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Omics profiling significantly expanded the molecular landscape describing clinical
phenotypes. Association analysis resulted in first diagnostic and prognostic biomarker
signatures entering clinical utility. However, utilizing Omics for deepening our
understanding of disease pathophysiology, and further including specific interference
with drug mechanism of action on a molecular process level still sees limited added
value in the clinical setting. We exemplify a computational workflow for expanding from
statistics-based association analysis toward deriving molecular pathway and process
models for characterizing phenotypes and drug mechanism of action. Interference analysis
on the molecular model level allows identification of predictive biomarker candidates
for testing drug response. We discuss this strategy on diabetic nephropathy (DN), a
complex clinical phenotype triggered by diabetes and presenting with renal as well as
cardiovascular endpoints. A molecular pathway map indicates involvement of multiple
molecular mechanisms, and selected biomarker candidates reported as associated with
disease progression are identified for specific molecular processes. Selective interference
of drug mechanism of action and disease-associated processes is identified for drug
classes in clinical use, in turn providing precision medicine hypotheses utilizing predictive
biomarkers.

Keywords: omics, integration, molecular model, biomarker, target, systems biology, systems pharmacology,

precision medicine

INTRODUCTION
Despite a continuously rising number of clinical trials the rate
of bringing novel medication to the clinic is stalling (Pammolli
et al., 2011). Here, Omics profiling and high throughput drug
screening technologies at the interface of large scale clinical data
have triggered novel conceptual strategies aimed at improved
patient stratification for enabling precision medicine (Trusheim
et al., 2011; Hollebecque et al., 2014). For implementing such
approaches a number of issues need to be addressed including:
(i) mirroring the clinical categorization of a phenotype on a
molecular level description, (ii) spotting molecular factors mech-
anistically driving disease progression, (iii) drug-based inter-
vention specifically addressing such progression mechanisms,
and (iv) predictive biomarkers allowing fit-for-purpose analysis
regarding a match of relevant pathophysiology and drug mech-
anism of action on the individual patient level (Heinzel et al.,
2012).

A clinically well-established example is HER2 positive breast
cancer characterized by overexpression of a member of the epider-
mal growth factor receptor family (ERBB2) playing a mechanistic
role in progressive disease. In case the factor is proving positive
for a patient the specific presentation is amenable for treat-
ment tackling growth signaling (Hicks and Kulkarni, 2008). Still,

the clinical presentation of breast cancer shows heterogeneous
pathophysiologies apart HER2 positive subtypes. In consequence,
when aiming at a comprehensive assessment of progressive breast
cancer phenotypes multimarker panels are needed, e.g., imple-
mented by a multiplexed assay holding 70 individual molecular
features (Buyse et al., 2006). Such multimarker panels have gen-
erally become a promising strategy for characterizing complex
clinical presentations, e.g., utilizing a serum marker panel for
predicting coronary artery disease in symptomatic patients, or a
urinary proteomics profile for early diagnosis of diabetic kidney
disease (LaFramboise et al., 2012; Zürbig et al., 2012).

Failure for identifying a single causative factor as proxy
for determining progression of a complex clinical phenotype
becomes apparent when comparing the performance of marker
panels with single markers, with the latter e.g., reviewed by
Hellemons et al. for onset and progression of diabetic kidney dis-
ease (Hellemons et al., 2012). In clinical practice a different type
of biomarker may be utilized, providing a phenotypic readout
primarily reflecting the functional status of an organ in contrast
to the pathophysiological characteristics. In kidney disease such
functional markers are used in patient management as well as
clinical trial design, including the estimated glomerular filtration
rate (eGFR) and proteinuria (reflecting glomerular filtration and
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permeation of macromolecules across the glomerular capillary
wall, respectively).

Association of these parameters with worsening of diabetic
kidney disease, together with increasing incidence of endpoints as
cardiovascular events is undisputed (Adler et al., 2003). However,
these markers do not provide information on the specific molec-
ular characteristics of the disease. Functional markers render
stratification for tailored therapy in the concept of precision
medicine essentially impossible.

The molecular pathway of primary interest in the present clin-
ical setting of diabetic kidney disease is the renin-angiotensin
system (RAS), in its activity at foremost controlling blood pres-
sure and fluid balance. Blockade of the RAS has been able to
reduce the incidence of renal events in patients with and with-
out diabetes mellitus (Ruggenenti et al., 1998; Brenner et al.,
2001). In a study by Lewis et al. angiotensin receptor blockade
by Irbesartan reduced the risk of a primary composite endpoint
(doubling of baseline serum creatinine concentration, develop-
ment of end-stage renal disease or death from any cause) during
a follow up period of 2.6 years by 20% when compared to the
placebo (Lewis et al., 2001). Nevertheless, 50% of patients in the
Irbesartan group reached the primary endpoint after 54 months.
In an effort to increase the efficacy of RAS antagonistic therapy an
angiotensin receptor blocker was combined with placebo or the
angiotensin converting enzyme (ACE) inhibitor Lisinopril (Fried
et al., 2013). The combination therapy did not reduce the inci-
dence of a combined renal endpoint. On the contrary an increased
risk of hyperkalemia and acute kidney injury was observed con-
firming other reports questioning the safety of this approach
(Mann et al., 2008; Parving et al., 2008).

Next to addressing RAS, organ-specific molecular processes
involving inflammation and oxidative stress have been impli-
cated in progressive tubulointerstitial fibrosis, the best histolog-
ical, hence molecular mechanistic predictor of an adverse renal
disease prognosis (Rodríguez-Iturbe and García García, 2010).
Bardoxolone, a nuclear factor-erythroid-2-related factor 2 activa-
tor with anti-oxidative capacity increased eGFR in patients with
advanced diabetic renal disease (Pergola et al., 2011). However,
a large prospective controlled randomized trial with hard end-
points had to be stopped because of severe side effects (De Zeeuw
et al., 2013).

As given with these examples for chronic kidney disease (but
in its conceptual fundament holding true for a multitude of
highly prevalent chronic diseases), many of the recent inter-
ventional studies failed to achieve their goals. Here biomarkers
promise to take a key role in selecting patients for studies and/or
to predict the long term effects of a drug on hard endpoints.
Upfront stratification in randomized controlled trials by separat-
ing patients by drug response as measured by biomarkers serving
as endpoint surrogate and then randomizing the groups sepa-
rately is an approach which is, at least from a statistical point
of view, preferable to post-hoc analysis (De Leon, 2012). Such an
enrichment strategy is currently e.g., tested in the SONAR study
(clinicaltrials.gov reference NCT01858532) addressing diabetic
nephropathy (DN).

However, with respect to fit of specific drugs biomarkers
need to carry predictive value, i.e., a biomarker shall on a

patient-specific level identify responders benefitting from drug
effect. In this setting various levels need to be considered involv-
ing genetic and environmental components defining disease
presentation and progression. The drug target may see genetic
polymorphism impacting drug binding, but polymorphism may
further involve drug transport and drug metabolism (Johnson,
2001). A significant number of genetic polymorphisms have in
the meantime become drug label-relevant regarding drug effi-
cacy, but also toxicity and side effects (U.S. Food and Drug
Administration, 2014). Pharmacogenomics has clearly demon-
strated that the genetic background of an individual introduces
heterogeneity in drug response.

Still, this setting assumes a homogeneous patient population
with respect to the molecular mechanistic factors determining
disease progression, only exhibiting differences in genetic pecu-
liarities of one and the same molecular mechanistic context. In
such setting functional biomarkers appear sufficient for identify-
ing progressive disease, and drug variance is fully explained by
the genetic background in regard to the mechanism of action of a
specific drug.

A complementary perspective may be that the molecular
mechanistic background and progression-relevant molecular fac-
tors are per se diverse and patient-specific, naturally determining
drug response (Mayer et al., 2012). In such scenario a biomarker
needs to serve as proxy of key mechanistic factors characteriz-
ing and driving a disease on a patient-specific level, combined
with educating on the specific interference of disease mechanism
with drug mechanism of action. For capturing these constraints
a detailed molecular map of a clinical phenotype and its interfer-
ence with a drug mechanism of action is needed, and here inte-
gration of Omics profiling adds to identifying such mechanisms
(Fechete et al., 2011; Mühlberger et al., 2012).

An a priori stratification of patients based on an appropri-
ately chosen biomarker panel reflecting the pathophysiology of
a given patient (group) allowing to determine a match with a spe-
cific drug’s mechanism of action appears as promising approach.
As recently discussed by Himmelfarb et al. fresh approaches are
critical in finding therapies to kidney disease benefiting patients,
outlining the importance of improving the translational aspect
in clinical research (Himmelfarb and Tuttle, 2013). Here, omics
technologies have added significantly to the data landscape char-
acterizing chronic kidney disease, however, in a first instance
mainly expanding the candidate set of apparently relevant pro-
cesses and pathways, going in hand with a large number of
biomarker candidates, which individually hamper clinically rel-
evant assessment on disease progression (Fechete et al., 2011;
Hellemons et al., 2012).

Integrative approaches in the realm of Systems Biology have
been proposed for reaching a consensus description of chronic
kidney disease pathophysiology, including molecular models
of DN as well as of the reno-cardial axis (He et al., 2012;
Komorowsky et al., 2012; Mayer et al., 2012; Heinzel et al.,
2013). Still, a translation process needs to be followed, joining
disease pathophysiology, stratification markers allowing enrich-
ment strategies, combined with on a molecular mechanistic level
matching drugs for allowing precision medicine (Mirnezami
et al., 2012). In this work we exemplify such procedure on DN
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being the major clinical presentation leading to end stage renal
disease.

MATERIALS AND METHODS
GENERAL DATA SOURCES
Protein coding genes identified as associated with DN were
collected from public domain transcriptomics data sources,
complemented with molecular features reporting such associa-
tion in scientific literature. Molecular signatures educating on
ACE inhibitor mechanism of action were extracted from public
domain transcriptomics sources. Proteins discussed as biomark-
ers or drug target candidates in the context of DN were extracted
from scientific literature, with the set of targets further extended
with known drug targets of drugs currently utilized in clini-
cal trials including renal endpoints. Protein-protein interaction
information and molecular pathway maps were retrieved from
public domain databases.

Clinical phenotype molecular data
A literature search in NCBI Pubmed utilizing the query string dia-
betic nephropathies[majr] AND (microarray analysis[mh] OR gene
expression profiling[mh]) AND humans[mh] NOT review resulted
in 37 transcriptomics studies. Explicitly restricting to explorative,
array-based mRNA expression studies on human kidney tissue
yielded four studies as suitable for inclusion in further analysis.
For Berthier et al. and Cohen et al. expression signatures could
be retrieved directly from the publications (Cohen et al., 2008;
Berthier et al., 2009). For Woroniecka et al. and Baelde et al.
the raw expression profiles were retrieved from Gene Expression
Omnibus (GSE30122, GSE1009) (Baelde et al., 2004; Woroniecka
et al., 2011). Robust Multi-array Average (RMA) normalization

for the data set of Woroniecka et al. and MAS5 normaliza-
tion for the data set of Baelde et al., followed by Significance
Analysis of Microarrays (SAM) was employed for identifying fea-
tures showing differential regulation comparing diabetic kidney
disease and healthy control samples. In case of microdissected
sample material separate analysis was done for the glomerular and
tubulointerstitial compartment.

To further complement the set of DN-associated features a
literature mining approach based on Pubmed Medical Subject
Headings (MeSH) annotation and publication to gene links pro-
vided in gene2pubmed (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
gene2pubmed.gz) was executed. A Pubmed search using diabetic
nephropathies[majr] AND human[mh] as query string was per-
formed for identifying publications of relevance in the context
of DN, resulting in 10,766 publications. Protein coding genes
explicitly discussed in these publications were extracted from
gene2pubmed by filtering based on Pubmed ID and Taxonomy
ID (9606 for human).

Finally, the sets of differentially regulated features identified in
the individual transcriptomics studies as well as the set of genes
from literature extraction were consolidated on the Ensembl gene
namespace (Table 1).

Biomarker and target annotation from scientific literature
A NCBI Pubmed search for publications holding Diabetic
Nephropathies further qualified by one of the following
qualifiers pathology, physiopathology, enzymology, metabolism,
complications, blood, diagnosis, urine, and epidemiology as major
MeSH concept, further demanding one of the MeSH concepts
Biological Markers or Tumor Markers, Biological was performed
for identifying publications discussing biomarker candidates. For

Table 1 | Diabetic nephropathy molecular data space.

Data type Study setup # Protein coding

genes

References

Transcriptomics, tissue biopsies Comparison of healthy references (GFR > 60)
and established DN (GFR 30-59);

Glomerular compartment:
Tubulointerstitial compartment:

5
7

Berthier et al., 2009

Transcriptomics, tissue biopsies Comparison of healthy references (GFR > 60)
and established DN (GFR 30-59);

Glomerular compartment:
Tubulointerstitial compartment:

164
183

Woroniecka et al., 2011

Transcriptomics, tissue biopsies Comparison of healthy references (GFR > 60)
and patients with type 2 diabetes > 5 years;

Glomerular compartment: 167

Baelde et al., 2004

Transcriptomics, tissue biopsies Comparison of healthy references and
established DN (no further details provided)

Tubulointerstitial compartment: 69

Cohen et al., 2008

Literature extraction PubMed MeSH query as defined in main text 415 –

Total number of unique protein coding genes 881

Provided is the data type, study setup details, number of protein coding genes identified as DN-associated, and literature reference for a study.
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retrieving drug target candidates the term Diabetic Nephropathies
with the qualifiers drug therapy and therapy was used, respec-
tively. The search revealed 615 publications for biomarkers and
2,692 for drug targets. Their respective Pubmed IDs were subse-
quently used for extracting human genes from the gene2pubmed
file, resulting in 54 biomarker candidates and 19 drug target
candidates.

Target annotation via drugs under investigation
Clinical trial data for completed and currently ongoing clinical
trials were retrieved from ClinicalTrials.gov (http://clinicaltrials.
gov/). The advanced search as provided on the ClinicalTrials.gov
webpage was used for identifying studies that fulfilled the fol-
lowing two criteria: Study Type equals Interventional Studies and
Condition contains Diabetic Nephropathy, revealing 206 clinical
studies. Title and trial description were manually reviewed for
focus on renal disease, resulting in 124 studies further considered.
Respective drug interventions were mapped to their DrugBank
entries (Law et al., 2014), extracting human drug targets as listed,
being further mapped on the Ensembl gene namespace. In total
86 drug targets were identified using this approach, of which one
was also part of the 19 target candidates retrieved from mining
of scientific literature essentially covering basic and translational
research activities.

Drug mechanism of action molecular data
A set of ACE inhibitors was retrieved from the Anatomical
Therapeutic Chemical (ATC) classification system maintained by
the World Health Organization (WHO). 16 compounds classified
under ACE inhibitors, plain (ATC code: C09AA) were identi-
fied and used for subsequent data extraction from DrugMatrix
(https://ntp.niehs.nih.gov/drugmatrix/index.html). For six out
of the 16 drugs sets of genes being affected by drug presence
in rat kidney tissue after drug administration were available
within DrugMatrix. Obtained rat gene sets were subsequently
mapped from Unigene IDs (Sayers et al., 2009) to Ensembl rat
IDs and from there further to human ortholog genes according to
Ensembl (Table 2).

Table 2 | Drug mechanism of action data space.

Drug name # Protein Database

coding genes references

Benazepril 442 ICX5600735

Captopril 535 ICX5602791

Enalapril 526 ICX5601254

Lisinopril 558 ICX5601689

Quinapril 572 ICX5602295

Ramipril 519 ICX5602317

Total number of unique protein
coding genes

2058

Given is the drug name, number of associated human protein coding genes

identified as significantly affected by drug presence in transcriptomics profiling,

and DrugMatrix reference identifier.

MOLECULAR PATHWAY AND PROTEIN INTERACTION DATA
KEGG and Panther pathway membership information for pro-
tein coding genes was obtained via KEGG’s REST service and
from the plain-text database file available on the Panther web
site, respectively (Thomas et al., 2003; Kanehisa et al., 2014).
Human protein-protein interaction data from BioGRID, INTACT
and Reactome were extracted from the respective plain-text files
provided by the individual data sources (Stark et al., 2006; Kerrien
et al., 2012; Croft et al., 2014). Gene and protein identifiers pro-
vided in the original sources were mapped to their respective
Ensembl gene IDs. Protein-protein interaction data were further
merged into a protein-protein interaction network using Ensembl
gene IDs as common denominator of the individual networks.

MOLECULAR PATHWAY AND PROCESS IDENTIFICATION
Molecular pathways and processes were analyzed on the one hand
on the basis of a literature review of KEGG and Panther pathways
already discussed as relevant in the context of DN. In a second
approach de-novo identification of DN molecular processes was
performed utilizing the DN pathophysiology feature set. A seg-
mentation algorithm for the identification of processes in the DN
protein-protein interaction network was pursued for assembling
a molecular process model for DN. Utilizing an analogous proce-
dure a molecular mechanism of action model for ACE inhibitors
was constructed utilizing expression signatures obtained from
DrugMatrix.

DN pathways from literature
A NCBI Pubmed search for publications utilizing the query
string “diabetic nephropathy”[ti] OR “diabetic nephropathies”[ti])
AND (pathway[ti] OR pathways[ti]) was performed resulting in
53 publications holding the keywords in the title. Subsequently,
named entity recognition was performed to annotate occurrence
of pathway names according to KEGG and Panther entries in the
title and abstract of these publications. Finally, abstracts holding
a pathway name were manually reviewed to ensure an association
of the identified pathway in the context of DN, leading to 27 indi-
vidual pathways discussed in literature as being afflicted with DN.
Relations between pathways were inferred based on shared genes
and the number of protein-protein interactions spanning across
pathway boundaries.

Molecular process models
Computing molecular process models followed the procedure
described in Mayer et al. (2012); Heinzel et al. (2014). In essence,
three main steps are performed: (i) mapping of a feature signa-
ture being either the DN pathophysiology association (Table 1)
or the ACE mechanism of action set (Table 2) on the consoli-
dated protein interaction network, followed by induced subgraph
extraction. Nodes with a degree of zero are removed from the
subgraph. (ii) molecular process identification via utilizing a
segmentation algorithm (MCODE with default settings, Bader
and Hogue, 2003), and (iii) determining inter-process relations
defined by the number of protein-protein interactions observed
between any actual two molecular processes contrasted against
the number of interactions between two random sets of nodes
with matching node set size.
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Enrichment analysis
For identifying significance of enrichment of molecular feature
sets in molecular processes and pathways a Fisher’s exact test with
a significance level set to 0.05 was used. Benjamini Hochberg
correction was employed to adjust for multiple testing.

RESULTS
DN MOLECULAR PATHWAYS
Screening scientific literature resulted in 27 molecular path-
ways being observed in the context of DN according to KEGG
and Panther pathway annotation (Figure 1). The pathway map
is dominated by linked signaling components, with major
elements being MAPK-VEGF, and Jak-STAT-cytokine-cytokine
receptor interaction further interacting with TGF-beta signal-
ing, covering among others mechanisms of hypoxia response and
fibrosis, respectively (Rudnicki et al., 2009; Loeffler and Wolf,
2014). Additional mechanistic aspects include stress response and
involvement of extracellular matrix (McLennan et al., 2013; Tan
and de Haan, 2014). Further, a number of specific pathways in the
context of metabolism are included, as well as the RAS, with the
latter however showing no direct links to other pathways on the
molecular feature overlap or direct protein interaction level.

Screening for biomarker candidates in scientific literature
resulted in 54 protein coding genes, extraction of drug target can-
didates from literature as well as clinical trials brought forward
104 such genes. Of the 54 biomarker candidates 23 are assigned to
the DN pathway map, for the 104 target candidates 52 are involved
(Table 3).

Significant coverage regarding biomarker as well as tar-
get candidates is again seen for central signaling components

including chemokine signaling, cytokine-cytokine receptor inter-
action, complemented by MAPK and PI3K-Akt signaling. Also
mechanisms are addressed including key features as VEGFA
and TGFB1. No specific targeting is seen for counteracting
structural changes in ECM, and minor efforts appear to be
assigned to adapting stress response. For seven out of 20 path-
ways discussed no biomarker or target annotation is iden-
tified, and complementary a large number of such features
are assigned also outside the pathway landscape presented in
Figure 1. Prominent examples for void biomarker assignment
include connective tissue growth factor (CTGF) as factor in
fibrosis not being assigned in KEGG, the same being true for
uromodulin (UMOD) shown to be associated with progressive
disease including genetic polymorphisms (Deshmukh et al., 2013;
James et al., 2013). CTGF is also discussed in the therapeutic con-
text via utilizing a monoclonal antibody-based approach (Adler
et al., 2010).

Testing the DN pathophysiology feature set retrieved from
consolidation of transcriptomics profiles regarding enrichment
in the given DN pathway landscape identified seven such path-
ways as significant, however, missing central mechanisms as
hypoxia response or TGFB signaling. In contrast other path-
ways beyond the map given in Figure 1 appeared significantly
enriched, including focal adhesion, cell adhesion molecules and
adherence junctions, linking to the signaling aspects involved in
the disease.

DN MOLECULAR MODEL
Complementary to analysis on molecular pathways as defined
in KEGG and Panther we performed a network segmentation

FIGURE 1 | Pathway landscape of diabetic nephropathy. Nodes of the
graph represent KEGG and Panther pathways (node diameter scales with
number of protein coding genes assigned), edges between nodes scale with

the number of genes overlapping as well as interactions of genes across
pathways according to the protein interaction network. Pathways are marked
for holding biomarker candidates (green) and drug target candidates (red).
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Table 3 | Molecular pathway annotation, diabetic nephropathy.

Pathway name # Genes Biomarker Drug target Enrichment

Angiogenesis 148 HSPB2, VEGFA, HSPB2-C11orf52 JUN, VEGFA No

Angiotensin II-stimulated signaling
through G proteins and beta-arrestin

35 – AGTR1 No

Chemokine signaling 190 CCL2, NFKB1, CCL5 CCL2 Yes

Cholesterol biosynthesis 11 – HMGCR No

Complement and coagulation cascades 69 F2, FGB, MBL2 SERPIND1, SERPINC1 Yes

Cytokine-cytokine receptor interaction 272 CCL2, LEP, VEGFA, TNFRSF11B,
CCL5, PRL, TGFB1

CCL2, TGFB1, VEGFA, TNFSF12,
IL18, IL1B, FLT1

Yes

ECM-receptor interaction 87 SPP1, FN1 – Yes

Jak-STAT signaling 158 LEP, PRL SOCS1 No

MAPK signaling 256 TGFB1, FGF23, NFKB1 CACNA1H, CACNA1I, CACNB4,
CACNA1S, CASP3, CACNA2D3,
TGFB1, CACNB3, CACNA1A,
CACNA1B, CACNA1C, CACNA1D,
CACNA1F, CACNA1G, JUN,
CACNB2, CACNG1, IL1B,
CACNA2D1, CACNB1

No

Metabolic pathways 1165 XYLT2, PTGDS, KL, PON1, PON2 PTGS2, PDXK, QPRT, ALOX5,
NT5E, IMPDH1, ACSL4, XDH,
CES1, NNMT, ANPEP, HMGCR,
IMPDH2, CYP11B2

No

mTOR signaling 61 VEGFA PDPK1, VEGFA, INS No

NF-kappa B signaling 90 NFKB1 PTGS2, IL1B No

Oxidative stress response 44 – JUN No

PI3K-Akt signaling 345 SPP1, VEGFA, FN1, NFKB1, PRL,
FGF23

PDPK1, FLT1, VEGFA, INS Yes

PPAR signaling 71 ADIPOQ PPARG, ACSL4, FABP1, PDPK1,
PPARA, ADIPOQ

No

Ras Pathway 69 – PDPK1, JUN No

Renin-angiotensin system 17 – ACE2, AGTR1, REN, ANPEP, ACE Yes

TGF-beta signaling 80 TGFB1, SMAD1 TGFB1 No

VEGF signaling 62 VEGFA PTGS2, VEGFA No

Wnt signaling 139 – JUN Yes

– – SPON2, WTAP, UMOD, LCN2, HP,
VNN1, AGER, TGFBI, RBP4,
NPHS1, HBA1, HBA2, DEFA1B,
LPA, CST3, CTGF, ACTA1, PGC,
S100A9, DPP4, ALB, CCKAR,
GSTP1, DEFA3, S100A8, DEFA1,
MMP9, CDH1, S100A4, NPPB,
HAVCR1

SOAT1, SLC6A4, ADORA1,
MC2R, SIRT1, CYCS, RETN,
EDNRA, CRH, EDNRB, KCNA1,
ADORA2A, CALM2, CALM3,
CALM1, PTX3, PDE3A, KCNMA1,
P2RY12, SLC12A1, SLC12A3,
GLP1R, DPP4, PDE5A, NR3C2,
KCNJ11, ITGB2, KIF6, MMP9,
CA12, TUBB1, NAMPT, HCAR3,
HCAR2, AR, HBA1, HBA2, CA9,
KCNH2, CA2, CA1, CASP1,
TUBB, CA4, AHR, CTGF, ABCA1,
PDE4A, PDE4B, SCN5A, MMP2,
NPC1L1

Citrate cycle (TCA cycle) 31 – – No

General transcription regulation 30 – – No

Notch signaling 48 – – No

Oxidative phosphorylation 122 – – No

p38 MAPK 34 – – No

Pentose phosphate 27 – – No

Propanoate metabolism 32 – – No

Provided is the KEGG pathway name, number of genes assigned to the pathway according to the pathway source, biomarker, and drug target candidates included in

the pathway (gene symbols), and indication of significance of enrichment of such pathway on the basis of the consolidated DN kidney tissue transcriptomics data.
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procedure aimed at identifying DN molecular process segments
defined by topological characteristics of the DN-specific sub-
graph. From the in total 881 protein coding genes included in
the DN molecular pathophysiology gene set (Table 1) 880 were
also part of the consolidated interaction network, and 634 were
identified as member of the induced subgraph (Figure 2A). From
the total set of 880 features 246 protein coding genes had no
interaction to any other feature of the DN consensus set, hence
being disregarded in molecular model computation. Apparent is
the relatively minor overlap of features extracted from literature
when compared to signatures from transcriptomics. From the in
total 516 unique features consolidated from four transcriptomics
profiling experiments and 414 features derived from scientific
literature 49 are shared.

After MCODE segmentation 200 molecular features remained
in process segments, forming a molecular model holding 23
process segments (Figure 2B). Median number of protein cod-
ing genes per process segment is 6, with the largest segment
encoding 29 features, the smallest 3. Equivalently to the path-
way graph in Figure 1 a process graph serves as approximation
of individual molecular process characteristics together with their
dependencies. Six process segments of the process model hold
both, biomarker as well as target candidate annotation, with oth-
ers encoding just one of the two or none. Of the 54 biomarker
candidates 22 are included in the molecular model, the respective
number for the 104 targets candidates is 16.

DN MOLECULAR MODEL AND DRUG MECHANISM OF ACTION MODEL
INTERFERENCE
Consolidating transcriptomics signatures reflecting the impact
of ACE inhibitors on the kidney interactome in a rat model
utilizing six representative drugs resulted in 2058 molecular fea-
tures (Table 2), with 661 features being identified in a least two
of the six drug signatures. Mapping this consensus ACE feature
subset on the consolidated interaction network allowed repre-
sentation of 656 features. The induced subgraph included 332
features, after segmentation resulting in 12 process segments
holding in total 92 molecular features (Figure 3, left). Median
process feature set size was 8, with a maximum of 19 and a
minimum of 3.

Interfering the ACE mechanism of action molecular model
with the DN molecular model on the level of feature over-
lap (Figure 3) identified specific process segments of the DN
molecular model also holding biomarker candidates (Table 4).

All four process segments of DN showing interference with
the ACE drug mechanism of action model hold biomarker
candidates. Two segments provide significant enrichment also
on the level of molecular pathways, showing an integration
of chemokine and cytokine signaling, RAS and complement
and coagulation cascades for one process segment, the sec-
ond process segment reflects components of PI3K-Akt sig-
naling in the context of TGFB signaling and ECM receptor
interaction.

FIGURE 2 | Molecular model representation of diabetic nephropathy. (A)

Induced subgraph where each node represents a protein coding gene being
reported as associated with DN, edges denote interactions according to the
underlying interaction network. Features derived from Omics studies are
given in red, features delineated from literature mining are given in green,
features identified in both data sources are depicted in blue. (B) Molecular

model representation of DN where each node represents a process segment
with the node diameter scaling with the number of protein coding genes
involved, and edges between nodes scaling with the number of interactions
of genes across nodes according to the protein interaction network.
Segments are indicated for holding biomarker candidates (green) and drug
target candidates (red).
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FIGURE 3 | ACE inhibitor mechanism of action molecular model and

interference with DN molecular model. ACE Mechanism of Action
molecular model (left) and DN molecular model (right), with overlapping
process segments of drug and phenotype models indicated by dotted

lines. Molecular process segments (U) of the ACE mechanism of action
molecular model showing interference with the DN molecular model are
given in blue, respective interacting process segments on the DN side are
given in red.

Table 4 | Diabetic nephropathy process segment interference.

Segment # Genes in

segment

Interference

overlap

Biomarker

candidates

Enriched pathways

1 29 7 CCL5 Chemokine signaling; Cytokine-cytokine receptor interaction; Renin-angiotensin
system; Complement and coagulation cascades

18 11 2 HBA1,
NFKB1, HP,
HBA2

–

3 20 3 TGFB1 ECM-receptor interaction; TGF-beta signaling; PI3K-Akt signaling

4 16 2 ACTA1 –

Provided is the process segment number of the DN molecular model, number of genes assigned to the segment, number of features identified as affected according

to the drug mechanism of action model, biomarkers involved in the segment (gene symbols), and relevant pathways from the DN pathway map being enriched in

such segment.

Biomarker candidates serving as proxy for the interference
of ACE and DN molecular models involve the chemokine (C-C
motif) ligand 5 involved in immunoregulators and inflammatory
processes, hemoglobin alpha 1 and 2 together with haptoglobin,
the cytokine transforming growth factor, beta 1, along with
the transcription factor NFKB1, finally including actin, alpha 1
involved in cell motility, structure and integrity.

DISCUSSION
For a large spectrum of clinical presentations an impressive num-
ber of drug targets have been proposed out of translational and
preclinical research, with a significant number further proceed-
ing into clinical trials. Just in the first half of 2014 close to
10,000 new clinical studies were recorded on the platform clin-
icaltrials.gov. Taking a specific look at diabetic nephropathy as
clinical phenotype, 124 interventional trials in any status are iden-
tified at clinicaltrials.gov specifically involving the disease term,

covering 45 individual drug entities addressing 86 known tar-
gets. Via mining scientific literature additional 18 drug targets are
identified.

Next to a number of trials utilizing drugs and drug combi-
nations addressing known factors impacting DN progression as
the RAS, drug targets are disparately distributed across molecular
pathways, hence mechanisms assigned to the disease.

From literature mining 27 different pathways according to
KEGG and Panther pathway annotation are discussed as asso-
ciated with DN, of which 19 hold drug targets. These include
well known mechanisms of relevance in DN including hypoxia
response or fibrosis, combined with a large set of signaling com-
ponents. On top, 52 drug targets are embedded in molecular
context outside this literature-derived DN pathway landscape.

For biomarker candidates an equivalent situation is found. 54
unique proteins extracted from scientific literature are discussed
in any biomarker context, covering 14 of the 27 pathways, with 31
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biomarker candidates not assigned to any of the members of the
extracted DN pathway map.

Interestingly, predictive performance regarding disease pro-
gression of any of the individual biomarker candidates proved
limited value. For example, in a review by Hellemons et al. 13
relevant markers were found in the context of nephropathy in
diabetes, of which five were found as significantly associated with
onset as well as progression of DN again covering various mech-
anisms including inflammation (e.g., C-reactive protein), cell
surface interaction and homeostasis (e.g., E-selectin, ICAM1) and
metabolism (triglyceride levels) (Hellemons et al., 2012).

Apparently, individual biomarkers reflecting the status of an
individual molecular process, pathway or mechanism cannot
capture disease prognosis for the comprehensive DN popula-
tion. In alternative approaches multimarker panels were included
in classifiers on disease diagnosis and prognosis demonstrating
improved performance also in blinded validation. In Roscioni
et al. a signature of 273 peptides determined in urine were
included in a support vector machine-based classifier (Roscioni
et al., 2013). The signature held fragments of collagen eventu-
ally mirroring alterations in the extracellular matrix turnover and
fibrosis together with markers of inflammation as e.g., the pro-
inflammatory protein S100-A9, as well as uromodulin shown
to be associated with interstitial fibrosis and tubular atrophy
(Nkuipou-Kenfack et al., 2014).

One contributing factor for needing multimarker panels may
be individual variance of baseline biomarker levels, where inclu-
sion of multiple markers specifically in non-linear classification
methods adds to robustness. However, a second factor may be
generic heterogeneity of the patient population. Specific disease
presentation may significantly vary not only across stages of dis-
ease progression eventually seeing a transition from protective to
damaging mechanisms, but even within a specific chronic kid-
ney disease category as defined by present clinical classification
provided by KDIGO guidelines (KDIGO Board Members, 2013).

Improved prognostic performance of multimarker panels on
top of strict functional classification of stage transitions in DN
utilizing albuminuria but also eGFR as clinically used progression
parameters clearly support the case of pathophysiological het-
erogeneity of a, in present clinical terms homogeneous, patient
population. However, specifically for albuminuria the role of
functional marker vs. factor in disease is discussed (Roscioni et al.,
2014).

Deriving robust diagnostic or prognostic classifiers from e.g.,
proteomics or metabolomics profiling may add to clinical patient
management regarding onset as well as intensity of therapeu-
tic measures (Roscioni et al., 2013; Pena et al., 2014). Also in
clinical trial design such enrichment strategies may be utilized
by e.g., identifying individuals prone to fast disease progres-
sion, and randomizing in this high risk cohort into medication
and placebo arm (e.g., Priority trial, clinicaltrials.gov reference
NCT02040441).

Prognostic biomarkers in contrast to diagnostic parameters
with known assignment to molecular processes and pathways fur-
ther allow an approximation of what specific mechanisms are
associated with disease progression. The DN pathway landscape
discussed in this work is solely a cross-sectional representation

of the disease, in a first place not allowing deciphering which of
the 27 individual pathways drive disease progression, and which
other pathways are just bystanders or downstream consequences
of mechanistic factors of disease. Hence, evaluating biomarker
candidates for their association with progressive disease in turn
allows determining mechanisms associated with progressive dis-
ease. Such knowledge is vital e.g., for determining novel drug
targets, demanding to be embedded in disease mechanisms being
factors for progressive disease. Remaining question however is if
such mechanisms are relevant to the same extent or at all for a
specific patient assigned to a clinical phenotype.

A prognostic biomarker set covering all potentially relevant
processes enables specific molecular phenotyping of individual
patients, being however not sufficient in terms of predicting drug
response as a drug mechanism of action is not factored in. Here
Systems Pharmacology aims at identifying drug response also on
the level of molecular processes and pathways. Rationale is to not
only focus on the specific drug target and its assignment to spe-
cific mechanisms, but to include the systemic molecular changes
triggered by the drug including off-target effects as well as down-
stream molecular changes. Having a drug mechanism of action as
well as a clinical phenotype represented on a molecular process
or pathway level allows intersecting both molecular states. If from
prognostic biomarker profiling of a patient specific progression-
associated molecular disease mechanisms are identified, and a
drug exhibits functional interference in such specific mecha-
nisms such patient may be more prone for showing response to
the drug. With such setting including knowledge on molecular
phenotype composition, molecular process relevance in progres-
sive disease and knowledge on interference of drug mechanism
of action biomarker candidates initially serving a prognostic
purpose can be rendered into predictive biomarkers on drug
response.

Omics profiling has a major contribution to characterizing
both, clinical phenotypes as well as drug mechanism of action.
Integrating profiling results from clinical samples frequently sees
minor overlap of individual studies, being in part driven by insuf-
ficient sample size combined with diverging inclusion criteria and
sample material used (Fechete et al., 2011). In the example pre-
sented here 1010 features in total are identified as differentially
regulated in transcriptomics or are being assigned to DN accord-
ing to literature mining, with 880 unique features. An equivalent
misbalance in feature coherence across studies is also found for
the ACE inhibitor transcriptomics data. All these drugs address
the same functional context, but from the in total 3152 features
identified for six drugs included the total number of unique fea-
tures are still 2058, with 661 being identified in at least two drug
signatures.

Next divergence becoming apparent is the limited overlap
of enrichment analysis based on signatures from profiling and
feature-based literature mining compared to explicit literature
mining for molecular pathways. Of the 27 pathways extracted
from scientific references only seven are confirmed, however, see-
ing other pathways enriched not found via literature mining. On
top, a major shortcoming is restricted representation of protein
coding genes in such pathway maps, e.g., for KEGG covering
6491 and for Panther 2163 protein coding genes, respectively. This
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limitation not only affects pathway enrichment but also assign-
ment of biomarker and target candidates. Of the in total 104 drug
target and 54 biomarker candidates 29 are neither assigned in any
KEGG or Panther pathway.

Here a different approach may be followed, namely segmen-
tation of protein interaction networks exhibiting improved cov-
erage of the protein coding gene set. Consolidation of INTACT,
Reactome, and BioGRID allows representation of in total 13,907
protein coding genes, clearly expanding beyond public domain
pathway databases. In alternative approaches hybrid interaction
networks are utilized for further expanding coverage of protein
coding genes, but also for improving false negative rates regarding
protein-protein interactions and relations (Fechete et al., 2013).

Computing a DN-specific as well as ACE inhibitor-specific
induced subgraph followed by topology-based segmentation
allows an alternative representation of a molecular process land-
scape for the clinical presentation as well as the drug mechanism
of action. Interference analysis on the level of overlapping protein
coding genes resulted in four process segments holding cen-
tral aspects of DN pathophysiology. Seven biomarker candidates
were identified in these interfering molecular processes. CCL5
(RANTES), involved in recruiting monocytes and macrophages
to the renal cortex was shown to be suppressed by ACE inhibition,
indicating that RANTES expression is mediated via Angiotensin
II type 2 receptor (Kashiwagi et al., 2002). Equivalently, in ani-
mal models TGFB1 expression was shown to be reduced by ACE
inhibitors. Activation of NFKB1 by angiotensin II was shown in
vascular smooth muscle and mesangial cells (Hernández-Presa
et al., 1997). In a study by Dong et al. analyzing cost effective-
ness of ACE inhibitor treatment for patients with type 1 diabetes
mellitus the level of glycosylated HbA1c showed clear impact
on cost effectiveness of drug use per quality-adjusted life year
(QALY) (Dong et al., 2004). The authors concluded that next
to patient age also other factors need to be included in therapy
considerations.

Apparently, drug mechanism of action affects numerous
molecular processes, as exemplified for ACE inhibitors, many of
these also afflicted with DN progression. Analyzing the molecular
process interface of disease progression-relevant pathophysiology
and drug mechanism of action allows proposing predictive mark-
ers. Testing such predictive biomarker candidates may educate
on relevance of individual processes on a patient level, directly
linking to likelihood of drug response.
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