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Based on molecular features, breast cancers are grouped into intrinsic subtypes that
have different prognoses and therapeutic response profiles. With increasing age, breast
cancer incidence increases, with hormone receptor-positive and other luminal-like
subtype tumors comprising a majority of cases. It is not known at what stage of tumor
progression subtype specification occurs, nor how the process of aging affects the
intrinsic subtype. We examined subtype markers in immortalized human mammary
epithelial cell lines established following exposure of primary cultured cell strains to
a two-step immortalization protocol that targets the two main barriers to immortality:
stasis (stress-associated senescence) and replicative senescence. Cell lines derived from
epithelial cells obtained from non-tumorous pre- and post-menopausal breast surgery
tissues were compared. Additionally, comparisons were made between lines generated
using two different genetic interventions to bypass stasis: transduction of either an shRNA
that down-regulated p16NK4A | or overexpressed constitutive active cyclin D1/CDK2. In
all cases, the replicative senescence barrier was bypassed by transduction of c-Myc.
Cells from all resulting immortal lines exhibited normal karyotypes. Immunofluorescence,
flow cytometry, and gene expression analyses of lineage-specific markers were used to
categorize the intrinsic subtypes of the immortalized lines. Bypassing stasis with p16
shRNA in young strains generated cell lines that were invariably basal-like, but the lines
examined from older strains exhibited some luminal features such as keratin 19 and
estrogen receptor expression. Overexpression of cyclin D1/CDK2 resulted in keratin 19
positive, luminal-like cell lines from both young and old strains, and the lines examined
from older strains exhibited estrogen receptor expression. Thus age and the method of
bypassing stasis independently influence the subtype of immortalized human mammary
epithelial cells.
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Determinants of breast cancer subtypes

Introduction

Different patterns of gene and protein expression in breast
tumors have led to the delineation of at least four intrinsic sub-
types of breast cancers: HER2-related, luminal A, luminal B, and
basal-like (Perou et al., 2000). To some extent, the subtype des-
ignations depend on their relative molecular similarity to normal
luminal and basal lineages of the mammary epithelium. The inci-
dence of breast cancer not only increases with age, but tumors
with luminal intrinsic subtypes are strikingly over-represented
among post-menopausal patients (Jenkins et al., 2014). Luminal
subtype tumors, compared to basal-types, have the lowest muta-
tion rates and yet they exhibit the greatest diversity of somatic
mutations (Cancer Genome Atlas Network, 2012), suggesting
that early events in cancer progression are key to establishing
that subtype. Here we interrogate the impacts of chronologi-
cal age and the earliest molecular events in malignant progres-
sion, the means of bypassing stasis, on the intrinsic subtype of
immortalized human mammary epithelial cells (HMEC).

In order for normal HMEC to give rise to malignancies they
must bypass a number of rate-limiting tumor-suppressive senes-
cence barriers: stress-associated stasis, replicative senescence, and
oncogene-induced senescence (Stampfer et al., 2013). Because
stasis is enforced by active retinoblastoma (RB), silencing or
mutation of pl6, over-expression of cyclin D1, or other errors
in the RB pathway, can bypass this barrier. Overexpression
of cyclin D1 is frequently observed in luminal subtype breast
tumors, whereas p16 is down-modulated by a number of epige-
netic and genetic mechanisms and the subtype association is less
pronounced (Cancer Genome Atlas Network, 2012).

The process of aging is associated with distinctive changes
in the patterns of gene expression in human tissues (Rod-
well et al., 2004; Zahn et al., 2006; Garbe et al., 2012), but
there is little understanding of how these changes relate to
breast cancer susceptibility or to cancer intrinsic subtypes. We
have previously shown that functional, molecular, and bio-
chemical hallmarks of mammary epithelial lineages, and of
chronological age in vivo, are preserved in early passage cul-
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tures of primary normal finite lifespan pre-stasis HMEC (Garbe
et al.,, 2012). Therefore age-related transcriptome changes are
metastable through unknown mechanisms and functional con-
sequences of aging at the cellular level can be studied using the
proper culture systems. Normal pre-stasis HMEC can be effi-
ciently immortalized in a two-step process of targeted genetic
modifications that first bypasses the stasis barrier and then trans-
activates telomerase (Garbe et al., 2014). The resultant non-
clonal immortalized lines have normal karyotypes and lack the

confounding gross genomic changes commonly seen in tumors,
tumor-derived cell lines, and clonally derived in vitro immor-
talized lines. Here we used this method of immortalization of
normal HMEC from four individuals who represent a range
of chronological age as a platform to assess the outcome of
breast cancer-relevant changes in age-relevant backgrounds. We
found that chronological age and the method of bypassing stasis
independently influences the intrinsic subtype in immortalized
HMEC.
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Materials and Methods

Cell Culture

Finite lifespan HMEC from specimens 184 batch D, 240L batch
B, 122L, and 805P were obtained from reduction mammoplasty
tissue or normal tissue peripheral to a tumor (805P) from women
aged 21, 19, 66, and 91 years, respectively, and were cultured
as pre-stasis strains (Labarge et al., 2013). Pre-stasis, post-stasis,
and immortalized HMEC were grown in M87A medium supple-
mented with cholera toxin (CT) at 0.5 ng/ml, and oxytocin (X) at
0.1 nM (Garbe et al., 2009). Post-selection post-stasis HMEC 184

batch B were grown in serum-free MCDB 170 medium (MEGM
basal (without the bullet kit), Lonza, Walkersville, MD) plus
supplements. Total population doublings (PD) were calculated
as described (Garbe et al., 2009). 3-D cultures were conducted
as embedded Matrigel cultures for 14 days in M87A+CT+X.
Karyology was performed by Roswell Park Cancer Institute
SKY/FISH Facility (Buffalo, NY).

Retroviral Transduction
The p16 shRNA vector (MSCV) was obtained from Greg Han-
non. The pBabe-hygro-myc was used to transduce cells with

Cell Line
Passage #

184Dp16sMY
21p

240Lp16sMY
22p

240LD1MY
21p

122Lp16sMY
17p

122LD1MY
15p

805Pp16sMY
23p

FIGURE 3 | Lineage-specific keratin protein expression in
non-malignant immortal HMEC on 2-D culture substrata.
Representative immunofluorescence images showing keratin (K)14 (red) and

K19 (green) expression in (A) 184Dp16sMY, (B) 240Lp16sMY, (C)
240LD1MY, (D) 122Lp16sMY, (E) 122LD1MY, and (F) 805Pp16sMY. Nuclei
appear blue, bar represents 50 um.
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c-Myc. The WPI-Cyclin D1/CDK2-GFP retrovirus was obtained
from Mark Jackson. Retroviral containing supernatants were col-
lected in M87A medium and transductions were performed as
described (Garbe et al., 2014).

Immunofluorescence

HMEC were fixed in methanol:acetone (1:1) at —20°C for 15 min,
blocked with PBS, 5% normal goat serum, 0.1% Triton X-100, and
incubated with K14 (Covance #PRB-155P-100, polyclonal rab-
bit, 1:1000) and K19 (Developmental Studies Hybridoma Bank,
clone Troma-III, 1:20) overnight at 4°C, then visualized with flu-
orescent secondary antibodies (Invitrogen), and incubated for
2h at room temperature. For 3-D cultures, HMEC were fixed in
4% paraformaldehyde for 30 min, blocked with PBS, 5% normal
goat serum, 0.1% Triton X-100, and incubated with B-Catenin
(BD Transduction Laboratories #610154, clone 14/Beta-Catenin,
Mouse IgGl, 1:200) and Estrogen Receptor-a (Abcam #ab16660,
clone SP1, rabbit monoclonal, 1:100) overnight at 4°C, then with
secondaries for 2 h at room temp.

Flow Cytometry

CD227-FITC (BD Bioscience #559774, clone HMPYV, 1:50),
CD10-PE (BioLegend #312204, clone HI10a, 1:100), CD10-APC
(BioLegend #312210, clone HI10a, 1:100), CD227-PE (BioLegend
#355604, clone 16A, 1:100) were added to cells in media for
25min on ice, washed in PBS and analyzed with a FACSCalibur
(Becton Dickinson).

Western Blot

The following antibodies were used: p16™NK* (BD Pharmigen
#551154 Mouse 1:1000), Cyclin D1 (Santa Cruz Biotech #SC-
246, clone HD11, mouse 1:200), beta-actin (Abcam #ab49900,
Mouse 1:500), and visualized with goat anti mouse IgG Fc (HRP)
conjugate (Abcam #ab97265, 1:5000).

Microarray Analysis

Subconfluent cultures were harvested for RNA 24h following
feeding. Total RNA was harvested using TRIzol and purified
using the miRNeasy Kit (Qiagen). RNA labeling and hybridiza-
tion to Affymetrix Human Gene 1.0 ST Arrays, was performed
according to the manufacturer’s protocols. Microarray data were
analyzed in R programming environment using the limma
package.

Results

Generation of Immortal HMEC Lines with p16sh
RNA or Cyclin D1/CDK2, and c-Myc

To determine whether chronological age and early events in
cancer progression are determinants of the intrinsic subtype of
immortal HMEC, a two step procedure that does not cause gross
genomic changes (Garbe et al., 2014) was used to immortalize
primary pre-stasis HMEC from four women aged 19, 21, 66, and
91 years. Figure 1A illustrates the steps taken to bypass the sta-
sis and immortalization barriers. Pre-stasis HMEC strains 184D,
240L, 122L, and 805P at 3rd passage (3p) were transduced with
retroviruses that expressed either p16 shRNA (p16sh) or cyclin

D1/CDK?2 (D1), or with a control empty vector. These gave rise
to the post-stasis cultures 184D-p16sh, 240L-p16sh, 240L-D1,
122L-p16sh, 122L-D1, and 805P-p16sh. Post-stasis strains were
transduced at 4p either with an empty vector control, or a c-Myc
expressing retrovirus in order to transactivate telomerase, giving
rise to the non-clonal immortal lines 184Dp16sMY, 240Lp16sMY,
240LD1MY, 122Lpl16sMY, 122LD1IMY, and 805Ppl16sMY. The
pre-stasis cultures eventually ceased proliferation due to pl6-
mediated stasis, and post-stasis cultures ceased net proliferation
due to telomere attrition-mediated telomere dysfunction. The
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FIGURE 4 | Expression of cell surface based lineage markers.
Expression of CD227 and CD10 in (A) 4p normal pre-stasis finite strain 240L
showing two clear populations CD10—/CD227+ luminal and CD10+-/CD227—
myoepithelial cells. (B) All four immortal non-malignant HMEC cell lines that
used p16shRNA to bypass stasis. (C) Both cell lines that used cyclinD1/CDK2
to bypass stasis. Quadrant lines are indicated for frame of reference.
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immortal cell lines have continued to grow for over 25 passages
(Figures 1B-E).

Western blots were used to confirm knockdown of the p16
protein in the pl6sh silenced cell lines, with 184B post-stasis
post-selection cells, which are known to have silenced p16, as a
control (Figure 2A). As expected, p16 protein levels increased
as a function of passage in the control pre-stasis strains (Garbe

et al, 2009), while levels were greatly reduced in the cul-
tures transduced with pl6sh. Cyclin D1 was abundant in the
DIMY immortal cell lines, but was not over-represented in any
of the other cell lines (Figure2A). There also was abundant
expression of pl6 protein in the DIMY lines. We previously
reported that karyotypes for early passage 184Dpl6sMY and
240Lp16sMY were normal (Garbe et al., 2014), and karyotype
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FIGURE 5 | Estrogen receptor and beta-catenin expression in 3-D. Representative immunofluorescence images ERa (red) and B-catenin (green) expression in
(A) 240p16sMY and D1MY, and (B) 122Lp16sMY and D1MY. Nuclei appear blue, bar represents 50 um.
A Post-stasis HMEC C Post-stasis HMEC p16sh D Post-stasis HMEC cyclin D1
[o] _ [o]
(S o 8 =
— é ) )
o ) = more in >
P 1 more in 2 _g_ . younger S o - .
3 _ p16sh 2 \ : A
> >
— 1 S o + ] - -l B S
o o SEEEE T ' v A B
£ more in —_
o — more in E_ T I_:_I older E_ ] \ ) more in
X lin D1 5 I ' '
> cyclin s s younger
c ’ c 1 8 _:_ c [ ] | ]
o N ! o (I B gy [ IS—
SR | g ° [] g ,
fl . —s— I~ g I~ ! —_ more in
b g < g older
2 Sy ° o e g
T - 8 i o
Ll 1 T T T T
basal luminal basal luminal basal luminal
B Immortal HMEC E Immortal HMEC p16sh F Immortal HMEC cyclin D1
o] [o]
- 8 "1 8 °1 @
) -0 6 > 8 > ° °
T QA ! © N A a o
8 X more in £ \ R X
O | e ol L N et A e 571 7
c ' 1
Al S —— 1 A N e B ———1 R P T [Jrorei
3 ! | more in 3 ) 0 ore in % | younger
c — : c 1 1 c [ ]
g o cyclin D1 g T older § o ==F==- ]
2 o £ a £ X 1 more in
[SVRR VI A |
Ay 2 8 8 2 oy ! older
ie] = o L _6_
o |
5 0 ' o 8
Ll 1 T T T T
basal luminal basal luminal basal luminal
FIGURE 6 | Lineage-specific gene expression. Boxplots showing enrichment of relative expression of luminal and basal specific
enrichment of relative expression of 302 basal specific and 337 transcripts in young vs. old donors in p16sh (C) and D1 cells
luminal specific transcripts in p16sh vs. D1 post-stasis HMEC (A), (D) in post-stasis HMEC and in p16sh (E) and D1 (F) cells in
and in p16sMY vs. D1MY immortal HMEC (B). Boxplots showing immortal HMEC.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6

March 2015 | Volume 3 | Article 13


http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive

Leeetal.

Determinants of breast cancer subtypes

analysis of metaphase chromosomes in early passage 240LD1MY,
122LD1MY, 122Lpl16sMY, and 805Ppl16sMY also were normal
diploid (Figures 2B,C).

Biochemical Phenotypes of the Immortal Cell
Lines Show Intrinsic Lineage Biases

The immortalized lines were evaluated for expression of lumi-
nal and myoepithelial/basal lineage-specific proteins and gene
transcripts to determine whether their intrinsic subtypes were
more luminal- or basal-like. Keratin (K)14 and CALLA/CDI10
are proteins expressed primarily in myoepithelia, and K19 and
Sialomucin-1/CD227 in luminal epithelia (Villadsen et al., 2007).
The two lines derived from the younger women (specimens
184 and 240L) following transduction of plésh and c-Myc
expressed only K14 when grown on 2-D tissue culture plastic
(Figures 3A,B). The two lines derived from the older women
(specimens 122L and 805P) exhibited mixtures of cells express-
ing K14, K19, and K14/K19 when exposed to the same p16sh and
c-Myc protocol (Figures 3D,F). Both lines derived using cyclin
D1/CDK2 to bypass stasis, 240LDIMY from a young woman
and 122LD1MY from an older woman, exhibited significant K19
expression, both in cells expressing only K19 as well as express-
ing K14 and K19 (Figures 3C,E). Flow cytometry (FACS) analysis
of CD10 and CD227 expression in normal pre-stasis 240L at 4p
shows characteristically distinct CD227+/CD10— luminal and
CD227—/CD10+ myoepithelial populations (Figure 4A). All of
the p16sMY cell lines had only minor CD2274-/CD10— luminal-
like populations and generally low CD10 expression, with the
exception of 122Lp16sMY that had more CD10 expression rel-
ative to the other cell lines (Figure 4B). In contrast, most of the
cells of the two DIMY lines were CD227+/CD10+ (Figure 4C).

To further assess the differential effects of age and of method
of stasis bypass, expression of the estrogen receptor alpha (ERa)
protein was evaluated in the p16sMY and D1IMY cell lines derived
from the young strain 240L and the older strain 122L. ERa is
expressed by a subset of luminal cells in the normal mammary
gland, and is used to categorize the luminal subtypes of breast
cancers. The pl6sMY and DIMY lines derived from 240L and
1221 were cultured for 14 days embedded in 3-D Matrigel. ERa
was not detected in either the pl6sMY or DIMY line derived
from 240L (Figure 5A), but it was richly expressed in both 122L-
derived lines independent of the method used to bypass stasis
(Figure 5B).

Altogether these data indicate that these non-clonal lines
are heterogeneous, containing a mixture of lineages. However,
both IF and FACS-based immune-phenotypes show an age-
dependent increased expression of luminal markers in the lines
that bypassed stasis with pl6sh. Lines that bypassed stasis with
cyclin D1/CDK?2 overexpression generated a more luminal phe-
notype independent of age.

Lineage-Specific Gene Expression Analysis of
Post-Stasis and Immortalized Cell Lines

Two sets of genes, specifically expressed in luminal or
myoepithelial/basal cells, were identified based on microarray
data from FACS enriched CD10+4/CD227— myoepithelial and
CD10—/CD227+ luminal epithelial 240L and 122L passage 4

pre-stasis cells using a cutoff of 2 fold gene expression enrich-
ment in respective cell lineage relative to the other. The expres-
sion of these two lineage-specific sets of genes was then ana-
lyzed in the immortal p16sMY and DIMY cell lines, as well
as in the post-stasis direct precursors to the immortal lines,
which had been transduced with either p16 shRNA or cyclin
D1 only.

Comparison of gene expression in pl6sh vs. D1 post-stasis
cells showed that basal genes were expressed more in plésh
cells, whereas luminal genes were expressed more in D1 cells
(Figure 6A). The trend was maintained in p16sMY vs. DIMY
immortal cell lines (Figure 6B), suggesting that the means of
bypassing stasis is a key step in establishing luminal-like or basal-
like gene expression patterns. Post-stasis cells had a larger dif-
ference in luminal specific genes, while immortal cells differed
more in basal specific genes (Figures 6A,B). The effect of age
on the expression of these lineage related genes was also evi-
dent, although less pronounced. Comparing the ratios of the
genes expressed in young vs. old post-stasis (Figures 6C,D) and
immortal (Figures 6E,F) cultures showed overall preferential
expression of basal compared to luminal markers in samples from
younger vs. older donors. The basal genes were overexpressed
in younger donors in D1 post-stasis and in immortal samples
(Figures 6D-F). Similar to the means of bypassing the stasis,
the differences for basal genes between ages were larger in the
immortal cells (Figures 6E,F). The luminal specific genes were
under-expressed in younger donors in p16sh cells (Figure 6C). In
immortal cells (Figures 6E,F) there was no obvious bias towards
older donors for luminal genes. Interestingly, in D1 post-stasis
samples the ratio of luminal specific genes between ages was
reversed (Figure 6C), suggesting a dominant effect of the means
bypassing the stasis over the age of donor in case of D1, and
stronger response in the younger donors with higher plasticity.
Opverall, overexpression of cyclin D1 to bypass stasis is associated
with a luminal-like gene expression pattern, and knock down of
p16 is associated with a basal-like gene expression pattern. The
effect of age is also obvious, although it seems to be dominated by
the means of bypassing the stasis. Both, the effect of bypassing the
stasis and the age of donor, are concordant with the biochemical
analyses in previous figures.

Discussion

Breast cancers have been categorized by lineage markers into
intrinsic subtypes that differ in prognosis and response to treat-
ment. The mechanisms responsible for determining subtype have
not been clearly defined; cell of origin, specific oncogenic insults,
and cellular microenvironment have been proposed to influ-
ence lineage expression in cancer cells (Sims et al., 2007; Prat
and Perou, 2011). However, lineage specificity in immortal and
malignantly transformed cells is neither exact nor obvious by
comparison to the normal lineages in vivo—they are carica-
tures of normal at the best. Indeed, every cell line had some
level of heterogeneity, with varying distributions of cells repre-
senting the luminal and myoepithelial lineages. Here we have
shown that expression of lineage-related markers in immortal-
ized HMEC is influenced by both chronological age and the

Frontiers in Cell and Developmental Biology | www.frontiersin.org

March 2015 | Volume 3 | Article 13


http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive

Leeetal.

Determinants of breast cancer subtypes

method by which the normal HMEC escape an initial tumor-
suppressive senescence barrier, stress-associated stasis. A com-
parison of HMEC from young (<30 years) vs. older (>60 years)
women showed that increased age biased toward generation of
immortalized lines with greater expression of luminal pheno-
types. A comparison of immortalized lines generated by using
either pl6sh or cyclin D1/CDK2 to bypass stasis showed a bias
toward a luminal phenotype when cyclin D1/CDK2 was utilized,
independent of age. Advanced age combined with cyclin D1-
mediated bypass of stasis generated a line that was qualitatively
the most luminal, exhibiting expression of K19, CD227, ERa,
and other luminal transcripts. While a younger strain transduced
with cyclin D1 also gave rise to a K19 and CD227-expressing
luminal line, it did not produce ERa. In contrast, the younger
lines that bypassed stasis with p16sh were qualitatively very basal-
like (K19—/K14+, CD227— and basal transcripts). These results
are based on our currently small number of cell lines, due in part
to the length of time required to generate and examine each line.
As more immortal cell lines are generated using this methodol-
ogy the relative importance of age and stasis bypass in the eti-
ology of intrinsic subtypes will become more obvious. Using a
phase diagram we have expressed our hypothesis that the rela-
tive luminal vs. basal phenotype of immortalized HMEC is influ-
enced by both chronological age and the method of stasis bypass
(Figure 7).

A strength of our approach is that the outcome of the immor-
talization process can be evaluated in the absence of confound-
ing gene mutations and gross genomic re-arrangements (Garbe
et al., 2014). Thus it is reasonable to assume a given targeted
genetic change played a role in the final phenotypes of the cell
lines that were generated. By comparison, the diverse collection

CyclinD1overexp

Route of Stasis Bypass

p16 down regulation

Pre-menopause

Post-menopause

AGE

FIGURE 7 | Phase diagram summarizing our hypothesis of the impacts
of chronological age and the means of bypassing stasis on the
intrinsic subtype of immortal HMEC. The color red indicated basal-like
subtypes, and green represents luminal-like subtypes.

of tumor-derived breast cancer cell lines available bear a large
number of genetic and epigenetic changes, making it difficult to
causally link specific changes to an intrinsic subtype, or indeed to
the process of becoming immortal (Neve et al., 2006). Here we
were able to control two variables, age and the method of bypass-
ing stasis barrier, while holding other variables constant, such
the use of c-Myc to transactivate telomerase to bypass replicative
senescence. Our results thus implicate the earliest events in can-
cer progression—chronological age of the cell of origin and the
molecular pathway used to bypass stasis—as key determinants of
breast cancer subtype.

These targeted genetic approaches to bypass the stasis barrier
and replicative senescence convert a large percentage of the
initial pre-stasis HMEC population into immortal cells, gener-
ating non-clonal immortalized lines. Stasis in normal HMEC
has been bypassed by a variety of oncogenic exposures such as
the chemical carcinogen benzo(a)pyrene (Stampfer and Bart-
ley, 1985), inactivation of p53 (Garbe et al., 2007), and trans-
duced c-Myc (Garbe et al., 2014). However in all these situ-
ations, unlike the genetic targeting employed here, the errors
occured in single cells, yielding clonal post-stasis cultures. Sta-
sis has also been overcome when HMEC are grown in high stress
defined media, such as the commonly used, commercially sold,
MCDB 170-type, MEGM and M171 media (Hammond et al.,
1984; Brenner et al.,, 1998). The resultant post-selection post-
stasis HMEC, such as 184B PSPS and many of the “normal
HMEC” sold commercially, have an abnormal phenotype and
may represent the precursor to metaplastic breast cancers (Keller
et al., 2012; Sauder et al., 2014). Post-selection strains are not
suited to the type of analysis presented here as in addition to
containing many alterations in gene expression and epigenetic
marks compared to normal HMEC, or cultures made post-stasis
by direct targeting, they are not immortalized by transduced
c-Myc (Li et al,, 2007; Garbe et al.,, 2009, 2014; Novak et al.,
2009).

Other factors that still need to be considered in our concep-
tual framework of intrinsic subtypes are the potential impacts
of the initial lineage of the transformed cells, transduction bias,
and the persistence of the phenotypes in immortal non-malignant
cells as they progress to malignancy. In one hallmark study of
mammary tumor-type etiology, primary epithelia from breast
reductions were dissociated then transduced with lentiviral vec-
tors that expressed either (i) mutant p53, cyclin D1, K-ras, and
myristolated PI3K, or (ii) SV40 and K-ras, then were sorted into
EpCAM+ or CD10+ subpopulations prior to orthotopic injec-
tion into mouse hosts (Keller et al., 2012). These experiments
showed that the EpCAM+- cells could give rise to both luminal
and basal tumors, whereas the CD10+- cells only gave rise to meta-
plastic tumors. Although effective at causing malignant transfor-
mation, neither of the transformation gene cocktails represent
changes that occur frequently in breast cancer (particularly the
SV40) and the genetic variables were not controlled indepen-
dently so it is unclear what role each may have played in sub-
type specification. In contrast to uncultured organoids that have
truly EpCAM negative cells, all the cells in pre-stasis HMEC cul-
tures are EpCAM expressing to some extent (Garbe et al., 2012),
which may be an adaptation to culture or it may be a selection.
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In either case, it suggests that we are only transducing EpCAM+
cells. There also may be a retro- and lentivirus transduction bias
against luminal cell types (personal communication with Mina
Bissell and Curtis Hines). However, we have observed that all lin-
eages of pre-stasis HMEC are transduced to a reasonable extent
(a minimum of >40% of each lineage) with a lentivirus that
expressed GFP (not shown). Moreover, careful observation of
our cultures at each step of the immortalization method showed
that the luminal and basal cell types were transduced with the
vectors based on antibiotic resistance, and the process of immor-
talization occurred en mass. Finally, we did not go beyond the
non-malignant immortal stage of cancer progression, which best
represents the stage of tumor cells in ductal carcinoma in situ
lesions (Shpitz et al., 1999; Chin et al., 2004). Thus the impact on
subtype of additional changes that push non-malignant immortal
cell lines all the way to malignancy is still unknown.
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