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The rapid evolution of all sequencing technologies, described by the term Next
Generation Sequencing (NGS), have revolutionized metagenomic analysis. They constitute
a combination of high-throughput analytical protocols, coupled to delicate measuring
techniques, in order to potentially discover, properly assemble and map allelic sequences
to the correct genomes, achieving particularly high yields for only a fraction of the cost of
traditional processes (i.e., Sanger). From a bioinformatic perspective, this boils down to
many GB of data being generated from each single sequencing experiment, rendering
the management or even the storage, critical bottlenecks with respect to the overall
analytical endeavor. The enormous complexity is even more aggravated by the versatility
of the processing steps available, represented by the numerous bioinformatic tools that
are essential, for each analytical task, in order to fully unveil the genetic content of a
metagenomic dataset. These disparate tasks range from simple, nonetheless non-trivial,
quality control of raw data to exceptionally complex protein annotation procedures,
requesting a high level of expertise for their proper application or the neat implementation
of the whole workflow. Furthermore, a bioinformatic analysis of such scale, requires
grand computational resources, imposing as the sole realistic solution, the utilization of
cloud computing infrastructures. In this review article we discuss different, integrative,
bioinformatic solutions available, which address the aforementioned issues, by performing
a critical assessment of the available automated pipelines for data management, quality
control, and annotation of metagenomic data, embracing various, major sequencing
technologies and applications.

Keywords: metagenomics, bioinformatics, distributed computing, cloud computing, workflow engines

INTRODUCTION

Metagenomics refers to the exhaustive study of a collection
of genetic material, encompassing various genomes from a
mixed community of organisms as defined from the National
Human Genome Research Institute (Talking Glossary of Genetic
Terms"). The definition embraces the cases where either the sam-
pling is conducted, in an environmental habitat, or the material
is collected from the tissue of a particular host organism, aim-
ing to unravel the complexity of the microbial species, which
are adapted to cooperate through symbiotic modes. The scrupu-
lous study of a metagenome (Handelsman et al., 1998) offers
insight concerning not only the phylogenetic properties of the
environmental niche itself, but also of its exceptionally abundant
arsenal of enzymes while, at the same time, provides us with a
“recipe” to recreate or even redesign them in vitro, for the sake
of various biotechnological applications. Genomic information
acquired from metagenomic sampling, has become a fundamen-
tal step for the elucidation of the taxonomic composition of the
niche together with each organism’s potent enzymatic capabili-
ties and is derived through the proper analysis of the chunks of

Uhttp://www.genome.gov/glossary/index.cfm?id=503 [Accessed].

DNA sequences, i.e., the full documentation of the nucleotide
sequences that constitute the metagenome that are generated
from a metagenomic sequencing experiment. Sequencing tech-
niques have greatly evolved (Metzker, 2010b) the last decade and
exploiting a variety of high-throughput protocols, so as to achieve
exceptionally high yields for only a fraction of the cost of tra-
ditional processes (i.e., Sanger sequencing, Sanger et al., 1977).
This evolution has resulted in a massive outbreak of data that are
becoming increasingly hard to process due to their size and the
numerous different tools essential for each step of the analytical
endeavor. A thorough analysis of a metagenomic sample requests
certain successive bioinformatic tasks that comprise (i) quality
control, (ii) assembly, (iii) gene detection, (iv) gene annota-
tion, (v) taxonomic analysis, and (vi) comparative analysis, whilst
storing the generated results under a database-structured compu-
tational repository enabling advanced data management, process-
ing, mining, and meta-mining capabilities (Figure 1). Each stage
in this succession of bioinformatic tasks necessitates substantive
expertise concerning the apposite utilization of the given software
tool or algorithm, something that concerns either the mathemat-
ical concepts underlying the operation of a tool, or knowledge
about programming aspects of its implementation and perfor-
mance. The complexity of these tasks augments radically, with
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FIGURE 1 | Typical workflow for analysis of metagenomic sequencing data.
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an increasing number of analyses. Recently, many bioinformatic
pipelines have emerged that aim to address these issues through
the provision of automated workflows and user friendly inter-
faces, in an effort to simplify the analytical procedure as much as
possible, and minimize the entry barrier concerning the familiar-
ization of the user with advanced programming or computational
techniques. Each of these integrative analysis pipelines encapsu-
lates a plethora of bioinformatic algorithms, seamlessly embed-
ded into a multi-tasking framework that can address all aspects
of a complete metagenomic analysis in an automated fashion.
In this review we perform an appraisal of the available solu-
tions of this kind for metagenomic purposes, by describing their
configuration and their particular operational features, together

with an assessment of their pros and cons, while we propose the
most appropriate ones for particular analytical tasks.

DATA ACQUISITION

There are numerous protocols available for environmental sam-
ple collection, metagenomic DNA extraction and amplifica-
tion with several commercial kits available on the market. The
sequencing of the acquired metagenomic DNA either with tradi-
tional sequencing techniques (Sanger sequencing) or with Next
Generation Sequencing (NGS) (Metzker, 2010a) methodologies
provides data in the form of small nucleotide sequences (reads)
that correspond to different amplified strands of the same DNA
molecule(s) each of which is randomly sheared into smaller pieces
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>read no_1
CGGCCTGGAGGCCCTGCAGAACCTGCTGGGCTACAGGTTCGGCGACGAGGG

>read no_2
GCAGCGTGAGCGCCATCATGGGCRACCCCCAGGTGARGGCCCACGGCRAGR

>read no_3
GGGAGACACCCGCACGTGTGGCCCGCATGTATGCTGAGCTCTTCCGCGGAT

>read_no_4%
TTTGCCCCGCATCGAGCGGGCTGTGCGGGARATCCTTCTGGCTGTAGGCGA

>read no_5
CCTGTGGGGCAAGGTGAACCCCGTGGAGATCGGCGCCGAGAGCCTGGCCAG

>read no_6
GAGGAGGGCCAGGATCCACCAGAGGAAGGGCCTGCTGTGGTTCATCCCCGC

>read no_7
CTGCACAGCGACTACAACCTGACCTGGTACAGGRAACGGCAGCARCATGCCC

>read no_8
GTGCTGGGCCTGGCCATCAGCCACTTCCTGCTGGAGCAGTTCCCCGACTAC

>read no_9
AACCTGGGCGAGTACCTGCTGCTGGGCAAGGGCGAGGAGATGACCGGCGGC

>read no_10
GTTCCCCGACTACAACGAGGGCGAGCTGAGCAGGCTGAGGAGCGCCATCGT

>read no_11
CTTCAGCRAGTTCGGCGACCTGAGCAGCGTGAGCGCCATCATGGGCAACCC

>read no_12
ACCAGAGGAAGGGCCTGCTGTGGTTCATCCCCGCCGCCCTGGAGGACAGCG

>read no_13
AAGGGCGAGGAGATGACCGGCGGCAGGAGGARGGCCAGCCTGCTGGCCGAC

FIGURE 2 | Raw sequence reads in FASTA format.

(shotgun sequencing). The generated datasets consist of text files
in FASTA (Figure 2) or FASTQ (Figure 3) format containing, in
the case of a typical experiment, millions of such reads, which are
used for the assembly (partial or complete) of the DNA strand
from which they originated. These datasets correspond to data
files, which size can level, according to the depth of the sequencing
analysis and quality of the instrumentation, up to several GB, thus
rendering their proper processing, an elaborate, intensive task.

DEVELOPMENT OF ANALYTICAL WORKFLOWS

Despite the fact that the experimental implementation of a NGS
experiment comprises a painstaking and arduous procedure, its
output, namely the volumes of short sequence reads, in digitized
format, represents just the initial step, for the whole analyti-
cal process, setting a point where the plethora of available data
are totally illegible and non-comprehensible. In order to dig out
the information hidden in these datasets, one needs to define
elaborate, multi-step, bioinformatic analytical workflows that can
be performed either serially or in parallel with each other. As
such processing tasks are so profoundly versatile and compli-
cated in their logical structure and programmatic development,
that even an experienced team of programmers can only develop
a handful of them. In this respect, the intricate nature of the
various processing steps that need to be assembled together, in
order to form computational workflows appropriate for different

@read no_1
CAGCACCTACAGGGAGCAGTTCTACGAGGAGGGCATGCCCCACGGCATCGCCGTGA
+read no_1
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
@read_no_2
GGACTACGCCAACATGCCCGAGAGCATCAAGTACGTGAAGCAGAAGTACGGCGCCA
+read_no_2
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
@read no_3
AAGCAGAAGTACGGCGCCATCAGGTGGACCGGCGACTTCAGCGAGAGGAGCCACAG
+read_no_3
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
@read no_4
GACCGACGCCGAGAAGGCCACCGTGAACGGCCTGTGGGGCAAGGTGAACCCCGTGG
+read_no_4
BBBBEBBBBBBBBBEBBBBBBBBBBEBBBBBBBBBEBBBBBBBBEBBBBBBBBBBBBB
@read_no_5
GCACCTGACCGACGCCGAGAAGGCCACCGTGAACGGCCTGTGGGGCAAGGTGAACC
+read_no_5S
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
@read no_6
AGGTGATCAACGCCTTCGACGACGGCCTGAAGCACCTGGACRACCTGAAGGGCACC
+read_no_6
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
@read no_7
CTTCAACGGCGAGATGAAGTACGACCAGATCGTGAAGAGCGCCAACGCCGGCAAGA
+read_no_7
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBEBBBBBBBBBBBBBBB
@read no_8
CGACGACGGCCTGAAGCACCTGGACAACCTGAAGGGCACCTTCGGCAGCCTGAGCG
+read_no_8
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
@read_no_9
TCGACGTGACCGACGAGAAGATCCACCAGAGCAGGAGGGTGATCATCATCCTGGTG
+read no_9
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
@read_no_10
AGGAGTGCAAGAGCGGCTTCCTGGAGGACAAGAGGCTGGTGCTGGCCGAGGGCGAG
+read no_10
BBBBBBBBBBBBBBBBBBBBBBEBBBBBBBBBBBBBBBBBBBEBBBBBBBBBBBBBBB

FIGURE 3 | Raw sequence reads in FASTQ format.

analytical tasks, strongly supports the formation of federated
computational infrastructures, representing repositories of soft-
ware services, that can be transparently, (namely without any
knowledge about their internal architecture), integrated in the
available workflows, or can compile new ones. The vision for the
creation of a suitable collaborative, environment, for a long list
of genomic sequence analysis tasks, representing an analog of a
virtual laboratory, relies on the extent of automation, easiness in
integration, transparency, and functional versatility it provides.
Beneath, follows a rough account of the main processing mod-
ules, incorporated in the workflows developed for metagenomic
analysis.

Quality control

The genomic (DNA) material, isolated from a metagenomic sam-
ple, is transformed through the complicated experimental DNA
sequencing protocols into short sequence reads of variable length,
according to the protocols and instrumentation applied (Mardis,
2008; Shendure and Ji, 2008). This base calling procedure, is sus-
ceptible to bias depending on a number of factors (Clark and
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FIGURE 4 | Distribution of quality scores of raw sequence reads from
FASTQC software. Taxonomic sorting of sequencing reads from MEGAN
software (rank level: “species”).

Whittam, 1992) such as G+C content and the actual location of
the base in the sequence. This bias is quantified by measuring the
probability of a base call to be false, providing an index of over-
all quality of the sequencing task. The computation of a quality
score (Phred) (Cox et al., 2010; Schmieder and Edwards, 2011) for
each sequenced base is now possible with this type of information
being handily accommodated in the FASTQ file format, which
represents a highly popular solution for genomic sequencing data
exchange and storage, bearing both sequence and correspond-
ing quality information (Cock et al., 2010). Several tools (Patel
and Jain, 2012; Davis et al., 2013; Yang et al., 2013) have been
developed that can utilize these scores and provide error probabil-
ity distributions (Figure 4) as well as utilize appropriate filtering
algorithms to trim sequences in a way that maintains only high
quality genomic sequences.

Assembly

The next data processing step is the utilization of reads to assem-
ble larger coherent sequence constructs (contigs) and, if possible,
constructs that contain multiple contigs (scaffolds) with reliable
connections between them. Each of these constructs originates
from a different DNA sequence, that can be part of or a genome
by itself and can be later investigated for the detection of open
reading frames (ORFs), that is genomic areas, containing gene
encoding sequences. The assembly task is so far, from the aspect
of computational load, the bottleneck for any sequencing project
whether the data corresponds to single cell genomes or metage-
nomic samples. The assembly of reads to contigs (and scaffolds) is
avery laborious task, requesting avidly memory processing power
resources, setting an important challenge, for which numerous
algorithms (Miller et al., 2010) have been developed to address
various performance issues stemming from it. Whereas there
are numerous algorithms (Miller et al., 2010) dedicated to the
assembly of NGS raw data, we can distinguish two discreet com-
putational approaches; mapping reads to a template genome and
de novo assembly. Assembly via mapping to a known genome as

reference can provide very reliable results for sequencing projects
dealing with single-cell samples as it can bypass performance
issues originating from sequence repeats, short length of reads,
low coverage of sequencing, etc. (Scheibye-Alsing et al., 2009). It
is mainly driven by the choice of the reference genome which has
to be as phylogenetically related to the sequenced sample as possi-
ble. De novo assembly is by far the most computationally intensive
task (Scheibye-Alsing et al., 2009) as it requires algorithms that
perform all possible comparisons between the millions of reads in
order to detect any overlaps between them; a method referred to
as overlay-layout-consensus (OLC). Although the de novo assem-
bly endeavor has been simplified by novel algorithms abandoning
the OLC method and exploiting mathematical concepts such as
de Bruijn graphs (Zerbino and Birney, 2008; Peng et al., 2011),
it still heavily depends on the quality of the sequencing protocol
(read length, sequencing depth, etc.). Nevertheless, because of the
immense diversity of the genomic content in a metagenomic sam-
ple, utilization of a reference genome is ruled out, making thus the
computationally intensive task of de novo assembly the sole prac-
tical alternative, at least at the first steps of an analytical effort,
when there is no prior knowledge about the sequences pertaining
the sample.

Open reading frame/gene detection

The functional patterns, which form the response of all living
organisms in an environmental niche as well as their symbi-
otic or competitive interactions, are encapsulated their genetic
code, where all necessary information for functions such as
nutrition, chemotaxis, adaptation to hostile environments and
proliferation, is encoded in the form of genes. In this sense, the
identification of genes within a genome, through apt mapping
of each gene to its sequence or sequences, is an indispensable
step, for its proper functional annotation and the decipherment
of the underlying regulatory mechanisms. Computationally, the
detection of genes inside a genome starts with the detection of
OREFs, after their evaluation whether they can be translated into
functional proteins (so that the respective nucleotide sequences
may be considered as candidate gene encoding ones). The algo-
rithms (Yok and Rosen, 2010) that perform this assessment,
use various methodologies for gene prediction either from the
area of machine-learning (Hoff et al., 2009; Zhu et al., 2010) or
not (Noguchi et al., 2008), whereas their underlying operational
features, are critically modified according to whether the gene
prediction targets prokaryotic or eukaryotic organisms.

Gene annotation

Even if all gene sequences of a metagenomic population are distin-
guished successfully, the abundance of information they contain
cannot be exploited without a proper annotation of their func-
tion. The most widespread method of annotating a gene sequence
is by measuring its homology (Altschul et al., 1990; Kent, 2002)
to already known genes taken from public databases (Apweiler
et al., 2004; Pruitt et al., 2005; Parasuraman, 2012; Benson et al.,
2014). However, as more than 99% of bacterial species cannot be
cultured in the lab (Rappe and Giovannoni, 2003; Sharon and
Banfield, 2013) and the quantity of metagenomic data that is
generated each year continuously expands, these methods are no
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FIGURE 5 | Taxonomic sorting of sequencing reads from MEGAN
software (rank level: “species”).

longer sufficient to predict the function of novel genes. Instead
new predictive approaches have emerged, becoming the standard
practice for this sort of analysis, such as Hidden Markov Models
techniques (Finn et al., 2011) and machine learning methodolo-
gies (Tian et al., 2004) that assess sequence similarity, exploiting
the whole area of the sequence, seeking profiles (Claudel-Renard
etal., 2003) or motives for any known gene with a given function-
ality, i.e., belong to the same Enzyme Commission (EC) number,
rather than prioritizing serial homology.

Taxonomic analysis (binning)

An environmental niche is composed by a broad range of different
microorganisms being constantly under evolutionary pressure,
which have developed biological interrelations between them, as
a means of symbiotic adaptation to the extreme conditions they
face. As the DNA extraction from a metagenomic sample gets
extracted as a whole, there is no way to separate and segregate
beforehand the collected DNA, according to the organism it orig-
inated from. Nonetheless this challenge may be addressed compu-
tationally, sorting raw sequencing reads taxonomically (Figure 5)
and phylogenetically (Weisburg et al., 1991; Retief, 2000; Darling
etal., 2014) and thus yield conclusive information about the pop-
ulation of the niche, which can be extended subsequently to the
assembled contigs and genes. This process is called taxonomic
binning (Droge and Mchardy, 2012) and there are numerous tools
(Mohammed et al., 2011; Pati et al., 2011; Luo et al., 2014; Wang
et al., 2014) that rely on homology based or composition based
approaches (Rosen and Essinger, 2010).

Comparative integrative analysis

When different metagenomic datasets are brought together, their
overall diversity, which reflects the diversity in the correspond-
ing environmental niches, can be examined computationally. The
available tools (Huson et al., 2007; Markowitz et al., 2008; Meyer
et al., 2008) for this task incorporate algorithms that compare the
functional and taxonomical content of the different datasets and
examine if the detected differences are statistically significant.

Data management

Following the massive advances of NGS technologies, the gen-
erated data from each sequencing analytical job can now reach
the order of several gigabytes (GB) or even terabytes (TB) in
size(Richter and Sexton, 2009). Moreover if elaborate analyti-
cal workflows like the aforementioned are applied, they yield
similarly voluminous chunks of processed metadata (in some
cases even at a higher order of size e.g., gene annotation). Thus,
it is imperative for computational infrastructures, in the form
of repositories, to integrate in a single environment, numer-
ous algorithmic workflows that addressing versatile processing
tasks together with advanced relational database management
functionalities, in order to ensure easy data access, iterative com-
parative processing and integration of similar information from
other datasets. Such infrastructures are now feasible by exploiting
the potential of cloud computing (Schatz et al., 2010; Stein, 2010)
and provide not only the necessary disk space for large data man-
agement but also the appropriate processing capacity for heavy
duty bioinformatic tasks.

CURRENT SOLUTIONS

Each of the aforementioned tasks not only requests high process-
ing power and storage capacity but also an in depth knowledge of
regarding the proper application of computational methodolo-
gies from a broad spectrum of fields (information theory, signal
processing, systems theory, statistics, programming) along with
a yearlong experience in order to produce reliable results. This
is why, there is an earnest need for metagenomic analysis plat-
forms introducing automated, workflows for various processing
goals, integrating tools in the form of services, operative inside
processing pipelines. This has resulted into the development of
various pipelines (Almeida et al., 2004; Harrington et al., 2010;
Angiuoli et al., 2011) dedicated to the analysis of single organ-
ism genomic data. However, the exploitation of NGS technologies
in metagenomic analysis has set off the limitations of similar
solutions developed for single organism data, for the sake of
metagenomic projects. Therefore, for the purposes of this review
we will skip the reference to any single-genome tool and will only
appraise the most recent pipelines (i.e., frameworks that incorpo-
rate two or more tools in consecutive running order) developed
for the analysis of metagenomic sequencing datasets. We will also
omit pipelines (Schloss et al., 2009; Caporaso et al., 2010) ded-
icated solely to the analysis of 16s rDNA datasets as these are
targeting only phylogenetic studies (Weisburg et al., 1991; Woo
et al., 2008), or CAMERA (Seshadri et al., 2007) pipeline as it
is no longer supported starting from 1Ist of July 2014. We also
exclude MEGAN (Huson et al., 2007) because despite the fact
that it targets metagenomic data, it lacks critical tasks (BLASTX,
taxonomic and functional analysis) as part of an automated
pipeline.

The current bioinformatic arsenal of pipelines able to take
up the challenge of analyzing a metagenomic sequencing dataset
comprises the following tools (in alphabetical order): (i) CloVR-
metagenomics (Angiuoli et al., 2011), (ii) Galaxy platform
(metagenomics pipeline) (Giardine et al., 2005; Kosakovsky Pond
et al., 2009), (iii) IMG/M (Markowitz et al., 2008, 2014), (iv)
MetAMOS (Treangen et al., 2013), (v) MG-RAST (Aziz et al,
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2008; Meyer et al., 2008), (vi) RAMMCAP (Li, 2009), and (vii)
SmashCommunity (Arumugam et al., 2010).

CloVR-METAGENOMICS

CloVR-metagenomics (CloVR: Cloud Virtual Resource) is a desk-
top application for automated sequence analysis, which requires
two different inputs; a set of fasta-formatted files (raw sequencing
data), and a tab-delimited metadata file which provides sample-
associated information for comparative analysis. Local installa-
tion requires a Virtual Machine (VM) player in order to boot
the appropriate VM image available by their website. For a cloud-
based instance, users can use the Amazon Cloud where they find
an available Amazon Machine Image (AMI) from the Request
Instances Wizard. The pipeline initiates by clustering redundant
sequence reads with UCLUST (Edgar, 2010) and uses BLAST
(Altschul et al., 1990) homology searches against COG (Tatusov
et al., 2000) and RefSeq (Pruitt et al., 2005) databases for func-
tional and taxonomic annotation respectively. The resulting data
from the two different analyses are transferred as input to the inte-
grated Metastats program for detection of differentially abundant
features (White et al., 2009). Finally integrated custom scripts in R
language (The R Project for Statistical Computing? ) are utilized in
order to normalize taxonomic or functional counts for clustering
and for visualization purposes. The main advantage of CloVR’s
setup is that it provides the user with the option of using local
resources or to access a cloud provider for additional computa-
tional capacity. A potential downside of the platform is the lack
of quality control, assembly and gene detection tools (which are
available only in the single-genome and 16S-rRNA versions of the
software) making it highly dependent on the read length of the
sequencing datasets.

GALAXY PLATFORM (METAGENOMICS PIPELINE)

Galaxy is an open-source, generic framework for the integration
of computational tools and databases into a cohesive collaborative
workspace, being developed primarily for data intensive biomed-
ical research. A free Galaxy public server (Galaxy J) is available but
a user can download and install an instance on his/her server for
exploitation of local resources, tools and databases in order to cre-
ate custom workflows. Local installation requires only the down-
loading of the latest release and the initiation of the local instance
can be done by running the appropriate BASH (BASH—The
GNU Bourne-Again SHell ?) script (run.sh) included in the down-
loaded directory. A Galaxy workflow for metagenomic datasets
was published (Kosakovsky Pond et al., 2009) that requires as
input a single dataset of raw sequencing reads and performs an
automated series of analyses exploiting specific integrated tools.
Those analyses include: (i) quality control and filtering of the
reads (custom tool), (ii) text editing and data format converting
(custom tools), (iii) homology search against NCBI-nt database
(Megablast, Altschul et al., 1990), (iv) taxonomic analysis (cus-
tom tools), and (v) visualization of results (custom tools). The
biggest advantage of this platform is besides the rich collection of

Zhttp://www.r-project.org/ [Accessed].
3https://usegalaxy.org/ [Accessed].
4http://tiswww.case.edu/php/chet/bash/bashtop.html [Accessed].

workflows it provides, the capability it offers, via its local instal-
lation, to each user to build customized workflows integrating
any customized tools of his/her choice (third party or propri-
etary) that can handle a very wide range of analytical tasks, while
simultaneously providing a very friendly user interface. However,
in order that a full local installation is achieved, sophisticated,
far from trivial, programming expertise rendering the solution
inappropriate for other than proficient users. Nevertheless, as
the platform becomes more and more popular, many scientific
groups develop their own tools and integrate them into new
workflows (Pilalis et al., 2012), rendering them available to the
relevant communities of users. These workflows provide auto-
mated metagenomic analyses that cover from sequence assembly
to protein annotation even enzymatic functional classification via
machine learning methodologies (Koutsandreas et al., 2013).

IMG/M

IMG/M is an experimental metagenome data management and
analysis system that provides a genome database from bacterial,
archaeal and selected eukaryotic organisms and a suite of tools
for data exploration and comparative data analysis. The data
exploration tools facilitate advanced search queries in assembled
sequence data for genes, for the contigs and scaffolds where they
originated from as well as their associated functional characteriza-
tions (COG, Pfam, Finn et al., 2014, etc.). The comparative data
analysis suite contains (i) profile-based selection tools, (ii) gene
neighborhood analysis tools, and (iii) multiple sequence align-
ment tools that can elucidate the gene content and phylogenetic
profile of any metagenomic sample. This platform constitutes a
very robust and user friendly system for publishing and managing
auser’s (meta) genome via its web server’s graphical user interface
(GUI) as well as performing further functional annotation on it,
while exploiting their cloud infrastructure. Nevertheless, the bur-
den of quality control of the raw reads as well as the assembly
task still befalls on the user. IMG/M is designed for assembled
metagenomes only with no supporting tools for the tasks up to
assembly. Local installation is not available and all users need to
have an IMG Account which can be requested from IMG website.

MetAMOS

MetAMOS is a metagenomic assembly and analysis pipeline that
accepts either raw sequence reads as input or already assem-
bled contigs. Installation requires downloading the latest ver-
sion and running a Python script (INSTALL.py) included in
the release, which automatically handles the whole process.
The modules of this pipeline make up a complete analytical
workflow that includes: (i) quality control using two different
tools (FASTX-Toolkit>, Babraham Bioinformatics - FastQC®),
(ii) sequence assembly to contigs with eight different assem-
bly methods exploiting four different assembly tools (Zerbino
and Birney, 2008; Peng et al., 2011; Treangen et al., 2011; Xie
et al,, 2014) and to scaffolds with Bambus 2 (Koren et al,
2011), (iii) assembly assessment using a short read aligner tool
(Langmead and Salzberg, 2012) and a sequence repeats detection

5 http://hannonlab.cshl.edu/fastx_toolkit/index.html [Accessed].
Shttp://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [Accessed].
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tool (Treangen et al., 2009), (iv) ORF/gene detection with three
different available tools (Rho et al., 2010; Zhu et al., 2010; Kelley
et al., 2012), (v) gene annotation with seven different available
tools (Altschul et al., 1990; Bo et al., 2010; Brady and Salzberg,
2011; Finn et al., 2011; Parks et al., 2011; Darling et al., 2014),
and (vi) result visualization using Krona (Ondov et al., 2011).
MetAMOS’s main strength is the large variety of tools that can
be integrated into the workflows, in order to enable a complete
automated analysis of any sort of metagenomic dataset, either it
constitutes raw sequencing reads or assembled contigs and scaf-
folds. However, the access to its rich collection of tools is seriously
hindered by the lack of a user friendly interface as all tasks must
be executed from the linux command line shell, whereas their
parameterization requests invocation of appropriate scripts.

MG-RAST

This pipeline supports both raw sequence reads datasets or
already assembled contigs, as input. Local installation is not avail-
able as it is offered as an online service for which the user must
register in order to upload metagenome datasets and to create
jobs. The modules of the automated pipeline comprise four main
tasks: (i) normalization of the data, (ii) parallel screening of the
sequences against public databases (Maidak et al., 2001; Wuyts
et al., 2002; Leplae et al., 2004; Overbeek et al., 2005; Desantis
etal., 2006; Meyer et al., 2009), with predetermined default search
parameters, for potential protein encoding genes and coding ele-
ments, (iii) computation of the resulting data in order to assign
functional annotations and taxonomic assignments, and (iv)
visualization of results via the integrated SEED Viewer. During
the implementation of the pipeline, all job-relevant resulting data
are incrementally stored in flat file and SQLite (SQLite”) format
for optimal data management based on relational database tech-
nology. The results from the previous steps can be utilized for
comparative metagenomic analysis of the original dataset against
other metagenomes or complete genomes derived from the SEED
environment. What makes this platform attractive to the user is
that similar to IMG/M, it provides a user friendly GUI behind a
web server that makes the handling of the data and its analysis
as intuitive as possible. It also provides numerous tools both for
functional analysis and for comparative genomics and it can han-
dle both assembled and not assembled sequence data. The only
thing missing from the pipeline are the appropriate modules for
raw read quality control and assembly tasks but either than that
it constitutes an easy to use and well established functional and
taxonomic annotation system that fully exploits the potential of
public sequence databases.

RAMMCAP

RAMMCAP (RAMMCAP: Rapid Analysis of Multiple
Metagenomes with a Clustering and Annotation Pipeline)
is a metagenomic platform, which workflows enable a complete
metagenomic analysis, emphasizing in the programmatic opti-
mization so that the computational cost of the various processing
tasks, is minimized. Installation requires downloading the latest
version of the package which includes all the essential programs,

7http://www.sqlite.org/ [Accessed].

scripts, and databases. Each of the required programs of the
pipeline must then be compiled and installed separately in
order to be able to be called upon by the automated pipeline.
This pipeline, works with raw read datasets from one or more
metagenomic samples, whose sequences are clustered together
using CD-HIT (Fu et al., 2012) algorithm. Parallel to cluster-
ing the reads, an ORF detection task is implemented, on the
raw reads, using a local algorithm (ORF._finder) followed by
yet another clustering of the resulting protein sequences. For
the clustered and original amino-acid sequences, two parallel
workflows are run for similarity detection against Pfam, Tigrfam,
(Haft et al., 2001) (HMMER tool) and COG (RPS-BLAST tool)
databases generating the subsequent annotation. The final results
from (i) clustered raw reads, (ii) database results from clustered
protein sequences, and (iii) database results from unclustered
protein sequences are examined for statistical comparison of
the metagenomes and visualization of their differences. The
RAMMCAP pipeline was available as a web service via the
CAMERA framework but since the latter has been discontinued it
is now only available as a standalone tool for local installation. As
is the case with MetAMOS, RAMMCAP’s potential gets thwarted
by the lack of user friendliness toward the inexperienced user.
There is no GUI for the pipeline and its installation and run
require a user somewhat more inclined to (bio)informatics. The
lack of an integrated assembler also renders it highly depen-
dent to the sequencing read length when it comes to the ORF
detection tasks. Besides that it is considered a highly optimized
solution in regards to CPU processing and memory demands for
comparative metagenomic analysis.

SMASHCOMMUNITY

SmashCommunity can be considered as the metagenomic version
of its predecessor SmashCell (Harrington et al., 2010), a software
designed for the analysis of high-throughput single cell-amplified
microbial genomes. Installing SmashCommunity requires the
user to download the latest version of the package and to com-
pile/install it using the usual BASH commands (configure, make,
make install). Before installing the pipeline the user must also
install a list of prerequisite programs and databases that are essen-
tial to the various modules of the workflow. This is facilitated by
running the BASH scripts (e.g., install_dependencies.ubuntu.sh)
included in the release. The required input for this pipeline is
raw read datasets from 454 or Sanger sequencing technologies
(i.e., long read sequence data). The automated workflow includes
integrated tools for: (i) sequence assembly (Myers et al., 2000),
(ii) gene detection (Noguchi et al., 2008), (iii) phylogenetic
annotation of raw reads (Altschul et al., 1990; Wang et al., 2007;
Finn et al., 2011), (iv) functional annotation of detected genes
(Altschul et al., 1990; Powell et al., 2014), and (v)comparative
analysis (Retief, 2000). Each tool of this workflow is inte-
grated in the automated pipeline via a wrapper script written
in Perl® (Stajich et al., 2002) language for facilitating
the input/output (I/O) of data between different tasks.
SmashCommunity can be considered an “all-inclusive” bioinfor-
matic package but as with similar packages its greatest strength is

8http://www.perl.org/ [Accessed].
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also its greatest weakness. The numerous prerequisite tools that
make up the complete analytical pipeline need to be manually
installed beforehand by the user adding to the complexity of the
command-line only package. Plus the assembler’s restrictions are
passed through the rest of the pipeline making its performance
optimum only with long read sequencing data (an issue that will
soon be obsolete as even Illumina machines are increasing their
read length output with each new sequencer release). Despite
that, the most advanced user will find that it is a great solution
for the conduct of complete and fully automated metagenomic
analyses on a local server with dedicated resources.

DISCUSSION

In order to assess the potential of each metagenomic pipeline we
take into account the range of features each pipeline introduces
in order to offer an all-inclusive analysis, as well as the level of
complexity of its installation. The main features of a full metage-
nomic analytical workflow should include: (i) sequencing quality
control (ii) metagenomic assembly, (iii) ORF/gene detection, (iv)
functional annotation, (v) taxonomic analysis, (vi) compara-
tive analysis, and (vii) data management capabilities. From the
pipelines we examined, only MetAmos and SmashCommunity
included analytical tools for raw sequencing data whereas the
rest mainly focused on detecting and annotating putative gene
coding regions, as well as providing taxonomic characterization
for the generated metagenome. Assessing the complexity of an
installation is a fairly subjective matter, yet as “easy” we con-
sider the installation, where the user doesn’t have to perform
arduous compilation and dependencies’ installation tasks, since
those usually require a higher level of informatics expertise. For
example we consider complex for the inexperienced user, that
of RAMMCAP, as it requires a manual installation of each of
the integrated tools of the pipeline contrary of the installation of
MetAmos, which is handled automatically through the execution
of a Python script. The number of features that constitute each of
the above-mentioned pipelines are summarized in Table 1.

CONCLUSIONS

The field of Metagenomics holds the promise for the elucida-
tion of the genomic and taxonomic diversity of environmental
niches. The rapid advances in sequencing technologies and in the

development of algorithms for massive functional annotation of
the analyzed genomic content intensify the capabilities of metage-
nomic analysis, rendering it feasible for an ever-growing number
of projects. Powerful, fully automated bioinformatic pipelines
lower the entry barrier to the field, through the compilation of
numerous workflows, incorporating state-of-the-art algorithms
optimized for specific analytical tasks, adjusted also for integra-
tion of various datasets, by resolving compatibility issues between
them. There are pipelines focusing more on functional and tax-
onomic analysis, omitting the data-crunchy assembly part while
others offer complete solutions where the user simply inputs
the data from the sequencer machine and gets a fully anno-
tated genomic report. As expected from other areas of computer
science, a trade-off between user-friendliness and efficiency or
flexibility of performance is observed here too. The highest the
quality and the performance superiority of the workflows, the
more profound knowledge they request for their impeccable
installation and operation, thus minimizing their accessibility
by different scientific communities, short of these skills. On the
contrary, pipelines dedicated in resolving smaller, more specific
processing tasks, have matured so as to provide very intuitive
GUI-based solutions, often via a web server, accessible through
the Internet. The broad range of integrative analysis platforms
encompasses various pipelines, addressing the pressing need for
disparate, versatile, complex, processing tasks. The adopted strat-
egy for the development of efficient workflows, adjustable to
varying, yet very specific every time, processing needs, posits
on the modularity and transparency of the integrated code, that
is the autonomous character of these modules, together with
their easiness in integration and user-friendliness in their uti-
lization. Moreover, in order to optimize the computational cost
of such processing tasks, parallel processing designs are put for-
ward, aiming to maximally exploit, multi-processor configura-
tions. Among the examined suites of tools (Table 1), we believe,
based in our experience for a wide range of metagenomic anal-
ysis tasks, that SmashCommunity and MetAmos represent very
reliable pipelines, in terms of quality of results, reliability of oper-
ation and versatility of tools, for the most experienced users. For
those who are analyzing already assembled data for the task of
the functional analysis of their metagenome(s), we consider MG-
RAST and IMG/M as two very robust and intuitive pipelines.

Table 1| Display of features of current bioinformatic pipelines for metagenomic data analysis.

W Quality Assembly Gene Functional Taxonomic Comparative Data
Tasks control detection annotation analysis analysis management
CloVR-metagenomics X X \/ \/ \/ \/ \/
Galaxy platform* \/ X X X \/ \/ X
IMG/M x x v v v v v
MetAMOS v v v v v v v
MG-RAST x x v v v v v
RAMMCAP x x v v v v x
SmashCommunity \/ \/ \/ \/ \/ \/ \/

*Refers to the metagenomic pipeline of Galaxy.
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These two aforementioned workflows not only provide tools for
a full analysis of any assembled metagenome, but also efficient
ways for dissemination of the generated results to the scientific
community through a secure database setup.
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