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Direct reprogramming of adult, lineage-determined cells from one cell fate to another has
long been an elusive goal in developmental biology. Recent studies have demonstrated
that forced expression of lineage-specific transcription factors in various differentiated
cell types can promote the adoption of different lineages. These seminal findings have
the potential to revolutionize the field of regenerative medicine by providing replacement
cells for various degenerative disorders. Current reprogramming protocols, however, are
inefficient in that relatively few cells in a given population can be made to undergo
reprogramming and the completeness and extent of reprogramming that occurs has been
questioned. At present, the fundamental molecular mechanisms involved are still being
elucidated. Although the potential clinical applications are extensive, these issues will
need to be addressed before direct reprogramming may be used clinically. This review
will give an overview of pioneering studies in the field, will describe what is known about
direct reprogramming to specific lineage types, will summarize what is known about the
molecular mechanisms involved in reprogramming and will discuss challenges for the
future.
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INTRODUCTION
A fundamental question in cell biology is whether the acquisi-
tion of a particular cell fate during embryonic development is
reversible or changeable, and to what extent. From a practical
standpoint, this question is also directly relevant to regenera-
tive biology and its potential application to clinical medicine. For
many years, the answer to this question has been a qualified affir-
mative, although progress has been mostly limited until the last
decade. The first demonstration that somatic cell nuclei could be
reprogrammed to direct enucleated oocytes to form mature fer-
tile animals was achieved in amphibians (Gurdon et al., 1958).
This technology was later used to clone mammals, nearly four
decades later (Campbell et al., 1996; Wakayama et al., 1998).
Although these studies demonstrated the feasibility of somatic
nuclear reprogramming, the overall efficiency was low (1–2%)
and worked better with nuclei from cells that were less dif-
ferentiated, suggesting that epigenetic modifications are likely
involved.

At the cellular level, early studies showing that 5-azacytidine
treatment, which inhibits DNA methylation, could convert
cultured fibroblast cell lines to myocytes, chondrocytes, and
adipocytes suggested that differentiated cells could undergo trans-
differentiation and that this process was under epigenetic con-
trol (Taylor and Jones, 1979). Subsequent studies on human
amniocyte- mouse myocyte heterokaryons were able to demon-
strate that the muscle phenotype was dominant and that cyto-
plasmic factors caused activation of muscle genes in the human
nuclei (Blau et al., 1983). A single dominant acting bHLH
transcription factor, MyoD, was later identified by its ability
to transform cultured fibroblasts into myoblasts by activating
muscle-specific genes (Lassar et al., 1986; Davis et al., 1987). In

other terminally differentiated cell types, MyoD could activate
muscle specific genes but could not suppress the starting cell
phenotype, demonstrating that there are intrinsic cellular road-
blocks to reprogramming (Weintraub et al., 1989). Nevertheless,
this discovery prompted searches for other dominant acting tran-
scription factors that could single handedly transform cells from
one lineage to another, however, the results were largely disap-
pointing. In general, cell fate switching seemed to occur more
readily between related cell types, presumably due to similar epi-
genetic landscapes. Examples include conversion of primary B
cells to macrophages by the transcription factor C/EBPa (Xie
et al., 2004), activation of erythroid-megakaryocyte gene expres-
sion in monocytes by the transcription factor GATA1 (Visvader
et al., 1992; Kulessa et al., 1995; Heyworth et al., 2002) and induc-
tion of myeloid gene expression in hematopoietic precursors by
the transcription factor PU.1 (Nerlov and Graf, 1998).

REPROGRAMMING TO PLURIPOTENCY BY MULTIPLE
TRANSCRIPTION FACTORS
The advent of technologies that facilitated global transcriptional
profiling in cells and tissues allowed researchers to identify large
numbers of genes that are differentially expressed in different
cell types. Presumably, some of the factors that were differen-
tially expressed in different cell lineages would contribute to the
maintenance of the particular cell type. This presumption led to
a pioneering study in which 24 candidate transcription factors
identified in embryonic stem cells were expressed simultaneously
in fibroblasts to determine whether they could confer a pluripo-
tent phenotype, and were then gradually reduced in number
to the minimum necessary to induce pluripotency, resulting in
the breakthrough discovery of iPS cells. In this landmark study,
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fibroblasts could be reprogrammed for the first time into pluripo-
tent cells through the forced expression of four defined factors:
Oct3/4, Sox2, Klf4, and c-Myc (Takahashi and Yamanaka, 2006).
These cells could be injected into blastocysts and contribute to
all three germ layers of the developing organism, and thus can
be used to generate a variety of cell types for tissue regeneration.
The generation of iPS cells and their potential for use in research
and therapy has discussed in several recent review articles and
will not be discussed in detail (Hanna et al., 2010; Robinton and
Daley, 2012). iPS cells and embryonic stem cells can be differen-
tiated directly to a variety of cell types through a process known
as “directed differentiation” using defined factors such as bone
morphogenetic proteins (BMPs), Activin, Wnts, and Fibroblast
Growth Factors (FGFs). Although the generation of iPS cells rep-
resents a major advancement in stem cell biology, the process
is inefficient and time consuming, which will be compounded
if the derived iPS cells will then be used for directed differ-
entiation. These factors can limit their practical use in clinical
settings.

DIRECT REPROGRAMMING OF CELL FATE FROM ONE TYPE
TO ANOTHER
Direct reprogramming will theoretically facilitate the generation
of clinically relevant cell types for organ repair from abundant,
easy to obtain patient-derived cells such as fibroblasts, with-
out the need for obtaining pluripotent stem cells. Generally this
is accomplished through forced expression of lineage-specific
transcription factors and has been used to promote reprogram-
ming to a variety of cell types, such as skeletal muscle (Lassar
et al., 1986; Davis et al., 1987; Weintraub et al., 1989), hepa-
tocytes (Huang et al., 2011; Sekiya and Suzuki, 2011), neurons
(Vierbuchen et al., 2010), pancreatic islet cells (Ferber et al.,
2000; Zhou et al., 2008), endothelial cells (Ginsberg et al., 2012),
smooth muscle cells (Cordes et al., 2009; Karamariti et al., 2013),
and cardiac muscle (reviewed in Addis and Epstein, 2013). Direct
reprogramming is conceptually attractive because in general it
does not require reversion to a pluripotent state and represents
a direct conversion from one cell lineage to another. It also pro-
vides the opportunity to directly convert cells in situ, which
would be important in regenerative strategies. Several excellent
reviews have been published recently on this subject (Vierbuchen
and Wernig, 2012; Addis and Epstein, 2013; Morris and Daley,
2013). In general, reprogramming seems to work better when
the starting cells share similar embryonic germ cell layer origins,
but has been demonstrated to convert fibroblasts (mesoderm)
to neurons (ectoderm), indicating that conversion across germ
cell layers is possible (Vierbuchen et al., 2010). Although sev-
eral different types of cells can undergo direct reprogramming
to many different cell types (reviewed in Morris and Daley,
2013), we will focus primarily on what is known about direct
reprogramming of fibroblasts, since they are generally ubiqui-
tous, abundant and readily available for clinical use. Reports of
direct fibroblast reprogramming are summarized in Table 1. We
will also focus on directing cell fate conversion to neurons and
cardiac myocytes, two cell types from organs that do not regen-
erate well, and are thus highly relevant to clinical regenerative
medicine.

Table 1 | Reports of direct reprogramming of fibroblasts.

Reprogrammed References

cell type

Skeletal muscle Lassar et al., 1986; Davis et al., 1987; Weintraub
et al., 1989

Hepatocytes Huang et al., 2011; Sekiya and Suzuki, 2011

Neurons Vierbuchen et al., 2010; Ambasudhan et al., 2011;
Caiazzo et al., 2011; Pang et al., 2011; Qiang et al.,
2011; Son et al., 2011; Yoo et al., 2011; Lujan et al.,
2012; Liu et al., 2013

Cardiomyocytes Ieda et al., 2010; Efe et al., 2011; Pfisterer et al.,
2011; Chen et al., 2012; Inagawa et al., 2012; Islas
et al., 2012; Jayawardena et al., 2012; Protze et al.,
2012; Qian et al., 2012; Song et al., 2012; Addis
et al., 2013; Christoforou et al., 2013; Fu et al.,
2013; Hirai et al., 2013; Nam et al., 2013; Wada
et al., 2013; Hirai and Kikyo, 2014; Ifkovits et al.,
2014; Muraoka et al., 2014

Smooth muscle cells Cordes et al., 2009; Karamariti et al., 2013

Macrophages Feng et al., 2008

Pancreatic islet cells Lumelsky, 2014

Neural precursors Mitchell et al., 2014b; Zhu et al., 2014

DIRECT REPROGRAMMING TO NEURONS
Direct reprogramming of fibroblasts to neuron-like cells was first
achieved by overexpression of a pool of 19 virally expressed can-
didate genes that were known to be neuron-specific, play a role in
neuronal differentiation or implicated in epigenetic reprogram-
ming (Vierbuchen et al., 2010). By systematic removal of specific
candidate genes and repeated transduction, these investigators
were further able to demonstrate that a minimal combination
of three transcription factors, Ascl1, Brn2, and Myt1l were able
to rapidly reprogram embryonic and neonatal mouse fibroblasts
to neuron-like cells that expressed multiple neuron-specific pro-
teins, demonstrated spontaneous action potentials and were able
to form functional synapses. The majority appeared to be cortical,
glutamatergic excitatory neurons. Subsequent studies were able
to demonstrate that the combination of Ascl1, Lmx1a, and Nurr1
can convert mouse fibroblasts to dopaminergic neurons (Caiazzo
et al., 2011), the combination of Ascl1, Brn2, Myt1l, Lhx2, Hb9,
Isl1, and Ngn2 can convert mouse fibroblasts to motor neurons
(Son et al., 2011) and that the combination of Brn2, Sox2, and
Foxg2 could convert mouse fibroblasts to neuronal precursor cells
(Lujan et al., 2012). Ascl1, Brn2, and Myt1l have also been shown
to directly convert striatal astrocytes into neurons in vivo (Torper
et al., 2013). NeuroD has also been shown to directly reprogram
reactive glial cells into functional neurons within the cerebral
cortex after brain injury (Guo et al., 2014).

Parallel studies on human fibroblasts were able to show that
various combinations of factors such as Ascl1, Brn2, Myt1l, and
NeuroD1 (Pang et al., 2011); Ascl1, Myt1l, NeuroD2, miR-9/9,
and miR-124 (Yoo et al., 2011); or Brn2, Myt1l, and miR-124
(Ambasudhan et al., 2011) could reprogram these cells to glu-
tamatergic neurons. A group of five factors (Ascl1, Brn2, Myt1l,
Olig2, and Zic1) could also reprogram human skin fibroblasts
into glutamatergic neurons and was used to generate induced
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neurons from patients with Alzheimer’s Disease (Qiang et al.,
2011). Similarly, the combination of Ascl1, Brn2, Myt1l, Lmx1a,
and Foxa2 (Pfisterer et al., 2011) or the combination of Ascl1,
Lmx1a, and Nurr1 (Caiazzo et al., 2011) could promote the
formation of dopaminergic neurons from human fibroblasts.
Human fibroblasts could also be directly reprogrammed into
motor neurons by the combination of Ascl1, Brn2, Myt1l, Lhx2,
Hb9, Isl1, and Ngn2 (Son et al., 2011).

DIRECT REPROGRAMMING OF FIBROBLASTS TO
CARDIOMYOCYTES
The first demonstration that mouse fibroblasts could be directly
reprogrammed to induced cardiac myocyte-like cells (iCMs) was
achieved using an approach similar to that used to generate iPS
cells and induced neuronal cells. A pool of 14 candidate fac-
tors was initially shown to induce cardiomyocyte-like cells and
then the pool was narrowed down to the combination of Gata4,
Mef2c, and Tbx5 (GMT) (Ieda et al., 2010). Only a small per-
centage of fibroblasts were directly reprogrammed, however, and
although they had many features of cardiac myocytes, their tran-
scriptional patterns were distinct from neonatal cardiomyocytes.
In addition, only a small percentage of the cells could sponta-
neously contract. Another approach using a different strategy of
transiently expressing the pluripotency factors Oct4, Sox2, Klf4,
and c-Myc, then culturing the cells in defined media conditions
commonly used in the stem cell field to promote cardiac dif-
ferentiation, including the JAK inhibitor JI1, was also successful
(Efe et al., 2011). Another group reported that the GMT fac-
tor combination was able to induce expression of cardiac genes,
but did not produce any contracting cells (Chen et al., 2012),
raising doubts about the efficacy and efficiency of the proce-
dure. Two subsequent studies, however, were able to demonstrate
that the retroviral expression of GMT transcription factors could
directly reprogram fibroblasts at the site of myocardial injury
and decrease infarct size, especially when given in conjunction
with thymosin β4 (Inagawa et al., 2012; Qian et al., 2012). A
different group reported that direct reprogramming of mouse
fibroblasts was more efficient if the transcription factor Hand2
was added in conjunction with GMT, both in vitro and in vivo
after myocardial injury (Song et al., 2012). A subsequent study
evaluated the effect of three factor combinations from a pool
of 10 candidate factors and determined that Tbx5, Mef2c, and
Myocardin induced a broader spectrum of myocardial genes than
Gata4, Mef2c, and Tbx5 (Protze et al., 2012). Another study
investigated the potential for microRNAs to reprogram mouse
fibroblasts to cardiac myocyte like cells and determined that the
combination of miR-1, miR-133, miR-208, and miR-499, in con-
junction with JAK inhibitor I was sufficient both in vitro and
in vivo (Jayawardena et al., 2012). Others have tried to opti-
mize the reprogramming further and have found that addition
of Myocardin, SRF, Mesp1, and Smarcd2 to Gata4, Mef2c, and
Tbx5 can enhance the process (Christoforou et al., 2013). To
improve the likelihood of obtaining functional cardiac myocytes,
another group used fibroblasts containing a calcium sensitive
GFP reporter and found that the combination of Hand2, Nkx2-5,
Gata4, Mef2c, and Tbx5 could reprogram adult mouse fibroblasts
50 fold more efficiently than GMT alone and that the induced

cardiac myocytes demonstrated robust calcium oscillations and
spontaneous beating (Addis et al., 2013). The efficiency of con-
version by GMT to spontaneously contracting cardiomyocyte-like
cells was also reportedly improved by the tethering of the MyoD
activation domain to each of these transcription factors (Hirai
et al., 2013). A follow up study showed that direct reprogramming
with these factors was further enhanced by inhibition of repressive
histone modifications (Hirai and Kikyo, 2014).

Direct reprogramming of human fibroblasts to cardiac
myocyte-like cells has also been reported, but with different factor
requirements. Forced expression of the transcription factors Ets2
and Mesp1 or recombinant ETS2 and MESP1 proteins modified
with cell penetrating peptides were sufficient to convert human
neonatal foreskin fibroblasts into cardiac progenitors (Islas et al.,
2012). The transcription factors Gata4, Hand2, myocardin, and
Tbx5 in conjunction with microRNAs miR-1 and miR-133 were
sufficient to directly reprogram neonatal foreskin, adult cardiac
and adult dermal fibroblasts to cardiomyocyte-like cells (Nam
et al., 2013). The function of miR-133 in this context is report-
edly to suppress Snai1 and fibroblast genes (Muraoka et al., 2014).
The addition of Myocardin and Mesp1 to GMT was reported to
reprogram human cardiac fibroblasts to cardiomyocyte-like cells
that express a broad array of cardiac genes and exhibit calcium
oscillations (Wada et al., 2013). GMT factors in conjunction with
MESP1 and ESRRG have also been reported to directly reprogram
several types of human fibroblasts to cardiomyocyte-like cells (Fu
et al., 2013).

These studies in aggregate demonstrate that multiple
transcription factors and microRNAs can contribute to direct
reprogramming of fibroblasts. One potential contributor to the
variation between these studies is the lack of consensus criteria
for assessing the degree of reprogramming. The development and
use of standardized criteria for evaluation of transdifferentiation
to iCMs, in terms of gene expression, structural, and functional
characteristics has been suggested for these types of experiments
(Addis and Epstein, 2013).

MECHANISMS OF DIRECT REPROGRAMMING
The mechanisms of direct reprogramming are incompletely
understood. While it is well established that transcription fac-
tors drive the process and that microRNAs can contribute, it is
less clear how cells maintain lineage and in general prevent the
development of inappropriate cell types. The process involves
activation of target genes, which usually occurs within hours to
days (Ieda et al., 2010; Vierbuchen et al., 2010), direct transi-
tion from one state to another, without the need to go through
a pluripotent state (Zhou et al., 2008; Ieda et al., 2010), does
not require cell division, in contrast to induction of pluripo-
tency (Zhou et al., 2008; Hanna et al., 2009; Heinrich et al., 2010;
Vierbuchen et al., 2010) and is stable after removal of reprogram-
ming factors (Zhou et al., 2008; Huang et al., 2011; Sekiya and
Suzuki, 2011). The interactions between the positive actions of
transcription factors and the negative influences of chromatin
architecture and epigenetic modifications are currently under
investigation. It has long been known that the genome encodes
many binding sites for a given transcription factor, but the local
chromatin structure only allows certain sites to be accessible,
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in a cell type-specific fashion. An example is the hematopoietic
transcription factor Scl/Tal, which binds to different sites in dif-
ferent hematopoietic cell types (Wilson et al., 2010; Palii et al.,
2011). Unneeded areas of the genome are packaged into het-
erochromatin and are generally not accessible to transcription
factors (Beisel and Paro, 2011). To achieve reprogramming, not
only must the reprogramming factors find appropriate binding
sites, they must also remodel chromatin appropriately to allow
ancillary factors to bind and activate a cell type-specific pro-
gram. This challenge may explain the general requirement during
direct reprogramming for multiple transcription factors that act
cooperatively to remodel diverse areas throughout the genome.
Another hypothesis being considered is that the reprogramming
factors act as “pioneer” transcription factors that can bind to
their cognate sites regardless of chromatin configuration (Zaret
and Carroll, 2011). In this model, the pioneering factors can bind
to their cognate sites and displace nucleosomes, thereby creating
a permissive environment for other factors to bind. Given that
some cell types are not amenable to direct reprogramming and
that related cells are generally more amenable to reprogramming,
it is likely that some degree of initial chromatin accessibility or
“open access” is necessary even for factors that have “pioneer”
capability. Studies on the muscle specific factor MyoD demon-
strate that cells susceptible to reprogramming have accessible
enhancer elements that allow MyoD binding despite being in an
overall repressive state where gene transcription is turned off.
Ectopic MyoD was able to quickly bind the enhancer element in
the first 24 h, followed by acquisition of H3K4me marks by 48 h
(Taberlay et al., 2011).

Direct reprogramming to different cell types occurs at varying
efficiency but is usually low. In addition, successful reprogram-
ming often requires high expression levels of reprogramming
factors. Accordingly, another postulated mechanism of repro-
gramming involves transient accessibility to transcription factor
binding sites during nucleosome turnover or other mechanisms
in which DNA becomes accessible in a stochastic fashion, such
as during different phases of the cell cycle (Egli et al., 2008;
Vierbuchen and Wernig, 2012).

CURRENT LIMITATIONS AND CHALLENGES FOR THE FUTURE
In addition to low efficiency, another major limitation of direct
reprogramming as a strategy to regenerate tissues is the pres-
ence of epigenetic memory. Epigenetic memory specific to the
original cell type has been well documented in iPS cells (Kim
et al., 2010, 2011; Polo et al., 2010). Despite induction of gene
expression consistent with reprogramming to another cell type,
in multiple cases, some residual gene expression specific to the
cell type of origin persists (Feng et al., 2008; Marro et al., 2011).
Induced neurons derived from hepatocytes still demonstrate
some hepatocyte-specific gene expression (Marro et al., 2011),
while induced macrophages derived from fibroblasts still express
some fibroblast genes (Feng et al., 2008). In many reported
cases of direct reprogramming, only a small set of target genes
were assessed, and in cases where more thorough transcriptomic
analysis has been performed, there is significant divergence in
gene expression patterns from native cells (Ieda et al., 2010;
Sekiya and Suzuki, 2011). Since epigenetic memory has also been

shown to persist in embryos generated from somatic cell nuclei
(Ng and Gurdon, 2005), this problem may be challenging to
resolve.

A promising alternative approach has been to use pluripo-
tency factors in the early stage of direct reprogramming followed
by induction with cell-type specific factors to promote the dif-
ferentiation of fibroblasts to cardiac myocytes (Efe et al., 2011).
This method is thought to induce a transient state of plasticity
more amenable to direct reprogramming without full induction
of pluripotency, and reportedly is much more efficient than direct
reprogramming. Oct4 in particular has been implicated to play an
important role in this regard (Mitchell et al., 2014a,b). To date,
however, this approach is limited by persistence of pluripotency
markers in the reprogrammed cells and the resulting cells have
properties of atrial cardiac myocytes, which may be less useful
for regenerative purposes. In general, the phenotype of directly
reprogrammed cells is often immature compared to fully differen-
tiated native cells within the target organ of interest, and this may
limit their utility in regenerative medicine. For cardiac cells in
particular, incomplete differentiation may prevent proper electri-
cal and mechanical coupling, leading to arrhythmias and possibly
heart failure. Strategies to promote a state of differentiation com-
parable to that of target tissue will also be critical to facilitate the
use of these cells in regenerative medicine. Exogenous, chemically
defined components such as ascorbic acid, recombinant human
albumin and other small molecules may be useful in this regard
(Crescini et al., 2013; Burridge et al., 2014). The utility of small
molecules and chemically defined conditions in promoting direct
reprogramming is well established (Lin et al., 2013; Liu et al.,
2013; Ifkovits et al., 2014; Lumelsky, 2014; Zhu et al., 2014).

Overall, the potential applications of direct reprogramming
to regenerative medicine are extensive. More studies are needed,
however, to characterize more fully the phenotype of repro-
grammed cells, particularly the extent of epigenetic memory,
residual gene expression specific to the original cell type and abil-
ity to achieve an appropriate differentiation state and function
similarly to native cells. Further refinement of transcription factor
combinations, the use of adjunct agents that promote chromatin
accessibility, the use of small molecules and the potential utility of
pluripotency factors are only a few of the possible approaches to
enhance direct reprogramming that are expected to evolve in the
future.
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