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The immune system is composed of many different cell types and hundreds of
intersecting molecular pathways and signals. This large biological complexity requires
coordination between distinct pro-inflammatory and regulatory cell subsets to respond
to infection while maintaining tissue homeostasis. CD4+ T cells play a central role
in orchestrating immune responses and in maintaining a balance between pro- and
anti- inflammatory responses. This tight balance between regulatory and effector
reactions depends on the ability of CD4+ T cells to modulate distinct pathways within
large molecular networks, since dysregulated CD4+ T cell responses may result in
chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process
comprises an intricate interplay between cytokines, their receptors, adaptor molecules,
signaling cascades and transcription factors that help delineate cell fate and function.
Computational modeling can help to describe, simulate, analyze, and predict some
of the behaviors in this complicated differentiation network. This review provides a
comprehensive overview of existing computational immunology methods as well as novel
strategies used to model immune responses with a particular focus on CD4+ T cell
differentiation.
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CD4+ T cell dogma

INTRODUCTION
The human immune system consists of two main behavioral and
functional waves: first, the innate immune response provides a
first barrier against foreign elements and second, the adaptive
immune system builds an effective and specific immune response
to combat such elements. The principal function of the adaptive
responses is not only the specific recognition to foreign anti-
gens, but also the formation of immunologic memory, and the
development of tolerance to self-antigens (Luckheeram et al.,
2012). Originated in the bone marrow and matured in the thy-
mus, CD4+ T cells are part of the specific adaptive immunity
compartment. T cell selection in the thymus allows creating an
array of T cell repertoire for antigen recognition, as well as allow-
ing the selection process through MHC-II and the expression
of surface markers, such as CD4 or CD8 (Klein et al., 2009).
Mature CD4+ T cells then translocate into the secondary lym-
phoid organs, such as the lymph nodes or the spleen, where
they are involved in immune surveillance through interaction
with MHC-II molecules expressed on the surface of antigen-
presenting cells (Drayton et al., 2006). In this inductive site, naïve
CD4+ T cells sample the tissue environment and depending on
the cytokine milieu, they differentiate into functionally distinct
regulatory or effector subsets.

The central dogma of CD4+ T cell differentiation has evolved
over the past decades as new studies have unveiled differentiation

pathways and novel mechanisms shaping the CD4+ T cell com-
partment. The Th1 vs. Th2 conceptual framework that Mossman
and Coffman provided (Mosmann and Coffman, 1989) was
largely expanded when novel discoveries on RORγt and IL-17A
producing T cells defined the Th17 phenotype (Ivanov et al.,
2006) and with the identification of FOXP3 raised as a key tran-
scription factor in charge of driving the regulatory response in
CD4+ T cells (Fontenot et al., 2003; Hori et al., 2003). Recent in-
depth characterization of CD4+ T cell lineages has resulted in the
discovery of new phenotypes, positioning the CD4+ T cell pop-
ulation as one of the most heterogeneous immune cell subsets.
Furthermore, the latest discoveries are pushing the understand-
ing of CD4+ T cell differentiation from a 4-player game to a
multi-pronged interplay of complex networks and common tran-
scription factors and cytokines with highly plastic functionalities.
As an example, the production of IL-9 by the transcription fac-
tor PU.1 leads to the establishment of the Th9 phenotype (Ma
et al., 2010). Furthermore, other phenotypes, such as Th17, are
now under scrutiny since IL-17 and IL-22 are co-expressed in
an IL-23 dependent manner (Trifari and Spits, 2010; Sonnenberg
et al., 2011). New studies are pointing out to the aryl hydrocar-
bon receptor (AhR) as the master transcription factor responsible
for IL-22 secretion (Ramirez et al., 2010), leading to the des-
ignation of a new CD4+ T cell phenotype, Th22, which has
been also identified in humans (Eyerich et al., 2009; Fujita et al.,
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2009) Moreover, FOXP3-independent IL-10 upregulation has
been implicated in the activation of the regulatory axis under the
regulatory type 1 (Tr1) CD4+ T cells (Pot et al., 2011). Lastly, fol-
licular T helper cells (Tfh) have become an object of intense study
since they have been described as a very plastic subset that could
swift the CD4+ T cell balance. Tfh cells can leave the T cell areas
and localize in the B cell follicle, a migration that is facilitated by
their concurrent expression of the B cell zone homing chemokine
receptor CXCR5 and downregulation of the T cell zone hom-
ing chemokine receptor CCR7 (Ansel et al., 1999; Hardtke et al.,
2005). Thus, this close proximity to B cells allows Tfh cells to
support their activation, expansion and differentiation. To help
promote this crosstalk with B cells, Tfh cells produce IL-21 via
activation of the transcription factor BCL-6, thereby promot-
ing a Th1/Th17 profile. Also, IL-2 is emerging as a trigger for
Th1 differentiated cells to adopt a Tfh-like phenotype by down-
regulating BLIMP1 and interacting with STAT proteins (Breitfeld
et al., 2000). Since the BCL-6 pathway is linked to STAT factors
induced by IL-6 that in turn promotes IL-21 and TNFα produc-
tion, the study of the role of Tfh is important in the context of
infectious, immune-mediated, or chronic inflammatory diseases.

Computational modeling has become an indispensable tool to
synthesize, organize, and integrate diverse data types and theo-
retical frameworks to help generate new knowledge and guide
in vivo experimentation. This review highlights how compu-
tational modeling has helped advancing the understanding of
signaling events controlling CD4+ T heterogeneity and it also
discusses new opportunities in the context of modeling strategies
and tools.

MATHEMATICAL MODELING AND CD4+ T CELL
DIFFERENTIATION
Initial attempts to apply computational modeling approaches to
study CD4+ T cell differentiation only focused on the Th1 and
Th2 phenotypes. Indeed the well-established dichotomy between
these two phenotypes is supported by extensive information on
how T-bet (Th1) and GATA3 (Th2) interact. One of the first
published studies extrapolated the Th1/Th2 experimental facts
into systemic behavior during an immune response, indicating
that suppression and domination of one phenotype over the
other could dictate the final differentiation outcome (Fishman
and Perelson, 1999). In this study, the model encompassed not
only Th1 and Th2, but also the effect of antigen presentation via
APCs. This mathematical model illustrated how the final differen-
tiation of Th1 or Th2 depends in both the competition for anti-
genic stimulation and the cytokine-mediated cross suppression
between phenotypes. Subsequent studies applied mathematical
modeling to study the Th1 and Th2 phenotypes in the presence of
other cytokines such as IL-10 or TGFβ (Yates et al., 2000), antigen
availability and instructional intracellular feedbacks (Bergmann
et al., 2001, 2002), upregulation of the master transcription fac-
tors T-bet and GATA3 (Mariani et al., 2004; Yates et al., 2004)
or in the context of cancer and rejection of melanomas (Eftimie
et al., 2010). These modeling efforts highlighted the differences
between instructive and feedback mechanisms as well as acti-
vated pathways in both phenotypes. Other studies solely focused
on a single phenotype, such as the work published by Schulz

et al. (2009) where the computational model revealed that Th1
differentiation is a two-step process in which the early Th1 cell-
polarizing phase is followed by a later phase showing expression of
T-bet. Hofer et al. (2002) published a mathematical model show-
ing that GATA-3 transcriptional activation creates a threshold for
autoactivation, resulting in two GATA-3 expression states: one
for basal expression and one of high expression sustained by its
autoactivation.

As new data became available, the increasing complexity of the
CD4+ T cell paradigm became evident and new computational
approaches were developed to ascertain the regulatory mech-
anisms controlling differentiation, plasticity, and heterogeneity.
van den Ham and de Boer (2008) developed an ODE-based
model that describes important regulators and allows for sta-
ble switches between several different phenotypes. Other studies
focused on the interaction of Th17 and iTreg since Bettelli et al.
(2006) described the functional antagonism of Th17 and iTreg.
For instance, Hong et al. (2011) constructed a mathematical
model of Th17/Treg differentiation that exhibited functionally
distinct states, including a RORγt+ FOXP3+. While reductionist
approaches have improved our ability to understand small com-
ponents of the system, studying CD4+ T cell heterogeneity often
requires implementing systems approaches and computational
methods that can help deciphering complexity. Computational
models of CD4+ T cell differentiation and heterogeneity are
needed to accurately represent how CD4+ T cells are differ-
entiated and accurately predict sensitivities to determine which
pathways and molecules can be most critical to switch from
one phenotype to another. A major challenge in systems-level
models is the calibration process. Estimation of parameters of
large-scale CD4+ T cell differentiation models have proven suc-
cessful (Carbo et al., 2013b) by following a “divide-and-conquer
approach.” This approach is highly useful when parameterizing
large models with more than one parameter estimation. First the
parameter calibration is divided into smaller parameter estima-
tions: one estimation per phenotype represented in the model.
If necessary, other parameter estimations involving specific inter-
actions, such as the Th1/Th2 or the Th17/Treg crosstalk, can
be performed. Once parameters are located in a more targeted
parameter space, a global parameter estimation is run with all the
parameters in the model, allowing us to identify a good global
parameter set. These approaches can be easily performed using
modeling software such as COPASI (Hoops et al., 2006).

The CD4+ T cell differentiation model described in Carbo
et al. (2013b) allows the user to have a global understand-
ing with four CD4+ T cell phenotypes represented. The most
recent systems biology markup language (SBML)-compliant net-
work (Hucka et al., 2003) provides a structured understanding
on different pathways involved in CD4+ T cell differentia-
tion (Figure 1). SBML-based models are indeed highly portable
between different simulation platforms. Of note, SBML-based
topologies allow standardization in the modeling community
and promote cross-transfer of several computational models in
an efficient manner. The SBML standards are an essential step
toward integrating an ensemble of distributed immunological
models (within cells, between cells, at the cell population level,
tissue-level, whole organism and human populations).
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FIGURE 1 | Main intracellular differentiation pathways of a single CD4+ T cell. Systems Biology Markup Language (SBML)-compliant network model of
CD4+ T cell differentiation, including cytokines, receptors, and intracellular signaling pathways controlling CD4+ T cell fate and function.

Another example of CD4+ T cell modeling would be the
model by Mendoza and Pardo (2010). In this model, a contin-
uous dynamical system, in the form of a set of coupled ordinary
differential equations, was used. Such strategy was then applied
to a regulatory network of 36 nodes, representing four CD4+ T
cell phenotypes (Th1, Th2, Th17, and Treg). Although this model
creates a framework for four phenotypes, the calibration of this
larger network, however, was not conducted with experimental
data but with default parameters that enabled the differentiation
of the four phenotypes, not taking in consideration if reactions
occur in a rapid or slow fashion. In addition, the model was not
SBML compliant.

Others have explored the contribution of different CD4+ T
cell phenotypes to the modulation of immune responses toward
Helicobacter pylori infection (Carbo et al., 2013a). This study
aimed to provide new mechanistic insights on the dynamics
of mucosal Th1, Th17, and Treg cells by using both an ODE-
and agent-based (ABM) cellular model of the mucosal immune
responses during H. pylori infection. Alternatively, the logical
model strategy has also been used to explore CD4+ T cell dif-
ferentiation (Mei et al., 2013b; Mendoza, 2013). Mendoza et al.
applied either continuous or discrete dynamical systems, regu-
latory networks of Th1/Th2 or of a combination of different
transcription factors adding Th17 and iTreg to represent dif-
ferent states. Even though network modeling has shown to be
appropriate, as the production of high-dimensional experimen-
tal data is increasingly becoming available, other methods, such
as ODE- or agent-based modeling, could help understanding
the mechanisms of CD4+ T cell differentiation at the systems

level (Hoops et al., 2006; Mei et al., 2012; Wendelsdorf et al.,
2012).

DIVING INTO CD4+ T CELL LINEAGES: PHENOTYPE OR
FUNCTION?
CD4+ T cells form a complex and highly specialized network,
representing a major population implicated in mediating host
protective and homeostatic responses. However, their excessive or
uncontrolled accumulation can also represent a feature in differ-
ent diseases such as Inflammatory Bowel Disease (IBD) (Abraham
and Cho, 2009), Alzheimer’s disease (Monsonego et al., 2013),
multiple sclerosis (Chitnis, 2007), or allergic disease (Islam and
Luster, 2012), among many others. Therefore, their function is
closely guided by external signals that are captured from the envi-
ronment. Also, CD4+ T cells orchestrate immune responses by
modulating the function of other cell subsets, such as dendritic
cells or macrophages, through secretion of an array of soluble
factors, cytokines, and chemokines into the environment. The
cytokine profile secreted by each CD4+ T cell will directly depend
on which intracellular molecular pathways have been activated,
which cytokines are released and how the priming of the sin-
gle CD4+ T cell has occurred. As an example, IL-6 and TGFβ

will activate the Th17 transcriptional machinery, mainly com-
posed by RORγt, RORα, and the phosphorylated form of STAT3.
These molecules will activate the transcription of IL-21 and IL-
17 and will direct the cell into a Th17 phenotype. However,
when a CD4+ T cell is located in an environment rich in TGFβ,
lacking IL-6 or other pro-inflammatory cytokines, TGFβ will pro-
mote FOXP3 and the phosphorylated STAT5, resulting in the
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secretion of IL-10 and TGFβ that will activate the regulatory
axis. This differentiation dichotomy also depends in part on the
T-cell receptor (TCR) engagement and a co-stimulatory signal,
frequently involving the CD28 receptor: two basic signals required
for a full CD4+ differentiation process. Indeed, Miskov-Kizanov
et al. showed how the duration of T cell stimulation through the
TCR receptor is a critical determinant of cell date and plasticity
by constructing a logic circuit model of TCR signaling pathways
in CD4+ T cells (Miskov-Zivanov et al., 2013).

CD4+ T cells have a strong predisposition to certain pro-
gramming and developmental programs enabled by the cytokine
environment. However, in the context of disease, where plastic-
ity between phenotypes appears to be the norm, rather than the
exception, double positives, such as IFNγ/IL17A often appear in
pathological states such as in the context of murine colitis, where
the accumulation of IL-17A+ IFNγ+ seems to occur in an IL-23
dependent manner (Ahern et al., 2010). Indeed, IL-23 has been
shown to drive CD4+ T helper cell populations into a pathogenic
state capable to drive autoimmune population by using passive
transfer studies (Langrish et al., 2005), pinpointing IL-23 as a
critical player in CD4+ T cell pathogenicity. Moreover, several
studies showed that IL-17A could potently induce type 2 diabetes
(Arababadi et al., 2010; Jagannathan-Bogdan et al., 2011; Zeng
et al., 2012) potentially by modulating the pathogenesis of insulin
resistance induced by angiotensin II type 1 receptor (Ohshima
et al., 2012) hence increasing the production of renal nitric oxide
(Imanishi et al., 2013). Th17 also showed a pleiotropic func-
tionality, since intestine IL-17A+ IL-10+ T cells were found in
the small intestine following treatment with anti-CD3 antibody,
known to induce an immunosuppressive environment (Esplugues
et al., 2011). Furthermore, intestinal epithelial lesions were accen-
tuated in IL-17A null mice (Yang et al., 2008). These implications
support a theory, whereby CD4+ T cells are not defined by its
inflammatory status but by the functions they accomplish after
being exposed to the cytokine milieu. The CD4+ T cell com-
partment has been demonstrated to be governed, not only by
phenotype, but also by function, therefore forcing the distinction
between a stable T cell lineage and a T cell differentiation state.
Indeed, the ability of a CD4+ T cell to choose a predetermined
differentiation program has been shown to be more complex than
expected. This determination seems to now bow down to a more
functional approach, where CD4+ T cells are not determined
by phenotype, but by function, as needed. The functionality of
CD4+ T cells as a means of classifying and determining their
operational status has already been discussed in O’Connor et al.
(2010) and Basu et al. (2013). The traditional view on the CD4+
T cell dogma has now changed into a more comprehensive vision,
where the innate immune compartment influences differentiation
on CD4+ T cells and not only 2 or 4, but 8 known phenotypes
are represented and new phenotypes or states are likely to emerge
(Figure 2).

DECIPHERING CD4+ T CELL PLASTICITY BY USING
COMPUTATIONAL MODELING APPROACHES
Transcription factors, TCR, chemokines, surface receptors, and
cytokines determine how CD4+ T cells become activated, main-
tained and how they can mature into distinguishable featured

FIGURE 2 | Heterogeneity of CD4+ T cell subsets. T helper type 1 (Th1),
type 2 (Th2), type 17 (Th17), type 9 (Th9) and type 22 (Th22), Follicular T
helper cells (Tfh), and induced regulatory T cells (iTreg) as well as type 1
regulatory T cells (Tr1) are induced based on multiple cytokines being
produced by dendritic cells and macrophages among other immune subsets.

profiles. However, an increasing understanding on how the mech-
anisms of differentiation work is revealing increased flexibility
and plasticity between different CD4+ T cell phenotypes that
allow functional heterogeneity. As discussed above, the functional
plasticity between Th1 and Th17 cells resulting in IFNγ+ IL-
17A+ CD4+ T cells (Lee et al., 2009; Kurschus et al., 2010) has
already been investigated. Indeed, Th17 has been shown to be
a very unstable phenotype (Mathur et al., 2006). Functionally,
Th17 cells during mucosal inflammation seem significantly dif-
ferent than those Th17 cells involved in regulating homeostasis at
the steady state. Whereas IL-17A single positive Th17 cells pro-
duce IL-22, which may provide a mechanisms through which
Tregs cells reinforce the epithelial barrier (Lin et al., 2014), this
same Th17 population can accumulate and produce additional
mediators such as IFNγ or GM-CSF during gut inflammatory
disorders (Ahern et al., 2010; Codarri et al., 2011; El-Behi et al.,
2011). CD4+ T cell plasticity is not only initiated by a change
within the intracellular compartment, but also by a change in
the extracellular environment. Th1 cells have been demonstrated
to acquire plasticity toward a follicular T helper (Tfh)-like phe-
notype when they encounter a cytokine milieu that is not rich
in IL-2 (Liao et al., 2011; Oestreich et al., 2012). Other studies
also suggest that early Th1 differentiation is marked by a Tfh
cell-like transition highlighting the role of Tbet and STAT4 in
mediating these transitions (Nakayamada et al., 2011). The reg-
ulatory phenotype iTreg has also been reported to adopt plasticity
mechanisms. Several studies have identified, for example, a dou-
ble RORγt+ FOXP3+ (Lochner et al., 2008; Zhou et al., 2008)
that can further differentiate into a pathogenic IL-17-expressing
CD4+ T cell (Osorio et al., 2008). These examples illustrate
the need for improving our mechanistic understanding at the
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systems level, where plasticity in the in vivo setting needs to be at
focus.

Computational methods have also been applied to study the
plasticity of CD4+ T cells. Magombedze et al. considered a
population plasticity mechanism between Th1 and Th2 during
Mycobacterium avium infection by using a reduced ODE-based
model where the phenotype change of MAP-specific T cells
occurred due to differences in the rates of differentiation, pro-
liferation, and death at the site of infection (Magombedze et al.,
2014). However, the cellular plasticity involving several intracellu-
lar pathways was not represented. In contrast, Pedicini et al. used
computational models to analyze the cellular plasticity between
Th1 and Th2 cells, extending the regular Tbet/GATA3 plastic-
ity predictions to a broader panel of molecules, involving IRF4,
STAT1 and STAT6, MAF, NFAT, and SOCS1 (Pedicini et al.,
2010). More comprehensive approaches have also been explored
by using extended logical formalisms with Boolean variables to
assess the effect of different cytokines in making a CD4+ T cell
evolve toward a specific state (Naldi et al., 2010). As a general
rule, validation studies are performed to endorse and corroborate
the usefulness of computational models. Whereas computational
models may be used for in silico experimentation, in vivo and
in vitro validation needs to be performed in order to ensure its
predictability and prove that the plasticity described in silico can
be translated into an in vivo setting in those cases. To address
plasticity in vivo, the modeling cycle needs to be completed; first,
the model needs to be created based on either available data
and/or theory-driven knowledge. Afterwards, calibration proce-
dures need to ensure that a good parameter value set has been
found and quality control needs to be run to check that the com-
putational model fully represents our experimental data. Third,
in silico experimentation, using loss-of-function, overexpression
or sensitivity analysis strategies need to be performed. Finally,
in vivo or in vitro validation studies will authenticate the com-
putational model and serve as future calibration data for model
refinement. These new approaches are helping immunologists
to target novel experiments that will shed some light to the
subjective issue of CD4+ T cell plasticity.

The computational CD4+ T cell differentiation landscape has
generated several validated studies. We validated experimentally
that activation of the transcription factor peroxisome proliferator
activated receptor gamma (PPARγ) favored the plasticity of Th17
cells toward iTreg cells, a key prediction of our CD4+ T cell model
(Carbo et al., 2013b). This model consisted of 60 differential
equations, representing 52 reactions and 93 species, computing
the differentiation of a CD4+ T cell into Th1, Th2, Th17, and
Treg. The model included cytokines, nuclear receptors and tran-
scription factors that defined fate and function of CD4+ T cells.
The first set of computationally derived hypotheses were centered
around PPARγ and its modulatory role between Th17 and iTreg.
Time course simulations illustrated how PPARγ can trigger plas-
ticity in IL-17A+ producing Th17 cells, causing the system to
become a iTreg CD4+ T cell. To validate this prediction, in vitro
and in vivo experiments in the context of an IBD onset were
designed with PPARγ null CD4+ T cells as well as with a treat-
ment with pioglitazone, a PPARγ activator. The study presented
in Miskov-Zivanov et al. (2013) also validated the interaction of

FOXP3 and mTOR following TCR activation by purifying and
activating DCs and CD4+ T cells and assessing the expression of
different intracellular markers using cell staining and flow cytom-
etry. Another example is the validation of the time-dependent,
dual T-bet wave during Th1 differentiation validated using gene
expression analysis in CD4+ T cells isolated from wild-type and
IFNγ null mice (Schulz et al., 2009).

COMPLEMENTARITY OF THEORETICAL AND DATA-DRIVEN
MODELS
In computational immunology, often times, the available knowl-
edge about a given set of biological events is used to construct a
specific mathematical model. This theoretical approach is there-
fore directly correlated to the amount of information that is
publicly available and the model created upon these pieces of
data will only represent the processes delineated within. On the
other hand, models can be constructed based solely on analyz-
ing data itself. The increasing availability of high-dimensional
data to quantify signaling and cellular responses, together with
the novel sequencing technology advancements, is opening a new
avenue to use these data-rich datasets to build computational
models and help understanding CD4+ T cell differentiation
responses. This systems-biology approach, however, can be a
double-edged sword: generating high-throughput datasets is part
of a big-data strategy, and sometimes, without the appropriate
tools, can bring more confusion than understanding to the prob-
lem (Bray, 2001). On the other side, this increased availability
of data, if used correctly, can streamline the modeling approach,
offering a tremendous amount of data for calibration purposes
that could allow modelers to build fully calibrated, predictive and
extremely comprehensive models that could help generate impor-
tant hypotheses. These two opposed modeling views can actually
be used as a complementary strategy. Theoretical models lack data
either for network architecture construction or for model cali-
bration. Data-driven modeling, however, is sometimes confusing,
and lack general rules to guide the user and make sense of such
big pieces of data. Combining the organization-based approach
from theory-driven models with the amount of data and novelty
from the data-driven model, highly predictive, hybrid models can
be ultimately constructed. In fact, substantial evidence has been
shown to understand that the just and only use of data-driven
models can represent a trap. The so called “Big Data Hubris” (the
often implicit assumption that big data are a substitute, rather
than a supplement to, traditional data collection and analysis)
already triggered an overestimation of Google’s assessment on flu
prevalence in 2013 (Lazer et al., 2014). This is a clear example
on how data-based and data-driven results were wrongly gen-
erated due to the lack of theory underlying unstructured data
integration.

The long-standing traditional theory-driven approach has
been proven to provide helpful insights on how CD4+ T cells
function, where modeling strategies are based on prior biological
understanding of the molecular mechanisms involved (Fishman
and Perelson, 1999; Hofer et al., 2002; Mendoza, 2006; Klinke,
2007; Hong et al., 2011). However, often times theory-driven
modeling is intimately linked to reductionist approaches, since
the availability of calibration data can become an issue if building
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comprehensive networks. Data-driven modeling emerges as a
new and complementary approach for multivariate analysis and
systems-level analyses. Often times, predictability in computa-
tional systems is linked to either the lack of data to construct
the computational model or the limitations on the model topol-
ogy. The combination of data-driven approaches and theoretical
strategies may solve these problems therefore promoting the cre-
ation of truly predictive models. An example on how to use
high-throughput data to construct a CD4+ T cell comprehensive
network is the study published by Yosef et al., where they used
transcriptional profiling with microarrays at high temporal reso-
lution to build a Th17 induction system (Yosef et al., 2013). In this
study, 1291 genes were differentially identified and clustered into
20 groups, depending on their temporal profiles. Another advan-
tage highlighted in this study is the use of modules to explain
the processes controlling Th17 differentiation. Four regulatory
modules were identified: the positive module that increased IL-17
levels, the negative module that downregulated IL-17, the signa-
ture of Th17 genes and signature of other CD4+ T cell subtypes.
This work supported the finding of 3 novel key regulators of Th17
function: Mina, Fas, and Pou2af1. Another study where data-
driven approaches were taken was the work performed by Ciofani
et al., where they combined genome-wide transcription factor
occupancy, expression profiling of transcription factor mutants,
and transcriptional regulatory network (Ciofani et al., 2012).
Integration of several datasets allowed the inference of a Th17 net-
work that highlighted some key regulators to Th17 plasticity, such
as Fosl2. These two approaches have unveiled novel nodes by using
a data-driven approach. However, both networks, which repre-
sent static pictures, lack dynamics running on the background.
By adding dynamics to the system, a whole new dimension can be
added. These data-rich models could be used to determine how
the system evolves when a node is knocked-out, or how sensitive
are reactions and fluxes to change by a special drug or modu-
lator in a more mechanistic manner. A counterfactual example
related to the CD4+ T cell differentiation process is the role of
IL-17A in chronic inflammation during IBD. Although it has been
reported increased expression of IL-17A during IBD (Fujino et al.,
2003) and both IL-17R-deficient mice in TNBS-induced colitis
model (Zhang et al., 2006) as well as IL-17A-deficient mice in
a DSS-induced colitis model (Ito et al., 2008) were reported to
worsen the clinical disease symptoms, some other opposing stud-
ies highlighted the protective role of IL-17A production in vivo
(Ogawa et al., 2004; O’Connor et al., 2009). Very interestingly,
a human anti-IL-17A monoclonal antibody to treat Crohn’s dis-
ease showed that blockade of IL-17A in humans was ineffective
and higher rates of adverse events were noted compared with the
placebo group (Hueber et al., 2012). In this case, where it is clear
there are missing pieces in this puzzle, a combined strategy with
both theory-driven and data-driven modeling could shed some
light by looking at other players in these intricate and complex
interactions.

Data-driven modeling nicely complements and synergizes
with theory-driven due to the availability of data for calibra-
tion purposes, the potential of discovering novel regulators in the
network that have never been described before, and the capabil-
ity to comprehensively and mechanistically understand complex

systems. At the same time, hypotheses extracted from modeling
need to be validated to become accepted theories by the commu-
nity. The combination of theory driven models with data-driven
approaches is becoming a strong, useful tool to ensure that the
basic knowledge is represented, but at the same time, that nov-
elty and higher predictability is reached. The combination of these
two different strategies and multiscalability is now increasing the
predictability of very comprehensive models.

DETERMINISTIC vs. STOCHASTIC APPROACHES
In complex regulatory schemas, such as the CD4+ T cell differen-
tiation network, gene expression is controlled by transcriptional
signals that determine how rapid and how often a specific gene
is transcribed. This transcription process, however, depends on
other signals and molecules, such as transcription factors and
promoter signals that will trigger cell-to-cell variability. Often
times, gene transcription is a result of a combination of other
signaling cascades, therefore adding not only complexity and vari-
ability due to the differential activation of upstream molecules,
but also a time delay while the signal molecule concentration
either accumulates or decays.

In CD4+ T cell differentiation, variability is a key compo-
nent of the process. In fact, not all the cells expressing RORγt
exhibit IL-17A production even in the presence of the correct
inductors TGFβ and IL-6 (Zhou et al., 2008). Furthermore, Guo
et al. showed how IL-4 secreting and non-secreting cells from
Th2 cultures have a similar probability of producing IL-4 upon
subsequent stimulation, implying that there is stochastic element
in IL-4 production by stimulated Th2 cells (Guo et al., 2004).
Even after assuming that most genes are expressed from both alle-
les when the transcription machinery is in place, some studies
point out that some cytokine genes in T cells are often expressed
in a monoallelic manner (Riviere et al., 1998). Alternatively, the
transcription rates also vary if agonistic transcription factors are
bound (Chen et al., 2011). Given these set of premises, stochastic
approaches that add this type of variability within the CD4+ T
cell subset can be used to help explain biological variation. In this
case, this variability offers a unique way to control regulation, by
inducing stimuli but controlling the fraction of cells expressing a
specific cytokine.

Deterministic models of CD4+ T cell differentiation are more
prevalent than stochastic-based models. Of note, deterministic
approaches have unveiled a large amount of findings that relate
to single cell behavior. A fraction of these models have focused
on the analysis of one phenotype only (Schulz et al., 2009; Gross
et al., 2011), and other models have focused on more than one
phenotype and the interactions between the resulting states (van
den Ham and de Boer, 2008; Gross et al., 2011; Hong et al., 2011;
Carbo et al., 2013b). Mariani et al., in contrast, used a stochastic
approach to show how an IL-4 stochastic mechanism acting at the
chromatin level can be integrated with transcriptional regulation
to quantitatively control cell-to-cell variability (Mariani et al.,
2010). Furthermore, Santoni et al. used an agent-based model to
assess Th1 vs. Th2 fates in the context of hypersensitivity reactions
(Santoni et al., 2008). Recently, Mei et al. assessed the role of the
IL-6 receptor in controlling the balance between Th17 and iTreg
using a novel, web-based stochastic modeling tool (Mei et al.,
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2013a). Other approaches have used the mathematical formula-
tion of a cell population master equation (CPME) that describes
population dynamics and takes into account the major sources of
heterogeneity, namely stochasticity in reaction, DNA-duplication,
and division, using the Montecarlo algorithm (Stamatakis and
Zygourakis, 2010). Manninen et al. (2006) developed several
approaches to incorporate stochasticity into deterministic differ-
ential equation models, obtaining so-called Itô stochastic differ-
ential equations, and applied them to neuronal protein kinase C
signal transduction pathway modeling. Even though traditional
molecular biology research has tended to composite single cell
deterministic models, diversification of T cell fate during CD4+
T cell differentiation implies that the fate of any individual cell
may also be acquired stochastically. Therefore, stochastic simula-
tions within the CD4+ T cell differentiation process could help
to understand the tight regulation between phenotypes as well as
help identify key nodes that, when acting at higher variability, can
skew the output of differentiation into a specific differentiation
program.

APPLICATION OF MULTISCALE MODELING TO STUDY CD4+
T CELL DIFFERENTIATION
CD4+ T cell differentiation is a process where a change in the
intracellular compartment can tremendously impact the outcome
of tissue pathology and clinical disease. Distinct intracellular pro-
cesses dictate the secretion of chemokines, cytokines, and other
soluble factors. These components can, at the same time, mod-
ulate other CD4+ T cell nearby by binding to specific receptors.
This population effect can modulate other downstream immune
subsets that can ultimately affect the formation of lesions at the
tissue level. Thus, CD4+ T cell differentiation is not only an intra-
cellular process: population and cellular organization are another
major mechanism that may contribute to the change in the domi-
nant phenotype of effector CD4+ T cells during chronic patholo-
gies (Magombedze et al., 2013). Indeed, the mucosal immune
system includes hierarchical interactions between cells leading to
emerging behaviors with dimensions ranging from nanometers to

meters and time scales from nanoseconds to years. The spatiotem-
poral scales where CD4+ T cells participate can actually range
from micro-seconds to months or years and to nanometers to
centimeters or meters (Figure 3A). Complex and dynamic infor-
mation processing networks transfer information across scales
in immunity encoding host responses and repair measures. The
architecture of such multiscale network also needs to be com-
pletely embedded in a comprehensive, integrated system. Because
of this flexibility in parameter calibration and sensitivity analyses,
Ordinary or Stochastic Differential Equations (ODE or SDE) are
ideal candidates to encapsulate and simulate intracellular events.
In addition, neural networks have also been used to classify and
simulate immune cell subsets (Mei et al., 2013b). In the multiscale
setting, these ODE- or SDE-based models would reproduce intra-
cellular CD4+ T cell activation with a release of cytokines and
chemokines as a result of the process of differentiation. Partial
Differential Equation (PDE) modeling would be a great way to
simulate the diffusion reactions of such cytokines in the environ-
ment. Ultimately, an agent-based model, adding randomness to
the biological system, which helps to better represent responses at
the cellular level, would encompass and organize the ODE/SDE
models with the PDE simulations by simulating CD4+ T cells as
objects that can change its state depending on the cytokine milieu.
As a result of these premises, multiscale models are positioned
as a comprehensive tool to understand not only the intracellu-
lar events happening within the CD4+ T cell compartment at a
single cell level, but also understanding the interactions and sensi-
tivities, at the cellular, population and tissue levels, that contribute
to disease chronicity, tolerance, or resolution (Figure 3B).

All together, ODE models can calculate the intracellular con-
centration of different species over time, PDE models could
analyze the gradient concentration of cytokines and chemokines
secreted by the ODE model, ABM-based models could modulate
the cell-cell interactions and spatial compartments could repre-
sent the tissue-level scale, including lesion formation. Current
experimental techniques are limited in allowing immunologists
to quantitatively manipulate immune responses to pathogens in

FIGURE 3 | Multiscale modeling of CD4+ T cell differentiation. The CD4+ T cell differentiation process comprises (A) different spatiotemporal parameters
(milliseconds to hours and nanometers to centimeters) as well as (B) different scales (intracellular, difussion gradient, cellular, and tissue-level scale).
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a controlled manner in animal models and to trace events at the
tissue level confidently back to specific cellular level interactions
and molecular or signaling mechanisms. In a multiscale model,
one can test whether mechanisms seen in the experimental con-
text in vivo or in vitro are plausible explanations for phenomena
observed at the clinical level. There have been several previous
studies on multiscale modeling in the context of immunity: Sloot
and Hoekstra (2010) proposed a multi-scale modeling method-
ology in computational biomedicine and presented two cases
studies. Krinner et al. (2013) coupled an agent-based model of
hematopoietic stem cells with an ODE model of granulopoiesis.
Also, Klinke (2007) published a multiscale model of dendritic cell
education and trafficking in the lung. Some very recent multi-
scale approaches to study the CD4+ T cell population have been
performed in the context of HIV infection (Yeghiazarian et al.,
2013) and also in the context of CD4+ T cell migration, signal-
ing, and interaction with the APC compartment (Huang, 2010).
Furthermore, Dwivedi et al. recently developed a multiscale sys-
tems model of IL-6–mediated immune regulation in Crohn’s
disease, by integrating intracellular signaling with organ-level
dynamics of pharmacological markers underlying the disease
(Dwivedi et al., 2014). Santoni et al. (2008) also combined an
agent-based model of type I hypersensitivity reactions showing
hallmarks of the response to a generic allergen with a gene regula-
tory network for the switch of Th1/Th2 phenoptypes. Despite all
these strategies and studies, there is no comprehensive multiscale
model that computes more than two phenotypes of CD4+ T cell
differentiation based on the availability of certain factors in the
environment and considers more than one scale in the simulation.

Multiscale modeling may also help integrate immune
processes and metabolic pathways to build systems-level
immunometabolic frameworks. Indeed, T cell metabolism is
highly dynamic and has a tremendous impact on the ability of T
cells to grow, activate and differentiate (Gerriets and Rathmell,
2012). Glucose metabolism is one of the pathways that has been
targeted to explore immunometabolism. One example is the
study from Maciver et al. where they found that activation of
T cells causes a large increase in glucose transporter 1 (Glut1)
expression and surface localization (Maciver et al., 2008).
Furthermore, CD28 appeared to promote Akt-independent
up-regulation of Glut1 and Akt-dependent Glut1 cell surface
trafficking (Jacobs et al., 2008). Multiscale modeling analyses
could also help to differentiate which are the metabolic needs
to promote specific developmental programs. In fact, effector
and regulatory phenotypes have distinct glycolytic and lipid
oxidative metabolic programs (Michalek et al., 2011). Pearce
et al. reviewed (Pearce, 2010) how activated T cells have an
anabolic metabolism, whereas non-proliferating T cells had an
opposed catabolic metabolism. Furthermore, autophagy has
been found to be essential for T cell survival and proliferation
(Pua et al., 2007). Later the same group described how the same
process of autophagy may have a physiologically significant role
in the clearance of mitochondria in T cells as part of normal T
cell homeostasis (Pua et al., 2009), creating a clear link between
immunometabolism and T cell function. By using a multiscale
strategy, these metabolic programs could be integrated in dif-
ferentiation simulations and more importantly, the processes

could be manipulated to control anti- and pro-inflammatory
development in the context of inflammatory diseases. Thus,
modeling can be used to quantitatively study dynamic processes
located at the interface of immunity and metabolism.

Of note, understanding the mechanisms of CD4+ T cell differ-
entiation and plasticity across scales can lead to the identification
of novel therapeutic targets for skewing effector cells into regu-
latory phenotypes that suppress inflammation. Therefore, multi-
scale modeling can, indeed, increase predictability and systems-
wide mechanistic understanding as to how CD4+ T cells are
activated, maintained, and transformed.

CONCLUSION
T cell immune responses are extremely heterogeneous and com-
plex. This variability is not fully understood and there are still sev-
eral questions in regards to CD4+ T cell plasticity and function.
Indeed, the issue of what criteria to use to characterize distinct
T cell subsets is becoming increasingly complicated. Moreover,
the idea that CD4+ T cells are governed by function and not
by phenotype is clearly emerging as more double positive and
plastic behaviors are being unveiled. The possibility that every
helper T cell process is a unique combination of molecules, how-
ever, cannot be discarded. This review highlighted how CD4+
T cells have a strong predisposition to certain developmental
programs, but it also showed how, at certain times with cer-
tain environmental signals, this predisposition is skewed toward
another program. Computationally, the plural CD4+ T cell sce-
nario is still a field of interest and active investigation. As new
advancements in the understanding of immune responses con-
tinue to unfold, computational modeling approaches are likely
to be required to comprehensively and systematically investigate
mechanisms across spatiotemporal scales and to help integrate
diverse data types.
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