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GENE HUNTING, SIGNALING
NETWORK, AND MOLECULAR
MEDICINE
In the 20th century, most researchers
investigated WNT signaling in cell and
developmental biology by using model
animals, such as Drosophila, Xenopus,
and mouse. However, I was confident
that WNT signaling should be investi-
gated for clinical application by using
human samples or cell lines. In 1998,
I, together with post-doctoral fellows,
started a human WNTome project to
comprehensively clone and characterize
novel human genes encoding WNT signal-
ing molecules and to establish a “human
WNT research” platform (Figure 1A). My
group reported the molecular cloning
and characterization of FZD1, FZD3,
FZD4, FZD6, FZD7, FZD8, FZD10, GIPC2,
GIPC3, MFRP, NKD1, NKD2, VANGL1,
WNT3A, WNT5B, WNT6, WNT7B,
WNT8A, WNT9A (WNT14), WNT9B
(WNT14B), and WNT10A as the major
products of the human WNTome project
[reviewed in Katoh (2002a)] and of other
novel human genes, such as FGF20, RhoU,
RhoV, and SOX17, as byproducts of the
human WNTome project.

Most human genes that encode WNT
signaling components had been cloned
and characterized by 2002, whereas thou-
sands of novel human genes outside
of the WNT field still remained to be
discovered. In 2003, colleagues and I
started a post-WNTome project to iden-
tify and characterize novel human genes
encoding adhesion molecules, transmem-
brane proteins, epigenetic regulators,
and transcription factors (Figure 1A).
My group reported in silico identifi-
cation and characterization of novel
human genes, such as ANO1 (TMEM16A),
ANO2 (TMEM16B), ANO3 (TMEM16C),

ANO4 (TMEM16D), ANO5 (TMEM16E),
ANO6 (TMEM16F), ANO7 (TMEM16G),
ANO8 (TMEM16H), ASXL2, ASXL3,
BCL9L, CDC50A (TMEM30A), CDC50B
(TMEM30B), CDC50C (TMEM30C),
CRB2, DACT1 (DAPPER1), DACT2
(DAPPER2), DIXDC1, FAT4, FMNL1,
FMNL2, FMNL3, FOXR1 (FOXN5),
FOXR2 (FOXN6), HES2, HES3, HES5,
JMJD1C (TRIP8), JMJD2A (KDM4A),
JMJD2B (KDM4B), JMJD2C (KDM4C),
JMJD2D (KDM4D), KIF27, MPP7,
PRICKLE1, and PRICKLE2.

The human WNTome and post-
WNTome projects were gene-hunting
adventures that utilized molecular biology
and computational biology, respectively.
Inter- and intra-cellular signaling net-
works were simplified to a secondary
picture consisting of nodes and edges.
Nodes correspond to genes, mRNAs, pro-
teins, or micro-RNAs (miRNAs), while
edges correspond to their interactions. I
then shifted my interest from the nodes to
the edges and the whole picture. In 2007,
my laboratory started a stem-cell signal-
ing network project to elucidate mutual
interactions of the WNT, FGF, Notch,
Hedgehog, TGF-β, and BMP signaling
cascades (Figure 1A) (Katoh and Katoh,
2007, 2009; Katoh and Nakagama, 2013).

Recently, I was appointed as the chief
editor of Frontiers in Molecular Medicine,
a sub- or specialty journal of Frontiers
in Cell and Developmental Biology. I
would like to contribute to the global
scientific community through Frontiers
in Molecular Medicine, which aims to
address the gap between cell and devel-
opmental biology and clinical medicine
and to promote development of novel
diagnostics and therapeutics for a vari-
ety of human diseases, including cancers,
cardiovascular diseases, diabetes mellitus,

eye diseases, inflammatory bowel diseases,
kidney diseases, liver diseases, neurological
diseases, and respiratory diseases.

MOLECULAR MEDICINE TARGETED TO
THE REGULATORY SIGNALING
NETWORK
Mouse mammary tumor virus (MMTV)
integrates at the Wnt1, Wnt3, Wnt10b,
Fgf3, Fgf4, or Fgf10 loci and induces
mammary tumorigenesis [Dickson et al.,
1984; Nusse et al., 1984; reviewed in
Katoh (2002b)]. WNT signals are trans-
duced through Frizzled (FZD) receptors
and LRP5/6 or ROR1/2 co-receptors at
both the canonical and non-canonical sig-
naling cascades (Katoh and Katoh, 2007).
Canonical WNT signals regulate cell fate
(Clevers, 2006) in co-operation with FGF
and Notch signals, while non-canonical
WNT signals regulate cell morphogen-
esis and motility (Chien et al., 2009)
in co-operation with FGF, TGF-β, and
Hedgehog signals. The WNT, FGF, Notch,
Hedgehog, and TGF-β signaling cascades
constitute the stem cell signaling network,
which orchestrates fetal development and
post-natal homeostasis, whereas dysregu-
lation of the stem cell signaling network
causes a variety of hereditary and sporadic
diseases (Katoh and Katoh, 2007).

Receptor tyrosine kinases (RTKs) are
single-span transmembrane receptors
with extracellular ligand-binding domain
and intracelullar tyrosine kinase domain
and are involved in growth factor signal-
ing to downstream cascades, including
the RAS-MAPK, PI3K-AKT, SRC, and
PKC signaling cascades. FGFR1, FGFR2,
FGFR3, and FGFR4 are receptors of the
FGF family of ligands (Eswarakumar et al.,
2005; Beenken and Mohammadi, 2009),
and VEGFR1, VEGFR2, and VEGFR3
are receptors of the VEGF family of
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FIGURE 1 | (A) Chronology of the human WNTome, post-WNTome, and
stem-cell signaling network projects. (B) Fields in molecular medicine.
Regulatory signaling network, cell biology, and omics medicine are the
major fields in molecular medicine. Regulatory signaling network
consists of receptor tyrosine kinase (RTK), G protein-coupled receptor
(GPCR), and other signaling cascades, such as FGF, VEGF, WNT,
Hedgehog, Notch, TGF-β, and BMP signaling cascades. Cell biology

includes various important topics: cellular adhesion and polarity;
centrosome biology; chromatin dynamics; endosome and exosome; and
transcriptional regulation. Omics medicine consists of three layers:
clinical medicine, followed by basic medicine and translational
medicine. Bio-banks, databases, and a comprehensive knowledgebase
are generated by clinical medicine, basic medicine, and translational
medicine, respectively.

ligands (Tammela et al., 2005; Ellis and
Hicklin, 2008). Growing evidence indi-
cates that the WNT, Notch, Hedgehog,
and TGF-β signaling cascades cross-
talk with the FGFR signaling cascade,
as well as other RTK signaling cascades.
Because genetic alterations in RTKs, such
as FGFRs, EGFR, HER2, MET, ALK, and
RET, drive human cancers, small-molecule
inhibitors and human/humanized mono-
clonal antibodies targeted against RTKs
have been developed as cancer therapeu-
tics (Ciardiello and Tortora, 2008; Kwak
et al., 2010; Mologni, 2011; Buettner et al.,
2013; Katoh and Nakagama, 2013; Li
et al., 2013). VEGF antibodies are used
as therapeutic agents for cancers and
neovascular age-related macular degen-
eration (AMD) (Penn et al., 2008; Katoh,
2013b). Because clinical sequencing may
reveal genetic changes underlining dis-
eases without established therapeutics,
the application of RTK inhibitors for pre-
viously unknown disease entities based
on genetic alterations should be pub-
lished as regular reports or case reports.
Therapeutics targeting RTKs in cancers
and non-cancerous diseases are important
issues that will be published in Frontiers
in Molecular Medicine.

G protein-coupled receptors (GPCRs)
are seven transmembrane receptors that
are linked to small G-protein signaling

and other atypical signaling cascades.
WNT receptors, including Frizzled-1
(FZD1), FZD2, FZD3, FZD4, FZD5,
FZD6, FZD7, FZD8, FZD9, and FZD10,
as well as Hedgehog signal transducer
Smoothened, belong to the GPCR
superfamily (Sagara et al., 1998; Koike
et al., 1999; Katoh and Katoh, 2007;
Lappano and Maggiolini, 2011). GPCRs
are classified as class A (Rhodopsin
family), class B (Secretin and Adhesion
family), class C (Glutamate family), or
class D (others, such as FZD/Smoothened
and Taste2 family) (Lagerström and
Schiöth, 2008). High-resolution structures
of class A GPCRs have been reported, and
those of class B GPCRs have also been
recently reported (Sexton and Wootten,
2013). Small-molecule inhibitors tar-
geted to Smoothened and monoclonal
antibody targeted to FZD7 have been
developed as cancer therapeutics (Katoh
and Katoh, 2009; Philips et al., 2011;
Arzumanyan et al., 2012; Gurney et al.,
2012). Therapeutics targeting GPCRs
in cancers and non-cancerous diseases
are also important topics that will be
published in Frontiers in Molecular
Medicine.

The WNT, FGF, Notch, Hedgehog,
and TGF-β signaling network is the tip
of the iceberg for the regulatory signal-
ing network that consists of signaling

cascades via RTKs, GPCRs and other
receptors (Figure 1B). Mutual interac-
tions of this regulatory signaling network
should be comprehensively investigated
for the development and optimization of
therapeutics.

MOLECULAR MEDICINE TARGETED TO
CELL BIOLOGY
Cellular adhesion, cellular polarity, cellu-
lar proliferation, cellular survival, chro-
matin modification, cilia formation, DNA
repair, endocytosis, exocytosis, and tran-
scriptional regulation are all major top-
ics in cell and developmental biology and
molecular medicine (Figure 1B).

Forkhead-box (FOX) family members
are DNA-binding proteins with a FOX
domain that consists of two wing-like
loops and three α-helices (Carlsson and
Mahlapuu, 2002; Katoh and Katoh, 2004a;
Hannenhalli and Kaestner, 2009). Because
FOX proteins are involved in transcrip-
tional regulation and DNA repair (Katoh
et al., 2013), germ-line mutations in
the FOX family of genes cause hered-
itary diseases, such as Axenfeld-Rieger
syndrome; lymphedema-distichiasis syn-
drome; blepharophimosis, ptosis and epi-
canthus inversus syndrome; and speech
and language disorder (Lehmann et al.,
2003). Somatic mutations in the FOX fam-
ily of genes, including gene amplifications,
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point mutations, and translocations, occur
in a variety of human cancers (Katoh et al.,
2013). My group identified and character-
ized the FOXR1 (FOXN5) gene within a
cancer-associated deleted region in human
chromosome 11q23.3 in 2004 (Katoh and
Katoh, 2004c); Santo et al. later reported a
FOXR1-MLL1 fusion caused by an intra-
chromosomal deletion in neuroblastoma
in 2012 (Santo et al., 2012).

The Drosophila Asx gene encodes an
epigenetic regulator that is associated
with the Polycomb-group (PcG) repres-
sor complex and the trithorax-group
(trxG) activator complex (Jürgens, 1985;
Sinclair et al., 1998; Brock and Fisher,
2005). ASXL1 (Fisher et al., 2003), ASXL2
(Katoh and Katoh, 2003), and ASXL3
(Katoh and Katoh, 2004b), which contain
ASXN, ASXH, ASXM1, ASXM2, and PHD
domains, are human homologs of the
Drosophila Asx. BAP1, KDM1A (LSD1),
NCOA1, the retinoic acid receptors (RARα

and RARβ), estrogen receptor (ER), and
glucocorticoid receptor (GR) are binding
partners of ASXL1. Germ-line mutations
in ASXL1 occur in Bohring-Opitz syn-
drome, while somatic mutations in ASXL1
occur in colorectal cancer with microsatel-
lite instability, hematological malignan-
cies and castration-resistant prostate can-
cer (Gelsi-Boyer et al., 2012; Katoh, 2013a
and references therein).

Extracellular DNA and circulating
miRNAs are key topics in translational
medicine (Wittmann and Jäck, 2010;
Turchinovich et al., 2012), and epigenetics
play a key role in cancerous and non-
cancerous diseases (Ordovás and Smith,
2010; Baylin and Jones, 2011). I recently
underlined diagnostic techniques utiliz-
ing circulating miRNAs in exosomes and
microsomes, therapeutics utilizing siRNAs
in polymer-based hydrogel nanoparti-
cles and therapeutics targeted to a field
of epigenetic alterations (Katoh, 2013b).
Manuscripts on a various aspects of cell
and developmental biology that are appli-
cable for molecular medicine are also
welcome for publication in Frontiers in
Molecular Medicine.

THE THREE-LAYER STRUCTURE OF
OMICS MEDICINE: BIO-BANKS,
DATABASES, AND A COMPREHENSIVE
KNOWLEDGEBASE
Genomics, transcriptomics, proteomics
and metabolomics are representative

“omics” disciplines of life science that
deal with the entirety of genes, transcripts,
proteins, and metabolites, respectively.
Omics medicine is an emerging disci-
pline of medical science that produces
large amounts of omics data on genetics,
genomics, epigenetics, transcriptomics,
proteomics, and metabolomics. Here,
I propose my personal view on the
three-layer structure of omics medicine
(Figure 1B). The first layer of omics
medicine corresponds to clinical medicine
that involves with patients’ care and
clinical sampling of blood and tissues
(bio-banks). The second layer of omics
medicine corresponds to basic medicine
that produces cutting-edge data by using
conventional molecular biology tech-
nologies, as well as high-throughput
omics data using microarrays and next-
generation sequencing technologies. The
third layer of omics medicine corresponds
to translational medicine, which devel-
ops novel diagnostics and therapeutics.
Bioinformatics used to generate curated
databases from high-throughput raw data
by using algorithms (techint) is classified
into the second layer, while bioinformatics
used to generate a knowledgebase from
manuscripts and curated databases using
either human intelligence or a Watson-
type supercomputer (humint) is classified
into the third layer. I was engaged in clin-
ical medicine as a physician from 1986 to
1990 and in basic medicine on WNT and
FGF signaling cascades from 1990 to 2002
and have been engaged in translational
medicine on the WNT, FGF, Hedgehog,
Notch, TGF-β and BMP signaling cascades
since 2003. The emergence of molecu-
lar biology evoked a great rotation from
clinical medicine to basic medicine in the
20th century, while computer and inter-
net technologies, an aging demography
and governmental financial burdens have
been promoting a rotation from basic
medicine to translational medicine in the
21st century.

Industry also consists of three lay-
ers. The first layer of industry includes
agriculture, forestry, fishery, and min-
ing; the second layer of industry includes
manufacturing and construction; the
third layer of industry includes financial
business, commerce, service, informa-
tion, and health care. The Industrial
Revolution caused a shift from the first
layer of industry to the second layer of

industry during the 18th and 19th cen-
turies, while the Internet Revolution and
Lehman Shock promoted the prevalence
of commodity-assembly manufacturing to
reduce personnel expenses and material
costs, causing another rotation from the
second layer of industry to the third layer
of industry in the 21st century.

There are many analogies between
the three-layer structure and develop-
ment process of omics medicine and
those of industry. Internet technology
enabled the outsourcing of diagnostics
and therapeutic optimization, which are
known as telemedicine. Microarray and
next-generation sequencing technologies
concentrated the production of high-
throughput data to world-class institutes
or companies to reduce personnel and
consumable expenses. Because the internet
and high-throughput technologies are able
to promote a leap from the first layer to the
third layer of omics medicine, the global
scientific community appears destined to
move toward translational medicine.

Clinical medicine, basic medicine and
translational medicine are responsible for
the establishment and maintenance of
bio-banks, databases and a comprehensive
knowledgebase, respectively (Figure 1B).
All of these aspects are mutually depen-
dent and indispensable for clinical
sequencing and molecular medicine in the
era of personalized medicine. I am con-
vinced that balanced support for clinical
medicine, basic medicine and transla-
tional medicine are mandatory for the
mechanistic elucidation of human diseases
and the development of diagnostics and
therapeutics.
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