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In this study, magnetic cobalt oxide (Co3O4) nanoparticles (NPs) were synthesized
through a new and green method using cobalt chloride hexahydrate
(CoCl2.6H2O), pluronic P123 as a stabilizer, and sodium borohydride (NaBH4).
The CO3O4 nanoparticles were characterized by diffuse reflectance infrared
Fourier transform spectroscopy, powder X-ray diffraction, X-ray photoelectron
spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron
microscopy, and vibrating sample magnetometer.

The magnetic Co3O4 NPs were used as a catalyst with high activity and stability in
the synthesis of tetrahydrobenzo[b]pyran derivatives. This reaction was carried out
in water, as it is an environmentally friendly solvent, using a low loading of Co3O4

NPs at room temperature. Various derivatives of aldehydes were used as
substrates to obtain a high yield of the corresponding tetrahydrobenzo[b]
pyrans in short times. In addition, the catalyst was recovered and reused
several times with no notable decrease in its activity.
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1 Introduction

In the last decade, magnetic nanoparticles (MNPs) have been noted by many researchers
owing to their advantages of high stability, magnetic and electrical properties, high surface
area, and special optical properties (Ichiyanagi et al., 2004; Zhang et al., 2006; Bisht and
Rajeev, 2011; Ghasemzadeh et al., 2017; Ramamoorthy and Rajendran, 2017; Yin et al., 2017;
Vennela et al., 2019). Among different magnetic nanoparticles, cobalt oxide (Co3O4) NPs are
very interesting due to their high chemical stability, good reactivity, high surface area,
excellent semiconductivity, easy synthesis, high catalytic performance, and superior
magnetic properties. These nanoparticles have many applications, such as in energy
storage, sensors, anodic supplies, drug delivery, and catalysis (Kumar et al., 2008; Koza
et al., 2012; Wang et al., 2015; Agilandeswari and Rubankumar, 2016; Ivetić et al., 2016;
Pourzare et al., 2017; Galini et al., 2018; Shi et al., 2019; Tahanpesar et al., 2019; Mohammadi
et al., 2020; Tonelli et al., 2020; Al-Qasmi, 2022; Anele et al., 2022; Bilge et al., 2022; Farrag
and Ali, 2022; Mohammadpour-Haratbar et al., 2022; Saeed et al., 2022). The chemical
formula of these NPs is Co2+(Co3+)2O4 with a normal spinel structure in which Co2+ ions are
in tetrahedral interstices and Co3+ ions are in the octahedral interstices of the cubic close-
packed lattice of oxide anions (Salavati-Niasari et al., 2009; Thota et al., 2009). It is believed
that the shape and size of NPs affect their properties; thus, the morphology of these
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nanoparticles must be controlled. Co3O4 NPs have been synthesized
in various morphologies such as nanorods (Lou et al., 2007; Meng
et al., 2015), nanotubes (Chen et al., 2015; Wang et al., 2019),
nanowires (Mahmoud and Al-Agel, 2011; Yao et al., 2012), cubic
(Ghiasi et al., 2016; Liu et al., 2020), spheres (Chen et al., 2007;Wang
et al., 2017), and mesoporous (Qiu et al., 2014; Zhao et al., 2019).
Since Co3O4 NPs and their nanocomposites are resistant to
corrosion, they have been used as powerful catalysts in different
chemical reactions. Some recent reports in this matter are
Co3O4–SiO2 nanocomposites for CO oxidation (Jia et al., 2011),
Co3O4@SiO2 NPs for the preparation of 3,4-dihydroquinoxalins
(Ghasemzadeh et al., 2016), Co3O4 for the reduction of 4-
nitrophenols (Al Nafiey et al., 2017), Co3O4@SiO2 for the
preparation of indazoles (Ghasemzadeh et al., 2017), Co3O4 NPs
as a photocatalyst for methylene blue degradation (Vennela et al.,
2019), and Co3O4@SiO2 core/shell–nylon as an adsorbent for
the removal of Congo red from wastewater (Mohammadi et al.,
2020). There are also several methods for the synthesis of these
NPs, including sol–gel, chemical pyrolysis, microemulsion,
chemical vapor deposition (CVD), coprecipitation, microwave,
decomposition of organic precursors, and hydrothermal methods

(He et al., 2004; Yoshikawa et al., 2004; Ştefănescu et al., 2008;
Ozkaya et al., 2009; Gupta et al., 2011; Alagiri et al., 2013; Salavati-
Niasari and Khansari, 2014; Gopinath et al., 2016; Diallo et al., 2017;
Izu et al., 2017; Jamil et al., 2018; Tan et al., 2018; Yetim, 2021).
However, some of the aforementioned methods face problems of
high reaction temperature, high pressure, and the use of
expensive precursors. Therefore, designing a novel method to
overcome the aforementioned limitations is an important subject
in this matter.

On the other hand, multicomponent reactions are one of the
very important chemical processes because of their key role in the
synthesis of biologically active heterocyclic organic compounds
(Fotouhi et al., 2007; Altass et al., 2021; Alshorifi et al., 2022;
Altass et al., 2022; El-Yazeed et al., 2022). Tetrahydrobenzo[b]
pyrans are one of these compounds that are synthesized via a
three-component reaction. They have good biological activity
and are used in the pharmaceutical field, cosmetics, agriculture,
pigment, etc. (Hekmatshoar et al., 2008). To date, many catalysts
have been reported for the preparation of tetrahydrobenzo[b]
pyrans. Some of the recently developed catalysts are choline
hydroxide-based ionic liquid [Ch][OH] (Hu et al., 2014),
nano-structured diphosphate (Na2CaP2O7, DIPH) (Maleki
et al., 2016), dihydrogen phosphate-supported silica-coated
magnetic nanoparticles (H2PO4–SCMNPs) (Saadati-
Moshtaghin and Zonoz, 2017), Fe3O4@Ph–SO3H (Elhamifar
et al., 2018), Preyssler heteropoly acid on Ni0.5Zn0.5Fe2O4

magnetic nanoparticles (MNPs) (Javid and Moeinpour, 2018),
nickel Schiff base complex immobilized on silica-coated Fe3O4

(Fe3O4@SiO2@NiSB) (Maleki et al., 2020), and Eu/IDA/CPTS@
CoFe2O4 (Tamoradi et al., 2020).

In view of the aforementioned characteristics, herein, for the first
time, a novel surfactant-assisted method is presented for the

SCHEME 1
Preparation of Co3O4 nanoparticles.

FIGURE 1
FT-IR spectrum of the Co3O4 NPs.
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preparation of magnetic cobalt oxide nanoparticles. In this method,
NaBH4 has been used as a reducing agent and the pluronic
P123 surfactant has been employed as a stabilizer. Moreover, the
reaction was performed in EtOH at room temperature. The Co3O4

NPs were characterized and employed as a powerful nanocatalyst in
the synthesis of tetrahydrobenzo[b]pyrans.

2 Experimental

2.1 General

All chemicals were used as received with no further purification.
Pluronic P123 (98%), CoCl2.6H2O (98%), malononitrile (≥99%),

FIGURE 2
PXRD pattern of the Co3O4 NPs.

FIGURE 3
XPS analysis of the Co3O4 NPs.
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and dimedone (95%) were purchased from Sigma-Aldrich.
Moreover, aldehydes (≥95%) and sodium borohydride (99%)
were purchased from Merck. Powder X-ray diffraction (PXRD)
was performed using a Bruker D8 ADVANCE diffractometer
(Germany). The morphology of the particles was evaluated using
the TESCAN-Vega3 scanning electron microscope (SEM) (Czech
Republic). Energy-dispersive X-ray (EDX) spectroscopy was
performed using the TESCAN-Vega3 apparatus (Czech
Republic). Fourier transform infrared (FT-IR) spectroscopy was
recorded on a Bruker Vector 22 spectrometer (Germany). The
magnetic properties of the particles were investigated using a
vibrating sample magnetometer (VSM) of Meghnatis Daghigh
Kavir Co. (Iran). X-ray photoelectron spectroscopy (XPS) was
performed using a Thermo Scientific K-Alpha + XPS
spectrometer (United States).

2.2 Preparation of Co3O4 nanoparticles

Magnetic Co3O4 nanoparticles were synthesized through the
following reduction procedure: CoCl2.6H2O (1.85 mmol; 0.440 g)
was added in 15 mL of absolute EtOH while stirring at RT. Then,
ethanol-dissolved pluronic P123 (0.2 g in 5 mL EtOH) was added to
the aforementioned solution. After complete mixing, NaBH4

(12.9 mmol; 0.487 g) was added, and the resulting combination
was stirred for 10 min at RT. The obtained material was
magnetically separated and then washed completely with warm
EtOH and water to remove pluronic P123 and other impurities.
The magnetic Co3O4 NPs were obtained after drying the product at
65°C for 5 h.

2.3 Synthesis of tetrahydrobenzo[b]pyrans
using Co3O4 NPs

For this, dimedone (1.0 mmol), aldehyde (1.0 mmol),
malononitrile (1.2 mmol), and a Co3O4 catalyst (0.015 g) were
mixed in water (8 mL) while stirring at RT. The reaction
progress was monitored by TLC. After completing the process,
the catalyst was separated using an external magnetic field. Then,
hot EtOH was added, and the resulting mixture was put in an ice
bath to precipitate the pure product.

2.4 Procedure for the recovery of the Co3O4
NPs in the synthesis of tetrahydrobenzo[b]
pyrans

For this, the reaction was performed as explained previously.
After finishing the process, monitored by TLC, the catalyst was
separated using a magnet. Then, the recovered catalyst was washed
with EtOH and reused in the next run under the same conditions as
the first run. These steps were repeated, and it was found that the

FIGURE 4
SEM images of the Co3O4 NPs.

FIGURE 5
VSM diagrams of Co3O4 NPs prepared via (A) the milling process,
(B) EtOH/NaBH4, and (C) EtOH/NaBH4/pluronic P123 methods.
Magnetic separation of Co3O4 NPs (inset figure).
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Co3O4 NPs can be recovered and reused several times with no
significant decrease in their efficiency.

3 Result and discussion

The water- and air-stable magnetic Co3O4 nanoparticles were
easily and rapidly prepared at RT through a novel reduction method
in the presence of pluronic P123 as a stabilizer and NaBH4 as a
reducing agent (Scheme 1).

The Co3O4 NPs were characterized using FT-IR, PXRD, VSM,
EDX, XPS, and SEM techniques. In the FT-IR spectrum (Figure 1) of
Co3O4 NPs, the stretching vibration of the Co–O bond was observed
at 619 cm−1. The absorption peaks that appeared at 1,636 and
3,416 cm−1 are related to bending and stretching vibrations of
OH, respectively. Furthermore, the band at 1,412 cm−1 is for the
B–O bond, resulting from the hydrolysis of the borohydride ion
(Medina et al., 2019).

The PXRD analysis shows nine peaks with low intensity at 2θ =
19, 32, 35, 37, 45, 56, 60, 65°, and 72° corresponding to the spinel

FIGURE 6
EDX image of the Co3O4 NPs.

FIGURE 7
EDX mapping analysis of the Co3O4 NPs.
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crystalline structure of magnetic Co3O4 NPs, which is in agreement
with the previous literature (Figure 2) (He et al., 2004; Merino et al.,
2012; Mujtaba et al., 2016; Hu et al., 2018).

The XPS analysis of cobalt oxide nanoparticles clearly shows the
presence of Co and O elements (Figure 3). The most significant
peaks related to O 1s, Co 2p3/2, and Co 2p1/2 appeared at 529.1,
780.1, and 795.8 eV, respectively. The energy difference between the
Co 2p3/2 and Co 2p1/2 splitting is 15.7 eV, indicating the presence of
Co2+ and Co3+ in the prepared material. These results are in good
agreement with the previous reports and confirm the Co3O4

structure for the prepared material (Nwanya et al., 2017; Qiu
et al., 2017; Zhang et al., 2017).

The morphology of the catalyst was studied by SEM. This
analysis showed sponge-like spherical particles for the designed
material (Figure 4). According to the SEM images, the average size of
the designed Co3O4 NPs was about 36 nm.

In the next study, the magnetic properties of Co3O4 NPs were
investigated using a vibrating sample magnetometer (VSM).
Importantly, herein, two other methods were used to prepare
magnetic Co3O4 NPs, and the magnetic properties of the resulting
products were compared with those of our method (Figure 5). These
methods were a) the milling process (Medina et al., 2019), b) EtOH/
NaBH4 without a stabilizer (our test), and c) ETOH/NaBH4 in the
presence of pluronic P123 as a stabilizer agent (our method). The VSM

TABLE 1 Effect of catalyst loading, solvent, and temperature in the synthesis of tetrahydrobenzo[b]pyransa.

Entry Catalyst (g) Solvent T (°C) Yield (%)

1 - H2O RT -

2 0.01 H2O RT 68

3 0.015 H2O RT 96

4 0.02 H2O RT 95

5 0.015 EtOH RT 63

6 0.015 THF RT 42

7 0.015 CH3CN RT 30

8 0.015 Toluene RT 15

9 0.015 H2O 35 96

10 0.015 H2O 50 96

aConditions: dimedone (1.0 mmol), aldehyde (1.0 mmol), malononitrile (1.2 mmol), solvent (8 mL), 40 min.

TABLE 2 Synthesis of tetrahydrobenzo[b]pyrans in the presence of the Co3O4 catalyst.

Entry Aldehyde Dicarbonyl/coumarin Time (min) Yield (%) M.P (°C)

Found Reported

1 C6H5 Dimedone 40 96 231–234 231–233 Mohammadi et al. (2017)

2 4-MeC6H5 Dimedone 38 95 217–219 220–222 Elhamifar et al. (2018)

3 4-MeOC6H5 Dimedone 35 96 194–195 192–194 Seifi and Sheibani (2008)

4 3-HOC6H5 Dimedone 40 95 234–236 231–233 Hekmatshoar et al. (2008)

5 4-NO2C6H5 Dimedone 20 94 175–177 177–178 Jin et al. (2004)

6 2-ClC6H5 Dimedone 37 95 210–212 213–215 Shirini et al. (2017)

7 3-BrC6H5 Dimedone 30 96 229–232 227–229 Salvi et al. (2011)

8 4-NO2C6H5 4-Hydroxycoumarin 50 90 266–268 260–262 Farahi et al. (2017)
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analysis showed the products with a magnetization of 28, 33, and 56 for
the a, b, and c methods, respectively (Figure 5). This confirms the very
good efficiency of our novel procedure to prepare Co3O4 NPs with high
magnetic properties. This result is attributed to the key role of pluronic
P123 as a surfactant in the stabilization of magnetic NPs during their
preparation. It is also important to note that the prepared black Co3O4

NPs were easily separated using an external magnet (Figure 5, inset
figure).

The EDX analysis was used to distinguish the elements in the
structure of the Co3O4 material. This analysis showed the presence
of O and Co in the Co3O4 structure (Figure 6). Moreover, the EDX
mapping analysis also showed the uniform distribution of these
elements in the material network (Figure 7).

After successful characterization, the Co3O4 NPs were used as an
efficient catalyst in the synthesis of tetrahydrobenzo[b]pyrans. For
this, the reaction between dimedone, benzaldehyde, and
malononitrile was selected as a test model, and the effect of
different parameters was studied (Table 1). In the absence of a

catalyst, no product was found (Table 1, entry 1), while by adding
the catalyst, the product yield was increased, and the best result was
obtained using 0.015 g of Co3O4 NPs (Table 1, entries 2–4).
Screening different solvents showed that a low yield in toluene
and acetonitrile, a moderate yield in EtOH and THF, and the highest
yield in water were obtained (Table 1, entries 3, 5–8). Increasing
temperature from RT to 35°C and 50°C showed no significant
change in the product yield (Table 1, entries 3, 9, 10). According
to these results, 0.015 g of Co3O4, water solvent, and RT were chosen
as optimum conditions (Table 1, entry 3).

With the optimal conditions in hand, the catalytic activity of
Co3O4 was investigated for different aldehyde substrates to produce
the tetrahydrobenzo[b]pyran derivatives. As shown, benzaldehyde
(Table 2, entry 1), electron-donating containing aldehydes (Table 2,
entries 2–4), and electron-withdrawing bearing aldehydes (Table 2,
entry 5) are converted to the corresponding products in high yields
at short times. Halogen-substituted aldehydes also delivered a high
yield of the corresponding adducts (Table 2, entries 6, 7). In

TABLE 3 Comparison of the efficiency of Co3O4 nanoparticles with former catalystsa.

Entry Catalyst Conditions Yield (%) Recovery times [ref]

1 [Ch][OH] H2O, 80°C 92 5 Hu et al. (2014)

2 (H2PO4–SCMNPs) Solvent-free, 80°C 88 4 Saadati-Moshtaghin and Zonoz (2017)

3 (NZF@HA–PRS) H2O, RT 88 4 Javid and Moeinpour (2018)

4 Eu@MNPs EtOH, RT 94 5 Tamoradi et al. (2020)

5 Fe3O4@SiO2–guanidine–PAA H2O, 70°C 96 5 Mohammadi and Sheibani (2019)

6 This work H2O, RT 96 6 —

a[Ch][OH]: choline hydroxide-based ionic liquid; SCMNPs: silica-coated magnetic nanoparticles; NZF: Ni0.5Zn0.5Fe2O4; HA: hydroxyapatite; PRS: Preyssler heteropoly acid; Eu: europium;

MNPs: magnetic nanoparticles; PAA: poly acrylic acid.

FIGURE 8
Recoverability and reusability of the Co3O4 catalyst.
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addition, the reaction between 4-nitrobenzaldehyde, malononitrile,
and coumarin in the presence of the Co3O4 nanocatalyst also gave a
high yield of the corresponding product (Table 2, entry 8). These
results confirm the high activity and efficiency of the Co3O4 catalyst
for the preparation of a wide range of biologically active
tetrahydrobenzo[b]pyrans.

The recoverability and reusability of the designed catalyst were
investigated in the reaction model of benzaldehyde, dimedone, and
malononitrile under optimal conditions. It was found that the
Co3O4 nanocatalyst can be recovered and reused six times with
no noticeable decrease in its activity (Figure 8).

Finally, the catalytic activity of the designed Co3O4 nanoparticles
was compared with former heterogeneous catalysts in the synthesis of
tetrahydrobenzo[b]pyrans (Table 3). It was found that the present
catalyst has a high ability to synthesize desired products with higher
efficiency and more recovery times than previous catalysts. These
findings are attributed to the high surface area, excellent magnetic
properties, and good stability of Co3O4 MNPs.

4 Conclusion

In this study, a novel and interesting method for the preparation
of magnetic cobalt oxide (Co3O4) NPs was developed. These NPs
were synthesized under green conditions at RT in a short time. The
FT-IR, PXRD, SEM, VSM, XPS, and EDX analyses confirmed the
good preparation, high stability, and good magnetic properties of
Co3O4 NPs. These magnetic NPs were used as a powerful and
efficient nanocatalyst for the synthesis of tetrahydrobenzo[b]pyrans.
The desired products were obtained in water as an environmentally
friendly solvent in a short time. The Co3O4 nanocatalyst was
separated easily using an external magnet and recovered at least
six times with no significant decrease in its activity. Due to the
simplicity and eco-friendliness of the designed method, the
preparation of other magnetic metal oxide NPs using this
strategy is underway in our laboratory.
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