [TBA]2[ZnBr4] as a catalyst proved to

be recyclable without losing activity nor selectivity, making it an

attractive tool for a possible further large-scale study.

Conclusion

In summary, we have shown that very simple inexpensive

tetrabutylammonium zincates are efficient catalyst, without the

need of any co-catalyst and in the absence of any solvent, for the

cycloaddition of CO2 to epoxides under mild reaction conditions.

The bifunctional nature of the catalyst, both as Lewis acid and

nucleophilic Lewis base, is assured by the “ate” equilibrium

between the dianoinic zincate salt and the monoanionic

[ZnX3]
- moiety and the halide anion. We have recently

reported a theoretical calculation of the reaction mechanism

and the role played by the combination of the Lewis acid (iron

salt) and nucleophile (halide ion) in the case of the ammonium

ferrate catalyzed cycloaddition of CO2 to epoxides (Panza et al.,

2022). The formation of the cyclic carbonate can be schematized

as occurring in three consecutive steps, in agreement with

literature results (Pescarmona, 2021): 1) the halide anion act

as the nucleophile attacking a carbon atom of the epoxide ring,

which opens by breaking a C-O bond in a concerted mechanism;

2) the oxygen atom of the former epoxide attacks the C atom of

carbon dioxide thus forming an open carbonate species; 3) the

carbonate closes the ring and the formation of a C-O bond

induces simultaneous breaking of the carbon - halide bond,

releasing the halide ion. Although DFT calculations were not

performed in the present case, we must assume that the also in

this case zinc act as a Lewis acid lowering the barrier for the ring

opening of the epoxide and stabilizing the first reaction

intermediate (the open epoxide species). When no Lewis acid

is present, the rate determining step of the whole process is the

epoxide ring-opening. On the other hand, when the zinc atom

interacts with the oxygen of the epoxide, this transition state is

lowered in energy and the rate determining step becomes the ring

closure to give the cyclic carbonate.

The best catalytic performances have been obtained by using

the bromide-zincate [TBA]2[ZnBr4], which can be conveniently

prepared in high yield and purity by mixing an ethanolic solution

of ZnBr2 with TBABr, and a TOF of 416 h−1 in the styrene

carbonate synthesis at T = 100°C has been observed. It should be

emphasized, from a practical point of view, that the handling of

the zincates salts, that are less hygroscopic than their staring

materials, is easy and does not require any special caution.

Moreover, all the zincate tested proved to be quite robust and

at the end of the reaction they can be recovered by simply

distilling off the organic products formed (cyclic carbonates).

Remarkably, quantitative conversion of terminal epoxides with

full selectivity towards the cyclic carbonate have been obtained at

low temperature (T = 30°C) and under just 0.2 MPa of CO2

pressure. Reactions occur smoothly also at room temperature

and under atmospheric CO2, at a big difference from most

recently reported homogeneous (Tong et al., 2022) and

heterogeneous (Nguyen et al., 2022; Su et al., 2022) systems

operating without any co-catalyst added and in solvent free

conditions, that normally are reported to be most performing

at T 80–120°C.

Finally, the recyclability of the [TBA]2[ZnBr4] salt has been

assessed by distilling off the pure propylene carbonate formed in

the reaction with propylene oxide and restoring the catalytic

cycle three times without any loss of catalytic activity observed.

Reaction could also be scaled up and a total amount of 12.65 g of

SCHEME 3
Selective synthesis of bis-carbonate of 1,4-bis(benzyloxy)diglycidyl ether, 2q. Reaction conditions: epoxide, 1q, (222 mg, 1 mmol) dissolved in
CH3CN (0.5 ml); cat. 2 mol%. Conversion and selectivity determined by 1H NMR using mesitylene as the internal standard. Turnover frequency
(mol1q(converted)·molcat

−1·reaction time−1).
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pure PC could be isolated with a global TON of 279. Based on

these results, we think that amongst the several homogeneous

catalysts reported in the last years for the synthesis of cyclic

carbonates by cycloaddition of CO2 to epoxides,

terabutylammonium zincates represents a considerable case of

study for highly efficient greenhouse gas re-utilization.

Materials and methods

General considerations

All chemicals and solvents were commercially available and

used as received except where specified. 1H NMR analyses were

performed with 400 MHz spectrometers at room temperature.

The coupling constants (J) are expressed in hertz (Hz), and the

chemical shifts (δ) in ppm. Catalytic tests were analysed by 1H

NMR spectroscopy. Low resolution MS spectra were acquired

with instruments equipped with ESI/ion trap sources. High

resolution MS spectra were acquired on a Q-ToF SYNAPT

G2-Si HDMS 8K instrument (Waters) equipped with a

ZsprayTM ESI source (Waters). The values are expressed as

mass−charge ratio and the relative intensities of the most

significant peaks are shown in brackets. Elemental analyses

were recorded in the analytical laboratories of Università degli

Studi di Milano. The collected data for all the cyclic carbonate

reported are in accordance with those reported in literature (Yu

et al., 2021; Panza et al., 2022).

Synthesis of the zincate salts

All the tetrahalogenozincate salts were prepared following a

slightly modified procedure reported for the synthesis of the

ferrate analogues (Panza et al., 2022), bymixing in an appropriate

stoichiometric ratio an ethanolic solution of TBAX and ZnX2

with good yield, after recrystallization (Table 1). All the so-

prepared materials were analysed by Elemental Analysis and

HRMS. All the details about the synthesis and analyses can be

found in the Supplementary Material.

General catalytic procedure in autoclave

A 250 ml stainless steel autoclave reactor was equipped with

three 2.5 ml glass vials, containing the catalyst/epoxide mixture

(250 µL of substrate). The vials were equipped with magnetic

stirring bars and sealed with specific caps. The autoclave was then

charged with a specific amount of CO2 and placed in a

thermostated heating bath for a specific amount of time. The

reactor was then cooled to room temperature (when needed) and

the CO2 released. To each vial the appropriate amount of the

internal standard (mesitylene) and 0.5 ml of CDCl3 were added

to perform quantitative 1H NMR analysis.

General catalytic procedure in sealed vials

Reactions performed at ambient pressure of CO2 were placed

in glass vials containing the epoxide, the catalyst and a magnetic

stirring bar, sealed with a silicon septum and aluminium cap. A

CO2 balloon, sealed to a plastic syringe, was inserted in the vial

using a needle to ensure the pressure of CO2. At the end of the

reaction, the appropriate amount of the internal standard

(mesitylene) and 0.5 ml of CDCl3 were added to perform

quantitative 1H NMR analysis.
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