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Oscillations play a significant role in biological systems, with many examples in the fast,
ultradian, circadian, circalunar, and yearly time domains. However, determining periodicity
in such data can be problematic. There are a number of computational methods to
identify the periodic components in large datasets, such as signal-to-noise based Fourier
decomposition, Fisher’s g-test and autocorrelation. However, the available methods
assume a sinusoidal model and do not attempt to quantify the waveform shape and the
presence of multiple periodicities, which provide vital clues in determining the underlying
dynamics. Here, we developed a Fourier based measure that generates a de-noised
waveform from multiple significant frequencies. This waveform is then correlated with
the raw data from the respiratory oscillation found in yeast, to provide oscillation statistics
including waveform metrics and multi-periods. The method is compared and contrasted
to commonly used statistics. Moreover, we show the utility of the program in the analysis
of noisy datasets and other high-throughput analyses, such as metabolomics and flow
cytometry, respectively.
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INTRODUCTION
Cellular network dynamics are excitable and inherently non-
linear, properties that stem from the multitude of feedback and
feedforward loops involved in biological processes (Lloyd, 2008).
These systems form an intimate feedback with the environment
to generate the dynamic phenotype of the cell (e.g., oscilla-
tion/pulsing, bursting bistability) (Sobie, 2011; Levine et al.,
2013). The feedback and feedforward systems have drastically
different time scales that vary over several orders of magnitude
(Aon et al., 2004), from the annual migration patterns found
in monarch butterflies (Kyriacou, 2009), to the second oscilla-
tion of cardiomyocytes in one’s heart (Aon et al., 2004). While
our understanding of each time scale increases daily, the inter-
action between different dynamical processes remains poorly
characterized. Understanding the dynamical interactions between
time scales are key to understanding the complex phenotypes of
embryogenesis (Kageyama et al., 2012), circadian biology in dis-
ease (Gibbison et al., 2013), and psychology (Salvatore et al., 2012;
Salomon and Cowan, 2013).

Our studies using frequently sampled data from yeast and
cardiomyocytes showed that the time-structure is highly orga-
nized (Aon et al., 2008) and had the properties of a fractal over
five orders of magnitude, indicative of harmonic entrainment
in cellular processes. Moreover, cellular energetics and especially
mitochondrial activity play defining roles in rapidly shaping cel-
lular dynamics. Thousands of data points are required to study
these orders of magnitude (Sasidharan et al., 2012c). However,
analysing multiperiodicity in less frequently sampled data (under
100 data points) remains difficult (de Lichtenberg et al., 2005),
and these are the kind of datasets commonly used for time-
series expression or metabolic studies. Perhaps one of the best
characterized synchronous oscillatory systems in this regard is

the precisely controlled continuously cultured yeast. When envi-
ronmental cues are removed, the resulting output in respiratory
state (readily measured by residual dissolved oxygen measure-
ments) is often a stable oscillatory or homeodynamic state (Lloyd
et al., 2001; Lloyd and Murray, 2005, 2006, 2007; Johnson and
Egli, 2014). This has been shown to be multi-oscillatory (Aon
et al., 2008; Sasidharan et al., 2012c), to have period dou-
bling events (Salgado et al., 2002; Klevecz and Li, 2007) caused
by perturbation, and has multiple omic and high-throughput
datasets available (Klevecz et al., 2004; Li and Klevecz, 2006;
Murray et al., 2007; Sasidharan et al., 2012b,c). These proper-
ties make it an ideal model system for multi-scale dynamical
studies.

Generally, analysis methods are restricted to the period of
interest, such as the perturbation length or oscillation period,
and the sampling frequency limits the use of many powerful
time-series analysis tools (Dowse, 2007). Techniques such as auto-
correlation (Yamada and Ueda, 2007) and Fourier transform
(Yamada and Ueda, 2007; Lehmann et al., 2013) rely on targeting
a particular frequency, and can be prone to generating false calls
due to frequency changes and multi-oscillators. Singular Value
Decomposition (SVD)/Principal Component Analysis (PCA)
generally assumes that the largest variances are the most inter-
esting (neglecting subtle effects), and also does not allow for the
use of a priori dynamical knowledge to the analyses (Wang et al.,
2012). Furthermore, it is difficult to assign meaning to the con-
tributions of each time-series to the components (Raychaudhuri
et al., 2000; Alter et al., 2003). Wavelets analyses are powerful,
however the data density required makes it difficult to apply to
the low-density time-series data generated from high-throughput
experiments (Klevecz and Murray, 2001; Song et al., 2007; Prasad
and Bruce, 2008; Sasidharan et al., 2012c).
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Here, we introduce a tool that expands on the signal-noise
(SN) ratio approach (Yamada and Ueda, 2007; Machné and
Murray, 2012), by calculating the SN ratio of each frequency
and then uses this to generate a model waveform whose good-
ness of fit to the original data is determined using coefficient of
determination (R2). A user-specified significance or SN ratio cut-
off determines the powers to use in constructing the model. We
illustrate its utility using previously published data.

MATERIALS AND METHODS
FREQUENCY MODEL
Given a time-series of N points x1, x2, . . . , xN , the corresponding
discrete Fourier transform (DFT), as a series of complex numbers
X0, X1, . . . , XN−1, is given by the formula:

Xk =
N−1∑
n = 0

xne−i2πk n
N , k = 0, . . . , N − 1,

where Xk represents the component of k cycles per time-series.
The component of frequency 0 (X0) is used to calculate the

mean value of the time-series, referred to as the DC component:

DC = |X0|
N

By the nature of the DFT, the remaining components
X1, X1, . . . , XN−1 are mirrored:

Xk = XN−k, k = 1, . . . , M, M = �(N − 1) /2� ,

therefore, all further calculations are performed on the first half
of these components.

The peak-to-peak amplitude Ak for each frequency Xk is given
by the formula:

Ak = 4

N
∗ |Xk| , k = 1, . . . , M

The SN ratio (Yamada and Ueda, 2007) represents the ratio
between the amplitude of the target signal and the average ampli-
tude of noise (i.e., the average amplitude of all other frequencies):

SNk = (M − 1) ∗ Ak(∑M
n = 1 An

)
− Ak

, k = 1, . . . , M

For the construction of the model, if no target frequency is spec-
ified (untargeted mode), the algorithm removes all frequencies
that are considered noisy (i.e., that do not pass the arbitrary
sn threshold). Thus, a filtered set of signals Xfk is calculated by
removing the frequencies with a SN ratio below the sn threshold,
while preserving the DC component:

Xfk =
{

Xk if SNk > sn or k = 0
0 otherwise

, k = 0, . . . , N − 1

If a target frequency ta is specified (targeted mode), the intent
of the algorithm is to preserve the harmonics of the specified

frequency that oscillate, including possible temporal drift into the
frequency ta − 1 and its harmonics, but to remove all frequen-
cies that have an oscillation stronger than the target frequency, or
are too noisy (below the sn threshold). Thus, only the frequen-
cies ta − 1 and higher are kept, only if they have a lower SN ratio
thanXta and only if they pass the sn threshold (also preserving
component 0, i.e., the mean):

Xfk =XfN−k =
⎧⎨
⎩

Xk if (SNk > sn and SNk ≤ SNta

andk ≥ (ta − 1) )or k=0
0 otherwise

,k=0, . . . , M

If N is even, the middle component XfM+1 is also set to 0.
As it can be seen, if the SN of the targeted frequency does not

pass the sn threshold, all components are removed (resulting in a
flat line). If the user-specified cut-off is given as a P-value, the sn
cut-off is the corresponding SN ratio at the given P-value.

In all cases, the user can override these filters by manually
specifying components to be omitted. The filtered waveform is
reconstructed by the inverse DFT:

xfk = 1

N

N−1∑
n = 0

Xfnei2πk n
N , k = 0, . . . , N − 1

The goodness of fit between the model and the original data was
calculated using R2 values. A graphical outline of the algorithm
is presented in Figure 1, using the gene expression time-series
(dataset described below) for yeast gene YAL067C (the first oscil-
lator in the dataset).

The algorithm was developed in R (R Core Development
Team, 2008) and is called waveform. The main parameters passed
are the cut-off method (SN ratio or its P-value) and cut-off
threshold (default to 2 and 0.05, respectively). The statistics nec-
essary for full characterization of the Fourier components (DC,
amplitude, and angle) are calculated by the underlying function
oscilGet, which also generates statistics on autocorrelation
(Venables and Ripley, 2002), Ljung-Box test (Ljung and Box,
1978), Oscillation Strength (Murray et al., 2007), and Fisher’s
exact g-test (Ahdesmäki et al., 2005).

The significance calculation method can also be specified, i.e.,
“model” for log normal distributions or a number of iterations for
a permutation-based statistic (10,000 is the default). The model-
based significance calculation first generates a normal probability
distribution from 10,000 random samples, using the standard
deviation of the analyzed dataset or a user-specified standard
deviation. Next, the statistics for signal-noise ratio, oscillation
strength, and/or autocorrelation on the model data are gener-
ated. The standard deviation and mean of the target statistics are
used to generate a model distribution for each statistic, and the
significance is then calculated from the experimental data and
the model statistics’ upper tail. For this approach to work, the
distribution of the dataset should be checked carefully for the nor-
mality of the majority of the data. The distribution is sensitive
to experimental noise (i.e., limits of experimental determination
can result in skewed tails which alter the standard deviation of the
dataset), and this can be accounted for prior to analysis by pass-
ing the standard deviation of the log-normal subset of the dataset
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FIGURE 1 | A graphical representation of the model construction in

untargeted mode. The raw gene expression time-series of gene YAL067C
(A; arbitrary fluorescence units) is first decomposed by fast Fourier
transform (B). The significant powers which comprise the signal (C) are
then recomposed to produce the model (D). A linear fit is then used to
determine the coefficient of variation (E; R2 = 0.695) for the data (A) vs.
the model (D).

onto the algorithm (see supplemental package, data manuals for
examples).

If the distribution deviates significantly from log normality,
then the permutation approach can be used (with at least 10,000
iterations, to avoid high false discovery rates). The rows of the
data matrix are permuted by the specified number of iterations,
and P-values are defined as the ratio between the number of
times the statistic of the permutation was greater than the statis-
tic of the original data and the number of iterations. This is
computationally intensive and one can specify the number of
slaves (nSlaves) for multicore systems. Lower iteration num-
bers increase the false discovery rates; to address this, the optimal
iteration number can be determined with existing R packages,
such as fdrtool (Strimmer, 2008). For a P-value of 0.01 we
found 10,000 iterations to give an acceptable false discovery rate
(0.0043).

The supplemental R-package waveform contains full details,
examples and the data used, and uses three main commands;
waveform, oscilGet, and DFT. DFT is a wrapper for the
default fast Fourier transform of R (fft), which uses a Mixed-
Radix algorithm (Singleton, 1969). The package can be installed
using the following command:

R CMD INSTALL waveform_1.0.1.tar.gz
The package requires the standard R packages: GeneCycle,
matrixStats, foreach, doSNOW, fdrtool, iterators,
snow, and e1071. Updates will be available for download from
http://oscillat.iab.keio.ac.jp.

EXPERIMENTAL DATA
We used three published experimental datasets for this study. To
illustrate the general uses of the algorithm, we used a highly oscil-
latory transcriptome (Affymetrix GeneChip®) experiment from
metabolically synchronous continuous yeast cultures which were
perturbed with the monoamine oxidase inhibitor, phenelzine (Li
and Klevecz, 2006). This consisted of 4 oscillation cycles (48 sam-
ples, taken every 4 min) and was perturbed after 48 min (sample
12). As an example of a noisy dataset with unknown biolog-
ical and technical peaks, we used a metabolome time-series,
containing unidentified peaks, from similar metabolically syn-
chronous cultures, comprising of 2 oscillation cycles (20 samples,
taken every 4 min) that was not perturbed (Sasidharan et al.,
2012b). Finally, we used a dataset with absolute quantified val-
ues, a set of propidium Iodide DNA stained flow cytometry
yeast samples (Klevecz et al., 2004), which consisted of four
unperturbed cycles (60 samples, taken every 2.5 min) and was
aligned to the peaks observed at G1 and G2. It is important to
note that all the data shown here are raw and have not been
normalized.

The distributions of these datasets (once zero and noisy low
abundance measurements had been filtered) all approximated to a
log normal distribution, thus we used the model-based approach
for all analyses.

RESULTS
THE SN RATIO OUTPERFORMS OTHER TESTED OSCILLATION METRICS
We have tested the capabilities of 5 oscillation tests on a time-
series microarray gene expression dataset (Li and Klevecz, 2006)
containing 5570 gene expression profiles. A comparison between
the oscillators with the main period of the dataset (4 cycles)
detected (Figure 2, OS, SN ratio, Fisher’s exact g-test, ACF, Box)
shows a good agreement between methods for 35.8% of the genes,
providing a gold standard for visualizing discrepancies between
tests. As Fisher’s exact g-test (the most conservative approach),
SN and OS are based on similar methods, these provided the best
agreement on the 4 cycle frequency. Fisher’s exact g-test how-
ever only reports the dominant frequency in the dataset and was
not useful for further characterization of multi-periodicity and
period lengthening. OS and SN ratio detected major powers in
profiles with strong multiperiodicities better. ACF failed to pick
up clear oscillatory signals. Whereas, Ljung-Box analysis called
many non-oscillatory time-series, probably due to the low ampli-
tude, but significant 12 cycle frequency (Figure 3). Therefore, our
algorithm was based on the SN ratio.
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FIGURE 2 | A comparison between different oscillation tests. An
oscillatory transcriptome dataset (Li and Klevecz, 2006) containing 5570
gene expression profiles during a perturbation experiment (injection of
1 mM phenelzine at min 48) was used to test five oscillation metrics:
signal-to-noise ratio (SN ratio) (Yamada and Ueda, 2007; Lehmann et al.,
2013), oscillation strength (OS) (Murray et al., 2007), Fisher’s exact g-test
(Fisher) (Ahdesmäki et al., 2005), autocorrelation function (ACF) (Venables
and Ripley, 2002), and the Ljung box-test (Box) (Ljung and Box, 1978). Gene
IDs were first sorted according to common hits (P-value < 0.01 for SN ratio,
OS, Fisher on period 4 and for ACF and Box on lag 12) and then by the
phase angle of the dominant frequency of the data (4 cycles). The temporal
profile of each gene was scaled (SI) for visualization purposes.

DETERMINATION OF FREQUENCIES AND PHASE RELATIONSHIPS
DURING A PERTURBATION
A previous study of this gene expression dataset, which used the
Fourier spectra for clustering (Machné and Murray, 2012) has
successfully identified biologically-coherent clusters, but concen-
trated on characterizing the phase-relationship of gene expression
with respect to the respiratory oscillation. However, the anal-
ysis of the dataset with the waveform algorithm, untargeted,
with default parameters, indicated that several major frequencies
occurred (1, 3, 4, 5, 8, 10 and 12 cycles, 91.3%, 21%, 79.4%, 2.2%,
4.5%, 10.2%, 54.3% genes, respectively). Visualization of cohorts
obtained by grouping genes based on the presence of these peri-
odicities in their filtered spectra and the R2 values pointed to com-
ponents 1, 3–5 as sufficient to discriminate between the major
expression patterns (Figure 3). To exemplify different responses
to the perturbation, we selected 4 cohorts. The first one comprises

of genes who had no significant response to the drug (only sig-
nificant frequency was 4 cycles; Figure 4A, 4.7% of genes), and
was highly enriched in genes involved in cytosolic ribosomal
assembly and sulfur amino acid processes (Table S1). Cohort 2
represents genes that had a significant response to the chemical
perturbation, but did not show a strong increase or decrease in
amplitude (significant 1 and 4 cycle, but not significant 3 and
5 cycle components; Figure 4B, 50% of genes). This cohort was
enriched in translation (Table S1). Cohort 3 contained genes with
significant 3 and 4 cycle components (Figure 4C; 20% of genes).
The mRNA abundances of these genes were influenced by the
period lengthening effects of the drug and show the intensities
drop immediately after perturbation. However, they increase in
intensity as the experiment progresses so that the final inten-
sities on the perturbed long period cycles are higher than the
initial cycle. Cohort 3 was highly enriched in mitochondrial and
catabolic processes (Table S1). Cohort 4 comprised a combina-
tion of significant 4 and 5 cycles (Figure 4D; 2% of genes). The
mRNA abundance of these genes showed a decrease in oscilla-
tion amplitude during the experiment’s progression and the 5
cycle periodicity is due to the first 2 cycles which have higher
amplitudes for these genes. Ontology enrichment showed that
cohort 4 was primarily involved in anabolic processes, with the
top 5 genes involved in the Arginine, Coenzyme A, and Histidine
biosynthetic pathways. As 80% of the genes peak during the phase
of high residual dissolved oxygen (Figure 4; gray dotted lines),
the phase relationships between the cohorts was not evenly dis-
tributed. The maximum of cohort 1 was skewed toward the phase
of low DO, cohort 2, representing the majority of the dataset (Li
and Klevecz, 2006), peaked right after the transition between low
and high DO, cohort 3 was almost exclusively expressed during
the high DO phase and cohort 4 was skewed toward the end
of the low DO phase. Further refinement of this classification
based on the phase-angle of the main periodicity leads to simi-
lar results as the previous clustering-based approaches (Machné
and Murray, 2012), exemplifying a way to significantly reduce
the size of a dataset, in our case from 48 variables (time-points)
to 5 (4 spectral components and the phase angle of the major
component).

WAVEFORM ANALYSIS CAN EXTRACT INFORMATION FROM COMPLEX
AND NOISY DATASETS
Hybridizations on microarrays produce data in which most of
the signal should be biological in origin. However, mass spec-
trometry is much noisier, because many peaks are caused by
environmental contamination, caused by column components
or degradation. We analyzed a complex data matrix from a
metabolomics study containing 2661 peaks (Sasidharan et al.,
2012b) on which usual clustering could not easily discriminate
between technical and biological signals (Figure 5A, left panel).
We ran the waveform algorithm targeting the oscillation period
(2 cycles, P-value cut-off 0.05), thus keeping only the peaks
which had a significant 2-cycle component and removing all
masking frequencies. The resulting waveforms, in which time-
series with no significant 2-cycle components were reduced to flat
signals, making the oscillators apparent throughout the dataset
(Figure 5A, right panel), and after removing peaks with poor fit
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FIGURE 3 | Identification of expression cohorts using major spectral

powers. The waveform algorithm was used on a raw transcriptome dataset
(A) taken during a perturbation experiment (injection of 1 mM phenelzine at
min 48) (Li and Klevecz, 2006) to generate a model using the default settings
(B; R2 values shown in sidebar). Genes were first sorted according to the

presence of all oscillatory components identified in the dataset after the
P-value cut-off of 0.05 (C), and then by the phase angle of the dominant
frequency of the data (4 cycles). The genes profiles with a R2 < 0.5 are
shown at the bottom. The temporal profile of each gene was scaled (SI) for
visualization purposes.

(P-value > 0.01), 375 potential biological signals were identi-
fied (Figure 5B), demonstrating a quick and effective method for
exploratory metabolomics.

DATA PROCESSING WHILE PRESERVING PHASE ANGLES AND
AMPLITUDES
The previous examples contained qualitative measurements,
therefore amplitudes were relative values. To illustrate the use
of Fourier decomposition in denoising data while preserving the
temporal structure, we used a quantitative flow cytometry time-
series dataset (Figure 6A) (Sasidharan et al., 2012a). The purpose
of the analysis was to identify the phase-relationship, significance
of oscillation and duration of the DNA division cycle. While sub-
tracting the background (Figure 6B) already reveals the main
patterns, information such as the precise timing of DNA replica-
tion with respect to the respiratory oscillation and the amplitude
in the S-phase regions are not trivial to extract. The waveform
model was used to accentuate the regions of interest by using
an untargeted approach with the default parameters (Figure 6C).

Interestingly, S-phase was shown to be a linear time series that
continues throughout the respiratory cycle, starting during the
phase where residual dissolved oxygen was lowest (Figure 6E),
which was earlier than previously reported (Klevecz et al., 2004).
This could only be observed when we filtered out the contaminat-
ing frequency components from the much larger G1 and G2 cell
cycle phase peaks. This analysis may resolve observed differen-
tial timings of mid S-phase found for different oscillation periods
(Slavov et al., 2011; Amariei et al., 2013).

DISCUSSION
We present a set of tools that can be used to dissect oscil-
latory data, with or without a perturbation. It can be used
for any data matrix that is from an oscillatory system, such
as transcriptomic, metabolomics, and proteomic, as well as
other single or high-throughput measurements. We show its
utility in highlighting biological processes such as S-phase
(Figure 6), a separation of biologically relevant signals from noisy
metabolomic data (Figure 5) and delineating perturbation effects
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FIGURE 4 | Identification of differential responses to perturbation.

Based on the analysis presented in Figure 3, four gene cohorts with
differential responses were identified based on the presence of the spectral
components of interest (1, 3, 4, 5). Genes showing a 4-cycle oscillation and
no period drift (no 3 and 5 components) were separated into genes with no
major trend over the experiment (A), and those that had a response to the
experiment (B). Genes with 3-cycle (C) and 5-cycle components (D) are
shown separately. The top 5 genes with the highest R2 in each cohort are
shown in the bottom panel of each graph, against the corresponding
dissolved oxygen (DO) trace (dotted lines), which was scaled to the range of
the plot. The perturbation agent (phenelzine, 1 mM) was injected at min 48.
The temporal profile of each gene was scaled (SI) for visualization purposes.

in a drug treatment experiment (Figures 3, 4). Additionally,
analyses on this perturbation separated events spanning dif-
ferent time-scales, i.e., the long perturbation event (10 h) (Li
and Klevecz, 2006), the oscillation (40 min) and sub-events that

FIGURE 5 | Exploratory examination of a noisy time-series

metabolomics dataset. A time-series dataset of unidentified CE-MS
peaks (A, left panel) (Sasidharan et al., 2012b) was filtered using the
waveform algorithm with default cut-off and targeting the dominant
frequency of the data (2 cycles; A, right panel). The statistically significant
peaks based on the coefficient of determination (R2) are shown in (B). Peak
IDs were sorted using hclust (stats package in R) (Murtagh, 1985) with the
euclidean distance and Ward’s method (Ward, 1963) in (A) and by the
phase angle of the 2-cycle component in (B). The corresponding dissolved
oxygen (DO) trace during the experiment is show in bottom panel. The
temporal profile of each peak was scaled (SI) for visualization purposes.

may be related to changes in cofactor abundance (10–15 min)
(Sasidharan et al., 2012c). For the yeast oscillatory system, it
is relatively easy to cross-correlate time series taken in differ-
ent laboratories, form different oscillation periods, using data
taken months (or even years apart) by adjusting the phase angle
with respect to a reference point on the residual dissolved oxy-
gen data (Murray et al., 2003; Lloyd and Murray, 2007; Machné
and Murray, 2012), thus opening up a wealth of data to the
experimenter.

A common issue that arises when dealing with large datasets
is the excessive requirements for computational power and
memory for calculating distance matrices, which limits clus-
tering methods. Filtering spectral components (Figures 3, 4)
can be an effective way of reducing the complexity of the
dataset before clustering. Indeed, the majority of the ontol-
ogy enrichments previously observed by Machné and Murray
(2012) were also reconstituted in the frequency analysis reported
here.

Normalization of oscillatory time-series datasets is often a
difficult task due to lack of an internal, biological set of non-
oscillating references, and the steps taken can alter the data
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FIGURE 6 | Identification of phase-relationships in a flow cytometry

dataset (Sasidharan et al., 2012a). Each datapoint represents the number
of cells (CN) in a particular DNA intensity bin (peak propidium iodide
channel) (Klevecz et al., 2004). These were aligned and scaled according to
the G1 and G2 peaks (A; histogram of the average CN over the time-series
is shown in right panel). Residuals (B) were calculated by subtracting the
average CN over the time-series, and were filtered using the waveform
algorithm (C; R2 values shown in sidebar). The corresponding dissolved
oxygen (DO) trace during the experiment is shown in (D). The major
component (4 cycles) was characterized by the phase-angles with respect
to the respiratory oscillation and SN ratio at each DNA concentration (E);
the DC component is shown in the sidebar. The dashed gray line represents
the DO trace over one cycle, scaled to the range of the panel. Phase-angles
0◦/360◦ represent the minimum of the DO rate in each respiratory cycle.

structure significantly (Lehmann et al., 2013). If subjected to
standard array-to-array normalization methods which include
an alignment to the mean of individual arrays, the phase-angles
of expression in Figure 3 would be significantly skewed due to
higher mRNA abundance in one phase of the respiratory oscil-
lation. Even the seemingly noisy minor peaks that occur every
3-4 samples (the 12-cycle component which is found in over
half of the transcripts) may be biological, as they coincide with
the triphasic patterns of NAD(P)H fluorescence occurring dur-
ing the yeast respiratory oscillation (Sasidharan et al., 2012c).
Furthermore, attempting to normalize the metabolite dataset
in Figure 5 using internal standards deteriorated the 2-cycle

oscillatory signal, indicating that biological signals were less noisy
than the external controls. Therefore, aggressive normalization
of such periodic data should generally be avoided. However,
when normalization is necessary, the presented algorithm can
be used to identify a subset of least-oscillatory biological fea-
tures on which normalization can be carried out, and the fit-
ting parameters thus obtained can then be used to normalize
the rest of the dataset, while preserving its temporal profile
(Calza et al., 2008; Machné and Murray, 2012).

The methods presented here can readily be used to anal-
yse short time-series data taken in triplicates, by concatenating
the triplicate series to obtain a pseudo-waveform spanning 3
“pseudo-cycles.” However, one prerequisite and major limita-
tion for general Fourier based approaches is that the analyzed
dataset must be sampled at equal time intervals. If the time-
series in question has uneven sample times (e.g., 0, 5, 15, 30,
60, 120, 480 min) it may still be possible to utilize the algo-
rithm on the pseudo-waveform constructed from the triplicates,
by applying the appropriate data window to adjust the mono-
tonically increasing or decreasing profiles (such as Hamming or
Hanning (Oppenheim et al., 1999); already implemented in the
waveform package), as these are prone to spectral leakage (Lyon,
2009). The resulting data would then be readjusted to the origi-
nal timing. Thus, future developments of the algorithm will be its
application to certain non-oscillatory and non-equally sampled
datasets.
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