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Models for genetic regulation and cell fate specification characteristically assume that
gene regulatory networks (GRNs) are essentially deterministic and exhibit multiple
stable states specifying alternative, but pre-figured cell fates. Mounting evidence shows,
however, that most eukaryotic precursor RNAs undergo alternative splicing (AS) and that
the majority of transcription factors contain intrinsically disordered protein (IDP) domains
whose functionalities are context dependent as well as subject to post-translational
modification (PTM). Consequently, many transcription factors do not have fixed cis-acting
regulatory targets, and developmental determination by GRNs alone is untenable.
Modeling these phenomena requires a multi-scale approach to explain how GRNs
operationally interact with the intra- and intercellular environments. Evidence shows that
AS, IDP, and PTM complicate gene expression and act synergistically to facilitate and
promote time- and cell-specific protein modifications involved in cell signaling and cell
fate specification and thereby disrupt a strict deterministic GRN-phenotype mapping.
The combined effects of AS, IDP, and PTM give proteomes physiological plasticity,
adaptive responsiveness, and developmental versatility without inefficiently expanding
genome size. They also help us understand how protein functionalities can undergo major
evolutionary changes by buffering mutational consequences.
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“The unpredictable and the predetermined unfold together to make
everything the way it is. It’s how nature creates itself, on every scale,
the snowflake and the snowstorm.”

–Tom Stoppard, Arcadia, Act 1, Scene 4

INTRODUCTION
A fundamental assumption of contemporary developmental biol-
ogy is that gene regulatory networks (GRNs, herein defined as
circuits of interacting transcription factors and their cis-acting
regulatory elements) are primary mechanisms controlling devel-
opment. According to this assumption, at any time, the relative
levels of transcription factors in an extended network determine
the progress of development by regulating downstream genes
(Carroll et al., 2004; Davidson and Erwin, 2006). This conception
of gene control in multicellular organisms, which was formu-
lated in several related versions a half century ago (Britten and
Davidson, 1969; Kauffman, 1969; Britten, 1982; Davidson, 1982),
proposes that GRNs are deterministic dynamical systems exhibit-
ing multiple stable states. The theoretical foundations of this
framework can be traced to studies of the bi-stable gene regula-
tory switch between the lytic and lysogenic states of the lambda

phage in Escherichia coli (see Ptashne, 2004), and have been gen-
eralized and applied to the larger and more elaborate GRNs of
eukaryotes in the form of models ranging from discrete Boolean
networks to continuous systems of ordinary differential equations
(Glass and Kauffman, 1973; Kauffman, 1974; Savageau, 1974;
Glass, 1975; Lauffenburger, 2000; Jaeger and Monk, 2014). A
commonality among these models describing cell differentiation
is the assumption that gene products (i.e., proteins, particularly
transcription factors) have specific identities and connectivity
relationships to one another in the GRNs in which they func-
tion (Hasty and Collins, 2001; Forgacs and Newman, 2005).
According to this view, variation in the outcome of the function of
GRNs (e.g., alternative cell types) arises from nonlinearities and
stochastic effects to which such complex, deterministic systems
are subject.

This paradigm has been extended to other gene expression
mechanisms that have been characterized since the GRN dynam-
ics model was first proposed. Among these mechanisms is the
alternative splicing (AS) of pre-mRNA exons and introns to
assemble different proteins, a process that permits variation in
the functionalities of subsets defining components of GRNs (e.g.,
transcription factors) at the level of RNA processing. Although
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the mixing and matching of basic system components has no
direct counterpart in a truly deterministic GRN model, the factors
controlling AS can be viewed as having well defined function-
alities, since the associated GRN dynamics permit different cell
fates in a combinatorial deterministically prescribed manner.
Likewise, the modulatory effects of microRNAs, riboswitches, and
the enzymes that mediate post-translational modifications (and
that can silence genes) can be viewed as adding a complicating,
yet still deterministic set of regulatory mechanisms.

Here, we propose that this perspective must also contend
with evidence that the majority of eukaryotic transcription fac-
tors contain intrinsically disordered protein (IDP) domains (Liu
et al., 2006; Dunker et al., 2014) that comprise almost two-
thirds of their sequences (Ward et al., 2004; Minezaki et al.,
2006a,b; Singh and Dash, 2007; Xie et al., 2007), and with the
fact that the conformations of these domains, and hence their
functions, are contingent on the intra-and extracellular environ-
ments in which these proteins function (Ducas and Rhoades,
2014; Srinivasan et al., 2014). Consequently, the specificity of the
binding of most regulatory transcription factors to cis-regulatory
elements, as well as their partnering with other factors mediating
conditional responses to cellular physiological status, are context
dependent and subject to change even in the absence of genetic
or epigenetic alterations. Importantly, the functions of IDPs are
modulated further by both alternative splicing (AS) and post-
translational modifications (PTMs), especially phosphorylation
(Iakoucheva et al., 2004; Romero et al., 2006; Singh and Dash,
2007). For example, AS, IDPs, and PTMs are known to act syn-
ergistically in modulating the activities of the tumor repressing
transcription factor p53 (Dunker et al., 2008) and to underlie
the functions of several other proteins crucial for the evolution
of multicellular organisms (Dunker et al., 2014; Niklas et al.,
2014). The combined functional consequences of AS, IDPs, and
PTMs make modeling GRN dynamics as strictly deterministic
systems incomplete at best (Kupiec, 2009; Braunschweig et al.,
2013). If transcription factors do not have fixed cis-acting regu-
latory element targets, but rather can alter their specific identity
and network-topological status within a given GRN depending
on other proteins in the nucleus and external environmental fac-
tors, it follows that GRNs can no longer be viewed as deterministic
systems in a strict physical or mathematical sense. If our concep-
tualization is correct, we predict that the incorporation of AS,
IDP, and PTM (designated, collectively but as operatively inde-
pendent processes, as AS–IDP–PTM) and their well-documented
synergistic interactions into an expanded (and thus more com-
putationally sophisticated) approach will provide deeper insight
into recently recognized genotype-phenotype mapping anoma-
lies, e.g., developmental system drift (True and Haag, 2001) and
the puzzle of missing heritability (Zaitlen and Kraft, 2012).

Toward this goal, we present evidence that AS–IDP–PTM pro-
motes alternative, context-dependent GRN states, and thus serves
a critical role in a broad range of cellular responses, includ-
ing cell fate specification. We also present evidence that these
three components are ancient in eukaryotic GRNs, a speculation
driven by the observation that early divergent unicellular eukary-
otes achieve temporally alternative physiological and reproduc-
tive states and respond adaptively to contingent environmental

conditions by virtue of AS–IDP–PTM. Further, we provide sug-
gestions for how the determinate outcomes of plant and animal
development are realized despite the indeterminacy of isolated
GRNs. Our conclusion is that we face an “incompleteness theo-
rem” when we attempt to reduce development to a single causal
level (Niklas and Kutschera, 2012).

Finally, it is important to emphasize that rather than propos-
ing AS-IDP-PTM as a developmental mechanism in its own right,
we see its collective role as creating an adaptive plasticity that sig-
nificantly diminishes the strict determinism that some attribute
to GRNs. The latter framework is all-too-often treated as a bio-
logical Welterklärung (theory of everything) simply because the
usual experimental frames of reference make it difficult to think
beyond genes and their interactions. We hope to establish that the
synergistic interactions among AS, IDP, and PTM have enabled
living systems to evolve beyond the constraints that are inevitable
in regulatory networks that depend on single-level dynamics.

ALTERNATIVE SPLICING (AS)
Alternative splicing produces protein isoforms from the same
precursor mRNA by retaining or excluding different exons to
achieve differential translation. First observed in the infectious
adenovirus cycle (Berget et al., 1977; Chow et al., 1977) and sub-
sequently in the transcripts of normal, endogenous genes (Leff
and Rosenfeld, 1986), AS occurs in all eukaryotic lineages (Black,
2003) and becomes more prevalent as complexity, estimated by
the number of different cell types, increases (Chen et al., 2014a).
Although a number of scenarios have been advanced for the ori-
gin of AS, including a role in enabling the cell to filter out aberrant
transcripts (Catania and Lynch, 2008), we suggest that the con-
nection between cell type number and AS (given the association
with IDP and PTM) is an inherent one that promoted occupation
of new niches (see below “AS-IDP-PTM Phylogenetic Patterns”).

Five basic types of alternative splicing exist: alternative 3′
acceptor site, alternative 5′ donor splice site, intron retention,
mutually exclusive exon splicing, and exon skipping (Black, 2003).
The last is the most frequent. Regulation and selection of the
splice sites are performed by trans-acting splicing activator and
repressor proteins within an RNA–protein complex, the spliceo-
some, which is canonically composed of five small nuclear RNAs
(i.e., U1, U2, U4–U6) and a range of assorted protein fac-
tors (Figure 1). Splicing is regulated by trans-acting repressor-
activator proteins and their corresponding cis-acting regulatory
silencers and enhancers on the pre-mRNA (Matera and Wang,
2014). The effects of splicing factors are often position-dependent
(Barash et al., 2010). A splicing factor that functions as an activa-
tor when bound to an intronic enhancer element may function as
a repressor when bound to its splicing element in the context of
an exon (Lim et al., 2011).

The secondary structure of the pre-mRNA transcript also
determines which exons and introns will be spliced, e.g., by bring-
ing together splicing elements or by masking a sequence that
would otherwise serve as a binding element for a splicing factor.
Consequently, activators, repressors, and secondary pre-mRNA
structure constitute a splicing “code” that defines the protein iso-
forms produced under different cellular conditions. Additionally,
the elements within this code function interdependently in ways
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FIGURE 1 | Schematic of the structure and operation of a spliceosome

to remove an intron flanked by exons on a pre-mRNA. (A) The splicing
process is guided by a highly conserved 5′ splice site GU sequence, an A
branch site near a pyrimidine-rich region, and a 3′ splice site AG sequence.
The spliceosome protein complex contains RNA and protein components
(i.e., small nuclear ribonucleoprotein or snRNPs, designated U1, U2,
U4–U6) that recognize and bind to the pre-mRNA conserved sequences in
a stepwise process. (B) The process begins with U1, which binds to the
5′ splice site, and U2, which binds to the (A) branch site. (C) U4, U6, and

U5 subsequently bind the pre-mRNA transcript forming the mature
spliceosome complex that configures the intron into loop bringing the 5′
and 3′ splice sites converge. (D) The mature spliceosome splices the 5′
first and the 5′ GU end second, creates a lariat by connecting the 5′ end
to the A branch site. The U1 and U4 snRNPs are released and the 3′
splice site is cleaved. (E) The intron, U3 and the U5–U6 ensemble are
released, and exons are attached. The intron will degrade and the snRNPs
will be reused. (F) Schematic of alternative splicing of a pre-mRNA with
four exons that can yield five different proteins.

that are context dependent, both intracellularly and extracellu-
larly (Talavera et al., 2013). For example, cis-acting regulatory
silencers and enhancers are influenced by the presence and rela-
tive position of other RNA sequence features, and the trans-acting
context is affected by intracellular conditions that are in turn
influenced by external conditions (Chen et al., 1999; Wang et al.,
2004; Matlin et al., 2005) and other RNA sequence features.
Furthermore, some cis-acting elements may reverse the effects on
splicing if specific proteins are expressed in the cell (Boutz et al.,
2007; Spellman et al., 2007). Indeed, the number of factors influ-
encing AS is significantly large. A recent, empirically successful
computer model for predicting the number and type of spliceo-
forms in different human tissues depends on nearly 1400 exonic
and intronic features and identifies more than 20,000 unique
single-nucleotide variants that likely affect splicing (Xiong et al.,
2015).

AS is adaptive and highly conserved. There is strong selec-
tion against mutations that alter splicing (Fairbrother et al., 2004;
Ke et al., 2008). For example, Chang et al. (2014) report a con-
served AS pattern for heat shock transcription factors in the moss
Physcomitrella patens and the flowering plant Arabidopsis thaliana
and show that the AS mechanism for heat regulation among
land plants is an ancestral condition. Using mRNA sequence
data, Pan et al. (2008) report that transcripts from ≈95% of

human multi-exon genes undergo alternative splicing and that
≈100,000 intermediate to high abundance AS events occur in
different tissue systems. Similar results are reported by Johnson
et al. (2003) using microarray analyses of human tissues.

In addition to producing protein isoforms, AS produces a dis-
proportionate number of transcription factors with intrinsically
disordered protein (IDP) domains, which leads to a synergis-
tic expansion of functional and regulatory diversity (Liu et al.,
2006; Vuzman and Levy, 2012). In the case of the Drosophila pro-
tein Ultrabithorax (Ubx), different spliceoforms have different
affinities to common target sequences. Consequently, the iso-
forms are not interchangeable during development (Reed et al.,
2010). More generally, when GRN-related transcription factors
are alternatively spliced the function of the GRN may vary in a
spatiotemporal fashion under the influence of physiological and
physical factors external to the network.

INTRINSICALLY DISORDERED PROTEIN (IDP) DOMAINS
Intrinsically disordered protein (IDP) domains often form small
interaction surfaces characterized by multiple specificity and
modest affinity, an enhanced binding diversity, the ability to
form large interaction surfaces with high affinity, fast asso-
ciation and dissociation rates, polymorphism in the bound
state, and wide range of intracellular lifetimes (Dunker and
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Uversky, 2010; Oldfield and Dunker, 2014). These traits make
IDPs versatile signaling and regulatory molecules. Studies have
identified intrinsically disordered domains as enriched in the
non-constitutive exons, indicating that protein isoforms may dis-
play functional diversity due to the alteration of tissue-specific
modules within these regions (Buljan et al., 2012). IDP domains
can exist as molten globules with defined secondary structure
or as unfolded chains that can function through transitions
among different folded states. Their functional conformations
can change by binding to other proteins and nucleic acids
(Uversky, 2002; Oldfield et al., 2008; Hsu et al., 2013). IDPs
also contribute to the process of alternative splicing: the RS-
repeat domains of the conserved SR family of metazoan splicing
factors are intrinsically disordered (Braunschweig et al., 2013).
Post-translational modifications can also alter IDP functionalities
(Iakoucheva et al., 2004; Dyson and Wright, 2005; Oldfield et al.,
2008).

Numerous examples of IDP domains involved in transcrip-
tional regulation are known (Campbell et al., 2000; Haynes and
Iakoucheva, 2006; Liu et al., 2006; Sun et al., 2013). The C-
terminal activation domain of the bZIP proto-oncoprotein c-Fos,
which effectively suppresses transcription in vitro, is intrinsically
disordered and highly mobile (Campbell et al., 2000). The C-
terminal domain of the transcriptional co-repressor CtBP, which
facilitates gene targeting and coordinated histone modifications
in the multi-protein complex, is intrinsically disordered (Bhalla
et al., 2006; Haynes and Iakoucheva, 2006; Sun et al., 2010).
The unbound N-terminal domains of the DELLA proteins, which
are central to the integration of plant developmental and envi-
ronmental signaling, undergo disorder-order transitions upon
binding to interacting proteins (Sun et al., 2010). The DELLA
proteins are similar in their domain structures to the GRAS
protein family, whose N-domains are intrinsically disordered
(Sun et al., 2011) and are extensively involved in plant signal-
ing by virtue of undergoing disorder-order transformations in
interactions with a variety of molecular partners involved in
development, light signaling, nodulation, and auxin signaling and
transcription regulation to biotic and abiotic stresses.

Metazoans also carry out intercellular signaling via small
molecules, called nuclear hormone receptors (NHRs), that bind
to their cognate proteins. Following ligand binding, NHRs
translocate to the nucleus where they act as transcription factors.
In addition to the structured ligand and DNA binding domains,
these NHRs have flanking and linking IDP domains that bind to
large numbers of partners. These domains may be responsible for
the variable or context dependent responses following hormone
signaling (Simons and Kumar, 2013). Thus, NHRs use disorder
to bind to many partners, and many partners use disorder to
bind to structured docking sites on NHR ligand binding domains
(Mohan et al., 2006; Dunker et al., 2014).

Another important example is provided by the Wnt pathway.
This key signaling pathway, which is utilized in development from
sponges to flies to mammals (Cadigan and Nusse, 1997; Nusse
and Varmus, 2012), employs both IDPs and PTMs in fundamen-
tal ways. Briefly, β-catenin, a dual-function cofactor for adhesion
and transcription, is phosphorylated at four nearby sites in a dis-
ordered tail by the destruction complex. This complex is held

together by the disordered scaffold protein axin, which uses a
long disordered region to flexibly tether β-catenin to two kinases,
GSK3β and CK1α, thus speeding up the phosphorylation reac-
tions by colocalization (Xue et al., 2012b; Dunker et al., 2014).
These multiple phosphorylation events regulate both nuclear
localization and proteasomal digestion of β-catenin. The activ-
ity of adenomatous polyposis coli (APC), a massively disordered
member of the β-catenin destruction complex, is also regulated
by phosphorylation (Minde et al., 2013). Thus, β-catenin accu-
mulates, translocates to the nucleus, and turns on several genes
that activate cell proliferation and polarity.

These examples illustrate that intrinsically disordered tran-
scription factor domains are central to plant and animal devel-
opment and homeostasis. They are by no means exceptional. Liu
et al. (2006) found that 82.6–93.1% of the transcription factors in
three databases contain extended regions of intrinsic disorder, in
contrast to 18.6–54.5% of the proteins in two control datasets.
Focusing on human transcription factors and using a disorder
predictor and Hidden Markov Models to search for regions that
are homologous to structured protein domains, Minezaki et al.
(2006b) report that only 31% of the transcription factor residues
align with known structured domains, which is only half of the
62% structurally aligned residues for E. coli proteins that regulate
transcription.

Since protein-DNA recognition and protein-protein recogni-
tion are central transcription factor functionalities, these and
other studies illustrate the extent to which eukaryotic tran-
scription factors manifest extensive flexibility as a consequence
of disorder-associated signaling and transcriptional regulation
(Dunker et al., 2014). This permits them to bind to a greater
array of partners that in turn can induce conformational changes
in bound protein and DNA substrates (Oldfield et al., 2005). A
well-studied example of this is the isoforms of the Drosophila
Ubx transcription factor described above. Here, two intrinsi-
cally disordered domains modulate the binding affinity of the
structured DNA-binding homeodomain to its target sequence
(Liu et al., 2008) and to other transcription factors (Johnson
et al., 1995; Bondos et al., 2006; Hsiao et al., 2014). The C-
terminal IDP region, which is alternatively spliced, alters the
relative affinity of Ubx for different DNA sequences (Liu et al.,
2009).

POST-TRANSLATIONAL MODIFICATIONS (PTMs)
Post-translational modifications (PTMs) alter the regulatory
interfaces of proteins so as to induce gain, loss, or exchange of
binding partners, thereby affecting function at many levels (Van
Roey et al., 2013). Significantly, the structure of chromatin, the
mechanochemical medium within which eukaryotic transcrip-
tion occurs, is regulated by PTM of histone proteins. Mediator,
a multi-protein complex involved in RNA Pol II-regulated tran-
scription, is both positively and negatively regulated by phos-
phorylation (Gonzalez et al., 2014). Combinatorial PTMs of
the C-terminal domain of RNA Polymerase II regulate multi-
ple stages of transcription initiation and coordinate transcription
with mRNA processing (Yogesha et al., 2014).

However, our focus here is on the effect of PTMs on spe-
cific transcription factors. In transcriptional regulation, each
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transcription factor must participate in many different macro-
molecular recognition/binding events (Bondos and Tan, 2001;
Sun et al., 2013; Abdel-Hafiz and Horwitz, 2014). Transcription
factor binding to DNA often occurs in conjunction with other
specific transcription factors, requiring tissue-specific protein-
protein interactions as well. Transcription factors must interact
with Mediator or other components of the general transcription
apparatus to elicit their function. Many transcription factors that
are active in developmental processes also bind histone acetylases
and de-acetylases. Phosphorylation can regulate each of these
events. For example, DNA binding by the transcription factor
Ets-1 is allosterically coupled to a serine-rich region (Lee et al.,
2008; Mooney et al., 2014). Ca2+ signaling induces phosphory-
lation of this region, which modulates DNA binding by Ets-1.
Phosphorylation of the intrinsically disordered PAGE4 protein
(as part of the stress-response pathway) causes PAGE4 to release
the transcription factor c-Jun, enabling its activity in transcrip-
tion regulation (Mooney et al., 2014). Phosphorylation can also
increase interactions among cofactors. For example, the cytokines
TNF and IL-1 induce phosphorylation of the p65 subunit of NF-
κB, which in turn induces a conformational change that allows
p65 ubiquitination and interaction with transcriptional cofactors
(Milanovic et al., 2014). Association of Elk-1 and ETS domain
transcription factors with Mediator and histone acetyltransferases
is dependent on Elk-1 phosphorylation (Galbraith et al., 2013).

As a final example, we again turn to the Drosophila Hox protein
Ubx (Ronshaugen et al., 2002). This transcription factor is multi-
ply phosphorylated (Gavis and Hogness, 1991), including at sites
within its intrinsically disordered domain, which regulates DNA
binding, protein-protein interaction and transcription activation
(Tan et al., 2002; Bondos et al., 2006; Liu et al., 2008, 2009). Given
that phosphorylation has the potential to regulate as well as coor-
dinate multiple transcription factor functions, it is not surprising
that this mechanism is widely used. Indeed, transcription factors
are disproportionately phosphorylated compared to other classes
of proteins (Kaganovich and Snyder, 2012). Furthermore, the
divergence of the sequence and function of transcription factor
paralogs created by whole genome duplication events correlates
positively with the extent to which the transcription factor is
phosphorylated (Kaganovich and Snyder, 2012).

SYNERGISTIC EFFECTS OF AS-IDP-PTM
Importantly, although AS, IDP, and PTM can operate indepen-
dently of one other, they are more often co-localized to operate
synergistically. The co-localization of AS, IDP, and PTM is appar-
ent in many ways. For example, pre-mRNA segments undergoing
AS are far more likely to code for IDP domains than for struc-
tured domains. These AS-associated IDP domains also frequently
contain binding sites for protein or nucleic acid partners such
that they operate together to “rewire” GRNs (Romero et al., 2006;
Dunker et al., 2014). The AS–IDP collaboration to rewire GRNs
is commonly observed at the tissue-specific level and is well con-
served over evolutionary time (Buljan et al., 2012, 2013; Ellis et al.,
2012; Colak et al., 2013).

IDP domains are also far more likely than structured regions
to undergo PTMs, especially the phosphorylation of serines and
threonines (Iakoucheva et al., 2004; Gao et al., 2010; Gao and

Xu, 2012). These IDP-associated PTMs are often observed to
alter partner choice for IDP-based protein-protein interactions
(Oldfield et al., 2008; Hsu et al., 2013), which can further rewire
GRNs. In addition, different patterns of multiple PTMs in local-
ized protein regions have been shown to signal different down-
stream results, leading to their designation as a histone or PTM
“code” (Strahl and Allis, 2000; Lothrop et al., 2013). Finally, “con-
stellations” of multiple PTMs generally occur in IDP regions,
(Pejaver et al., 2014), some examples of which have been shown
to be further modified by AS (Dunker et al., 2008).

AS–IDP–PTM PHYLOGENETIC PATTERNS
Evidence drawn from phylogenetically different lineages indi-
cates that AS–IDP–PTM is ancient and has undergone significant
amplifications during the prokaryotic-to-eukaryotic transition.
For example, analyses of the Viridiplantae (the green and charo-
phycean algae, and the land plants) show that early divergent
unicellular chlorophytes employ AS extensively and that the fre-
quency of AS in the unicellular green alga Chlamydomonas rein-
hardtii is comparable to that of the flowering plant A. thaliana
(Labadorf et al., 2010). Many of the ancient physiological pro-
cesses in the Viridiplantae rely on IDPs, e.g., the extensively
disordered N-terminal region of the CP12 protein regulates two
critical (and extremely ancient) enzymes in the Calvin cycle
(glyceraldehyde-3-phosphate dehydrogenase and phosphoribu-
lokinase) (Mileo et al., 2013). More generally, in a comprehensive
study using over 39 million expressed sequence tags available for
47 eukaryotic species with fully sequenced genomes, Chen et al.
(2014b) found that the occurrence of AS has increased steadily
over the last 1.4 billion years of eukaryotic evolution. The fre-
quency of AS is not due to covariance with other factors proposed
to account for organismic complexity, e.g., genome size, protein
interactivity, and proteome disorder. These authors conclude that
organismic complexity, as gauged by the number of different cell
types, has increased as a result of AS driven transcript diversifi-
cation that has increased the information content of cells (Chen
et al., 2014b).

Less is known about the extent to which IDP–PTM has
changed over evolutionary history. Quantitative measures of pro-
teome intrinsic disorder are only recently becoming available.
However, a positive relationship between a large number of pro-
teins with intrinsically disordered domains and the extent to
which species are evolutionarily derived has been noted. This rela-
tionship appears to be step-wise rather than continuous, which
likely reflects major evolutionary transitions. Xue et al. (2012a)
examined 3484 viral, bacterial, and eukaryotic proteomes and
found that the largest variance of intrinsically disordered con-
tent occurred among the viruses (i.e., 7.3–77.3%), whereas only
a weak correlation between complexity as gauged by the num-
ber of different cell types and overall ID domain content was
observed within the eukaryotes. These authors also report that
the ID domain content is generally independent of proteome
size for both the prokaryotes and eukaryotes, but that it is sig-
nificantly higher for eukaryotic compared to prokaryotic species
and possibly correlated with the more elaborate signaling sys-
tems eukaryotes use to coordinate their intracellular functions
(Xue et al., 2012a). Schad et al. (2011) report that complexity (as
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gauged by the number of cell types) and proteome size (mea-
sured as the total number of amino acids) correlate positively
across diverse organisms, and that the fraction of ID domains
increases significantly from prokaryotes to eukaryotes, but does
not increase further within the eukaryotes.

However, in contrast to the aforementioned study, which did
not delve into a species-level analysis of the data, Niklas et al.
(2014) have uncovered a statistically robust (r2 = 0.721, P <

0.0001, F = 44.0) log-log linear relationship between the num-
ber of different cell types and the fraction of ID residues in
the proteomes reported for a diverse group of unicellular and
multicellular algae, land plants, invertebrates, and vertebrates
(spanning genera such as Chlamydomonas, Volvox, Arabidopsis,
Hydra, Caenorhabditis, Drosophila, and Homo sapiens). Perhaps
more significant, the slope of this log-log linear relationship
numerically significantly exceeds unity, which indicates that a
small increase in the fraction of proteomic ID residues is corre-
lated with disproportionately large increases in the diversity of
cell types. As in the Schad et al. (2011) study, Niklas et al. (2014)
found that the slope for the log-log linear relationship between
the number of different cell types and genome size (as gauged by
base-pair numbers) is less than unity, which is consistent with the

so-called C paradox. Clearly, as noted by many workers, statisti-
cally robust correlations between any two variables of interest are
not evidence for cause-effect relationships. Nevertheless, strong
correlations can be taken as evidence for consistency between
empirical observations and theoretical expectations.

RESOLVING STOCHASTIC DEVELOPMENTAL EFFECTS
Many developmental processes appear initially disorganized but
subsequently produce an ordered, patterned structure. Live
images of Drosophila embryos provide striking examples of this
phenomenology (Bothma et al., 2014). For example, fluorescent
imaging has been used to monitor the genesis of the second stripe
of eve expression in Drosophila, a critical step in the segmentation
stage of development (Figures 2A–C). Eve is initially activated
in a broad stripe, in which cells expressing eve are mixed with
cells lacking eve expression. This observation reflects an initial
randomness of the initial decision to transcribe (or not) the eve
gene. However, over time, the eve expression domain is refined to
a narrow stripe of homogeneous eve-expressing cells. The initial
dynamic behavior is due in part to short bursts of eve transcrip-
tion characterized by a range of Pol II loading rates, indicative
of non-deterministic behavior. Although deterministic systems

FIGURE 2 | Diagrams of a section of Drosophila embryo expressing

the eve>MS2 reporter at three different times in nc14 centered at

≈37% embryo length (A–C) and PONDR scores for order vs. disorder

in four transcription factors (D). Nuclei that show foci of active
transcription are depicted in green. (A–C) Redrawn from Bothma et al.
(2014, see their Figures 2A–B).
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often exhibit transient behavior en route to achieving their stable
states, the eve patterning mechanism is not conventionally deter-
ministic. Whereas the maternally deposited transcription factor
Bicoid is essential for the correct spatial positioning of eve stripe
2, and the latter’s target CREs in the stripe 2 eve enhancer are
well-characterized (Ludwig et al., 2011), studies have shown that
disrupted, unstable, and highly abnormal Bicoid gradients fail to
disturb the precision of this process (Lucchetta et al., 2008).

We propose that the initial heterogeneity in the eve patterning
system is related to the effects of AS-IDP-PTM on the transcrip-
tion factors regulating this gene, which is activated by Hunchback
and repressed by Giant and Krüppel. According to a recent
computational analysis (Ilsley et al., 2013), Bicoid has a dual
context-dependent activator/inhibitor role in eve 2 expression,
although the mechanism for this is unknown. All four tran-
scription factors contain large intrinsically disordered domains
(Figure 2D). In addition, all four transcription factors are phos-
phorylated and bicoid is alternatively spliced (Ollo and Maniatis,
1987; Capovilla et al., 1992). The variation in transcription lev-
els during these burst phases could be the result of regulation by
different spliceoforms or phosphoforms of these proteins.

These issues have been explored in greater detail for Ubx,
where the nature of intrinsically disordered domains provides a
basis for both this early stochastic behavior, and mechanisms to
resolve such behavior into an ordered response. The alternative
splicing and phosphorylation of Ubx are tissue-specific, creating
different dominant forms of the transcription factor in each tissue
with tissue-specific capacities for protein interactions, DNA bind-
ing, and transcription regulation (Gavis and Hogness, 1991; Liu
et al., 2008; Kim et al., 2010; Reed et al., 2010; Fuxreiter et al.,
2011; de Navas et al., 2011). However, in any given cell minor
forms created by splicing and phosphorylation are also present,
yielding a mixture of Ubx functional states (O’Connor et al.,
1988; Gavis and Hogness, 1991; Lopez and Hogness, 1991). In
our model, the form of the Ubx protein that first binds a newly
available gene target is expected to determine the initial response,
creating an initial variation in transcription levels and stochastic
phenotypes.

As in the case of Bicoid (Ilsley et al., 2013), Ubx has context-
dependent dual activator/inhibitor roles and its “collaboration”
with other transcription factors, which is regulated in a spa-
tiotemporal fashion, can determine the “sign” (positive or neg-
ative) of its regulatory role (Walsh and Carroll, 2007) and thus
profoundly influence GRN logic. Such modulation, canalization,
and refinement of the Ubx response is likely to depend on post-
translational modification or protein interactions mediated by
the intrinsically disordered regions of this protein. Like most
transcription factors in development, Ubx (i) regulates genes
encoding cell signaling proteins (Pearson et al., 2005; Bondos
et al., 2006), (ii) is regulated (phosphorylated) by cell signaling
proteins (Gavis and Hogness, 1991; Taghli-Lamallem et al., 2008),
and (iii) binds cell signaling proteins and cell signaling-regulated
transcription factors (Liu et al., 2008). These mechanisms enable
the community of cells to make a collective decision regarding
gene regulation. Binding by the form of Ubx that is supposed to
regulate a specific target gene enhancer will be supported by the
presence of other factors that cooperatively regulate this gene in

conjunction with Ubx. Downstream cell-signaling events could
further reinforce this decision within a neighboring group of cells.
In contrast, binding by the incorrect form of Ubx may lack the
requisite co-factors and signaling to stabilize the bound complex,
ultimately resulting in dissociation of the protein and provid-
ing a second opportunity for the correct Ubx form to bind. In
this paradigm, AS–IDP–PTM–protein interactions (i) generate
the initial stochastic behavior, (ii) are required to reinforce the
correct cell decisions, and (iii) mediate the rectifying response
(Figure 3).

The described behaviors appear to differ from the transients
exhibited by deterministic dynamical systems (such as GRNs in
the standard model), as they evolve toward their “attractors,”
i.e., stationary points and orbits, or in the case of Turing-type
reaction-diffusion systems (reviewed in Forgacs and Newman,
2005), stationary non-uniform spatial patterns. The temporal
evolution, and the distribution and stability of attractors, are

FIGURE 3 | Model for the role of alternative splicing, intrinsically

disordered protein domains, and post-translational modification (e.g.,

phosphorylation) in cell-specific DNA target site selection by Hox

proteins. (A) The structured DNA binding homeodomain of Hox proteins
binds to a variety of DNA sequences with extremely high affinity (Liu et al.,
2009). Most Hox protein sequences are intrinsically disordered and thus
can adopt a variety of conformations (represented by different polygons),
which rapidly interconvert. (B) Specific spliceoforms and phosphoforms of a
Hox protein are produced in each tissue. The variants can reinforce a subset
of Hox conformations or enable access to new conformations. Specific
conformations may enhance or inhibit affinity for particular DNA sequences
(denoted by different colored rectangles). (C) When a Hox protein binds a
“correct” DNA sequence, additional copies of the same Hox proteins, or
additional other transcription factors (represented by different new
polygons). These proteins bind both the Hox protein and neighboring DNA
binding sites, thus reinforcing Hox-DNA binding. Alternately, the Hox
protein isoform can bind other proteins first, followed by DNA binding by
the protein complex. (D) When a Hox protein binds a DNA sequence that is
not appropriate for this Hox variant, an incorrect transcriptional readout is
transiently produced. Both the lower intrinsic binding affinity for this site
and the lack of reinforcing interactions with other transcription factors
eventually cause the Hox protein to dissociate. The released Hox protein
then has an opportunity to bind to a high affinity site to produce the
appropriate response for this tissue.
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strongly dependent on the network topology of such systems.
In contrast, the rewiring of Bicoid and Ubx regulatory circuits
en route to the biologically functional patterns in which they
function suggests that, rather than determining the end-states
of the respective systems, the GRNs are actually subordinate
to them.

DISORDER FROM ORDER
According to the most mathematically sophisticated determinis-
tic GRN dynamics models (e.g., Foster et al., 2009; Jaeger and
Monk, 2014), each cell type is an attractor. That is, if a cell’s state
at a given time is represented by a point in a multidimensional
“state space” whose axes are the concentration ranges of key tran-
scription factors, the point’s position will change until it settles
stably at one of a finite number of discrete sub-regions within
the space (Figure 4). These sub-regions (i.e., system attractors)
can be stationary points, periodic orbits, or a mixture of these
behaviors, depending on the subset of the components involved
in the system. Deterministic systems of sufficient complexity can
also exhibit the so-called “butterfly effect,” in which an infinites-
imal displacement of the system point can take it along widely
divergent trajectories, as well as chaotic behaviors, characterized
by “strange attractors,” i.e., regions within the state space in which
a point remains bounded but wanders in an unpredictable fashion
(Strogatz, 2001; Kaneko, 2006). Each attractor in a determinis-
tic dynamical system is surrounded by a “basin of attraction”

toward which a system point gravitates. Importantly, the num-
ber of attractors within a deterministic dynamical system is, in
principle, a predictable function of its network topology and rate
constants, and is always much smaller than the number of basic
interacting components. The rationale for applying this mathe-
matical formalism to GRNs and cell differentiation thus arises
from observations like the fact that the human genome specifies
more than 1300 transcription factors (Vaquerizas et al., 2009) but
the human body contains only about 244 cell types (Niklas et al.,
2014).

If a system is less than fully deterministic, the dynamics
become much more complicated. One example is “noisy sys-
tems” in which conventional network topologies and interactions
are in place, but the values of the variables (such as concen-
trations of transcription factors) are perturbed by extrinsic or
intrinsic factors, as a consequence of some key proteins and other
biomolecules being present in small numbers in individual cells
and thus varying in a stochastic fashion (Elowitz et al., 2002;
Bhalla, 2004; Gomez et al., 2014). Indeed, mathematics has shown
that the notion of an “attractor” still applies, but that their proper-
ties and thus behavior are less predictable than in systems without
noise (Jacobs and Schreiber, 2006; Zhao and Li, 2011).

The issue of noise is well recognized to confound the biologi-
cal effects of even those gene regulatory systems that are formally
deterministic. For example, Rosenfeld and coworkers examined
the bacteriophage lambda promoter PR in E. coli and found

FIGURE 4 | Schematics of cell fate specification viewed from the

standard deterministic GRN perspective (A) and the non-deterministic

GRN perspective described in the text (B). (A) In the standard view,
pre-mRNAs undergo alternative splicing (AS), and transcription factors
specified by the variant mRNAs undergo post-translational modifications
(PTMs) to form a cadre of proteins involved in cell-fate specification
networks (GRNs, represented as irregular shapes) via their cis-acting
targets. Discrete cell types result from the deterministic properties of

these GRNs. (B) In the proposed non-deterministic view, transcription
factors are generated by AS and PTM operating in the context of
intrinsically disordered protein (IDP) domains. Cell-fate determination in this
case (represented by interactions among components of variable,
context-dependent identity and specificity), is a consequence of the time-
and spatial-context dependency of each of the levels shown in this
schematic, which depend on internal and external cellular conditions in a
fashion that eludes deterministic description at the level of GRNs.
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that protein production rates fluctuated over the time scale of
one cell cycle, with intrinsic noise levels of the circuit decaying
rapidly within each cycle (Rosenfeld et al., 2005). Nonetheless,
the aggregate effect of fluctuations in other cellular components
undermined accuracy in transcriptional responses for time-scales
longer than a single cell cycle. Thus, although individual cir-
cuits can be demonstrated to behave according to a deterministic
GRN dynamics model over short time intervals (Rosenfeld et al.,
2007), GRN–level determinism breaks down when embedded in
the wider network of real complexity and temporal scale.

It is our contention that the gene regulatory indetermin-
ism produced by AS-IDP-PTM is different in kind from that of
deterministic dynamical systems operating (as described above)
under nonlinear, chaotic, or stochastic regimes. GRNs acted upon
by AS-IDP-PTM are inherently non-deterministic, since network
logic (i.e., connectivity relationships), strengths of interactions,
and even the identities of the transcription factors as regulatory
molecules are constantly subject to change due to internal fluctu-
ations and external influences. As a consequence, the properties
of the transcription factor components of GRNs that have been
thought to make them suitable to be represented as nodes in
discrete networks or variables in systems of ordinary differential
equations are actually subject to change from point to point and
moment to moment during development. Although GRNs have
been modeled as Boolean networks acting “at the border between
order and chaos” (Shmulevich et al., 2005), the presence of AS-
IDP-PTM in actual GRNs raises questions about whether any
strictly deterministic models can adequately capture the behavior
of these systems (Figure 4).

ORDER OUT OF DISORDER
As noted earlier, GRNs are frequently not deterministic due to
the independent and interdependent actions of AS–IDP–PTM.
Nevertheless, this is in no way equivalent to the counterfactual
assertion that embryonic development is itself non-deterministic.
Rather, it is our hypothesis that deterministic GRN dynamics
are not a sufficient causal basis for developmental regularities.
Although a GRN might provide a rough template for a cellular
function (particularly if the GRN was established concurrently
with the evolutionary origination of that function), remodeling
of the GRN by AS–IDP–PTM will have rendered cell phenotype
identity increasingly dependent on internal (i.e., cell physiologi-
cal) and external (e.g., microenvironmental and extraorganismal)
conditionalities beyond the GRN itself. This assertion is consis-
tent with, if not confirmed by, somatic stem cell production and
subsequent differentiation as well as examples of dedifferentiation
(e.g., Sprecher and Desplan, 2008).

The conservation of a useful cell function or morpholog-
ical phenotype over the course of evolution accompanied by
an unmooring from its originating GRN appears to be a com-
mon scenario in the history of multicellular plants and animals,
reflected in what has been termed “developmental system drift”
(True and Haag, 2001; Haag, 2014). The inability to consistently
pin heritable variation in diseases and other traits to particular
genes (Zaitlen and Kraft, 2012), may also plausibly be a man-
ifestation of the operation of AS-IDP-PTM over evolutionary
time.

AS-IDP-PTM may also provide flexibility and adaptability
even within a single tissue type. For example, in a study of
lineage commitment among the eight progenitor populations of
the major myeloid and lymphoid elements of human blood, Chen
et al. (2014b) identified cell type-specific expression changes dur-
ing early differentiation stages encompassing 6711 genes and
10,724 transcripts. They also detected 7881 novel splice junc-
tions and 2301 differentially used AS events, enriched in genes
involved in regulatory processes. Although only AS was consid-
ered, the authors concluded that “a previously undetected layer of
regulation affecting cell fating... involves transcriptional isoforms
switching without noticeable changes at the gene level” (Chen
et al., 2014b).

Finally, AS–IDP–PTM and its synergies provide a context
for understanding how the functionalities of ancient proteins
and regulatory networks can be stably modified over the course
of evolution to adapt to changing external conditions. Target
sequence recognition and selectivity by a transcription factor
are subtle properties of the latter’s structure (De Masi et al.,
2011). It is well documented, for example, that novel relation-
ships between protein structure and PTM educed by mutation
can lead to altered protein-protein interactions resulting in dra-
matic changes in transcription factor function (Brayer et al., 2011;
Lynch et al., 2011). However, synergy with AS and IDP pro-
vides an even greater multiplicity of functional states that can be
explored ecologically and physiologically ahead of any mutational
change.

Furthermore, nascent potentially adaptive mutations can be
retained within (and subsequently integrated into) GRNs by
virtue of AS–IDP–PTM modifications that can buffer GRNs
from the immediate consequences of such mutations. In this
scenario, a mutated GRN could survive by virtue of AS–IDP–
PTM adaptive modifications that would permit the GRN time
to adaptively reorganize. In this way, evolutionary changes would
involve an interactive “genome ⇔AS–IDP–PTM” feedback loop.
Consider the transcription factor AkUbx, a homolog of Ubx in
the velvet worm Acanthokara kaputensis, an invertebrate with a
simple body plan. AkUbx has very little intrinsic disorder and
is not alternatively spliced (Grenier and Carroll, 2000; Galant
and Carroll, 2002). Ubx, in contrast, which participates in the
development of the later-evolving, more complex body plans
of Drosophila melanogaster has considerable disorder content as
well as undergoing AS and PTM (Gavis and Hogness, 1991;
Liu et al., 2008; Reed et al., 2010). The synergistic effects of
AS-IDP-PTM ensured that once it had arisen in the earliest mul-
ticellular GRNs it would have promoted its own elaboration, as
well as generation of new developmental contexts that would
eventually be reflected in greater anatomical and physiological
complexity.

CONCLUSIONS
The association of alternative splicing (AS) with intrinsically
disordered protein (IDP) domains and post-transcriptional mod-
ifications (PTMs) is a core functional complex that mediates
the modifications of protein functionalities required for con-
text dependent cell signaling, regulation, and differentiation. The
combined effects of AS-IDP-PTM also likely buffer genomes
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from mutations (some of which can subsequently become adap-
tive to new conditions) and contributes to the evolvability of
GRNs (see for example, Masel and Trotter, 2010; Steiner, 2012;
Albergante et al., 2014). AS–IDP–PTM is ancient and likely pro-
moted variability and thus adaptive evolution to support more
complex intracellular signaling processes coordinating the activ-
ities of functionally interdependent discretized organelles, cells,
tissues, and organs.

Unlike promoter activity, which primarily regulates the
amount of transcripts, AS changes the structure of transcripts and
their encoded proteins. The ability of IDP domains to assume
different conformations expands the functional repertoire of
proteins assembled by AS from a pre-mRNA to diversify the
phenotypic domain that a single genome can provide. This reper-
toire is yet again increased by PTMs, which generate additional
functionalities. Thus, AS–IDP–PTM can yield virtually limitless
combinatorial possibilities, which can be adaptively sifted over the
course of evolution.

Consequently, GRNs are inherently plastic and therefore adap-
tive. Moreover, they function in a noisy cellular milieu owing to
the operation of AS–IDP–PTM in a multitude of other biochem-
ical pathways as well as the effects of mutations and variations in
gene and protein copy number (Richard and Yvert, 2014). (Note
that this noisiness is over and above the described intrinsic inde-
terminacy.) The evolution of cell differentiation may indeed have
depended on such stochastic effects (Kupiec, 2009). However,
heterogeneity at both the molecular and cell phenotypic levels
must be suppressed for reliable development to occur. This is
accomplished by a variety of “scaffolding” effects (Caporael et al.,
2014) at multiple scales, including consistency of external cues
from neighboring cells and the physical environment (Braendle
and Félix, 2008), and the stabilizing effects of natural selection
(Richard and Yvert, 2014).

The multiscale nature of developmental processes is increas-
ingly acknowledged (see, for example, Schnell et al., 2008). In
particular, tissue morphogenesis and cellular pattern formation
involves the mobilization, by key gene products of the devel-
opmental “toolkit,” of mechanical, electrical and other physical
phenomena external to the genome (Forgacs and Newman, 2005;
Newman and Bhat, 2009; Hernández- Hernández et al., 2012).
It is therefore unsurprising that the determination of cell type
identity does not reside at the single scale occupied by GRNs,
but rather draws on factors at several causal levels, as described
above, among the most important of which are the mechani-
cal aspects of chromatin reorganization associated with changes
in gene expression (Amendola and van Steensel, 2014; Lavelle,
2014).

We do not suggest that deterministic mathematical and com-
putational modeling of GRNs has nothing to contribute to under-
standing cell fate determination. However, this perspective must
acknowledge and integrate the ubiquitous effects of AS–IDP–
PTM. Just as genes per se have long been rejected as the exclusive
or privileged level of determination of phenotype and evolu-
tionary change, new understanding of the complexities of gene
expression and the conditional identities of its protein products
call into question a deterministic GRN-based reductionism in
developmental and evolutionary biology.
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