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The fact that the cell surface and extracellular matrix (ECM) component heparin sulfate
proteoglycans (HSPGs) bind to various growth factor molecules and distribute them to targeted
cell locations is known for many years (Spring et al., 1994; Nakato et al,, 1995; Baeg et al,
2001; Nybakken and Perrimon, 2002; Voigt et al., 2002; Fujise et al., 2003; Johnson et al., 2004;
Steigemann et al., 2004). However only during the last few years the significance of producing
functional proteoglycans that regulate the signaling activities are gaining importance (Sarrazin
et al., 2011). Proteoglycans are widespread from bacteria to humans with diverse expression
patterns. Structural and functional features of proteoglycans possess immense ability to either
promote or inhibit tumorigenesis. Members of HSPG family (glypicans, syndecans, and perlecans)
function as co-receptors for several growth-related signaling pathways such as Wg, Hh, Dpp to
mediate various processes like proliferation, differentiation, morphogenesis, cell-adhesion, and cell
migration (Reviewed in Lin, 2004; Yan and Lin, 2009). Studies in Drosophila have shown that
glypicans like Dally (Belenkaya et al., 2004; Han et al., 2004; Vuilleumier et al., 2010; Ferreira and
Mildn, 2015) and Dally-like (Dlp) (Gallet et al., 2008; Szuperdk et al., 2011) facilitate movement
of signaling molecules to regulate tissue growth. Recent research updates demonstrate the novel
role of HSPGs in regulating additional signaling pathways like JAK/STAT (Zhang et al., 2013);
PI3K and TOR (Ferreira and Mildn, 2015) and also in cross-talk between signaling pathways (Wg
and Dpp) to mediate tumorigenesis and metastasis (Freire-de-Lima, 2014; Herranz et al., 2014;
Hauselmann and Borsig, 2014). These reports underscore the importance of studying the role of
functional proteoglycans.

Interest among researchers has increased in the last few years as a result of findings in humans
that list the growing number of hereditary diseases and tumors caused by mutations of the genes
encoding enzymes involved in the biosynthesis of HSPGs. For example, human patients with
Simpson-Golabi-Behmel syndrome (SGBS), caused by mutations in a glypican member, GPC3,
suffer from tissue overgrowth that eventually develops into neuroblastomas (Pilia et al., 1996).
Similarly children aged between 10 and 15 years lacking the enzymes required for synthesis of these
proteoglycans, display kidney tumors called Wilm’s tumors leading to eventual death (Pilia et al.,
1996; Capurro et al., 2008). Few studies have also showed that distortion in the expression levels
of yet another glypican family GPC1, leads to cervical and pancreatic cancers (Kleeff et al., 1998;
Chen and Lander, 2001; Filmus et al., 2008). In similar lines, updates on secreted glypican, perlecans
functioning as oncogenes suggested that tumorigenesis and metastasis are initiated due to the
defective and non-functional proteoglycans. Defective proteoglycans are suggested to dysregulate
the cell cycle and proliferation events of the neighboring host cells, thereby allowing tumor cells to
invade and spread throughout the organism (Fuster and Esko, 2005; Herranz et al., 2014). However,
the mechanism by which the changes in glypican function in tumorigenesis and tumor metastasis
is still not clear. It is suggested that how quickly a tumor changes its properties totally depends on
the tumor composition and environment.

Abbreviations: ECM, extracellular matrix; HSPG, heparansulfate proteoglycan; HS, heparansulfate; GAG,
glucosaminoglycans; CS, chondroitinsulfate;HNK-1, human natural killer-1; PI3K, phosphatidylinositol 3-kinase; TOR,
target of rapamycin; JAK/STAT, janus kinase/signal transducer and activator of transcription.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1

November 2015 | Volume 3 | Article 69


http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://dx.doi.org/10.3389/fcell.2015.00069
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2015.00069&domain=pdf&date_stamp=2015-11-04
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:ushibiotech@gmail.com
http://dx.doi.org/10.3389/fcell.2015.00069
http://journal.frontiersin.org/article/10.3389/fcell.2015.00069/full
http://loop.frontiersin.org/people/267925/overview
http://loop.frontiersin.org/people/284306/overview
http://loop.frontiersin.org/people/285521/overview

Nagarajan et al.

Sugar tags and tumorigenesis

Tumor formation and progression involves a set of unique
changes in inter- and intracellular signaling. Recent reports
illustrate that transformed host cells possess highly modified and
non-functional proteoglycans on their cell surface (Christianson
etal,, 2013). These proteoglycans have been identified to promote
and mediate critical patho-physiological events during various
steps of tumor progression. However, only handful of factors
involved in the proteoglycans synthesis are known and many
more remains to be identified. In addition to the core proteins,
Heparin Sulfate (HS), and Chondroitin-Sulfate (CS) chains
of glycosaminoglycans (GAGs) are shown to possess specific
functions. The di/tetrasaccharides linked to the core protein
enable the proteoglycans to bind various signaling molecules.
In functional proteoglycans, GAG-chains bind to the signaling
molecules and distribute them at appropriate places while in the
nonfunctional proteoglycans, GAG-chains either cannot bind to
the signaling molecules or release them effectively. Problems in
signaling modulation thereby leads to developmental defects and
tumorigenesis. With the given importance of proteoglycans, it is
highly intriguing to understand the processes underlying GAG
synthesis.

Several studies have demonstrated the importance of HS
chains comprising long unbranched repeats of disaccharide
units of glucosamine and uronic acid. HS biosynthesis is
asystematic three step process of chain initiation, elongation,
and modifications. Proteoglycans biosynthesis is initiated at
the GAG attachment sites on the core protein. Following this,
several glycosyltransferases and modification enzymes elongate
and modify the GAG chains (Esko and Selleck, 2002). Some of
the enzymes known in HS GAG elongation and modifications are
sugarless (sgl), sulfateless (sfl), and few Drosophila EXT proteins,
including Tout-velu (Ttv), Sister of ttv (Sotv), and Brother of
ttv (Botv) (Lin, 2004). It has been demonstrated that signaling
molecules like Wg (Han and Lin, 2005), Hh (Bornemann et al.,
2004; Han et al., 2004; Takei et al., 2004), and dpp (Belenkaya
etal., 2004; Bornemann et al., 2004) fail to traffic in cells which are
defective for components of HS GAG synthesis (encoded by sf],
sotv, and botv genes). Recent study showing aberrant JAK/STAT
signaling due to loss of sfl suggested that HS chains on glypicans
are indispensable for their signaling activity (Zhang et al., 2013).

Inspite of these understanding on proteoglycans, the
fundamental question of how these glypicans are synthesized
has not been addressed in detail. For instance, the molecules
that participate in the process of chain initiation are not
studied. Physiological and pharmacological evidences have
been provided in other model system like rat to demonstrate
the role of chain initiation step of Chondroitin-Sulfate (CS)
in cell communication and development by inhibiting in
proteoglycans synthesis (Margolis et al., 1991).Direct evidences
from totuvelu (ttv or EXT1 in vertebrates), enzymes involved in
HS-chain elongation and modifications, that function as tumor
suppressors and implicated in bone overgrowth of humans
(Ahn et al., 1995; Stickens et al., 1996) indicate that HS-derived
GAG levels are dramatically reduced due to non-functional
proteoglycans (Toyoda et al., 2000).

Chain initiation process of proteoglycans will be affected
either due to modifications in the core proteins to which

the initial GAG molecules are attached or mutations in the
factors that transfer di/tri-saccharides to the core proteins (Baeg
and Perrimon, 2000). Therefore, generation and investigation
of mutants for chain initiation factors would help to explore
the role of functional proteoglycans. Enzymes involved in
HS chain initiation and processing are highly tissue and
developmental stage specific in their function. These specific
modifications enable the HSPGs in signal reception and
ligand distribution. Hence mutations in biosynthetic process of
glypicans would generate non-functional HSPGs, which in turn,
lead to catastrophic developmental consequences (Figure 1).

Till date none of the studies have characterized the role of HS
GAG chain initiation-factors related to tumorigenesis. Some of
the chain initiation factors like GIcAT-S, a glycosyltransferase
is required for the synthesis of conserved glycosaminoglycan-
protein linkage region of proteoglycans. The carbohydrate
epitope Human Natural Killer 1 (HNK-1) attached by
glycosyltransferase is present on several cell adhesion molecules
that mediate cell-cell interactions. The HNK-1 epitope composed
of specific trisaccharide (-HSO3-3GlcAB1-3Galf1-4GlcNAc-)
structure is sequentially synthesized by glycouronosyl
transferases (like GIcAT-S or GIcAT-P) or sulphotransferase
(HNK-1ST). Glucuronyl transferase like GIcAT-S is one of the
major enzymes involved in biosynthesis of proteoglycans and
glycoproteins. It also modifies the Human Natural Killer 1
(HNK-1) epitope bearing ECM proteins (Pandey et al., 2011;
Yamamoto-Hino et al,, 2015). These chain-initiating factors are
highly significant as they contribute to the rate limiting step-of
proteoglycans synthesis. Therefore, any disruption to initiation
process will dramatically affect the downstream reactions of
chain elongation and modification generating non-functional
and defective proteoglycans. Once these enzymes are identified,
model organisms with defective proteoglycans can be created to
address its role in maintaining tissue integrity.

To obtain a better understanding, it is now highly critical
to investigate the mutant phenotypes associated with chain
initiation enzymes and their interaction with core proteins. In
line with this, glypican 3 (GPC-3) mutant mice show drastic
developmental disorders, characterized by pre- and post-natal
overgrowth. In addition, the study also illustrated Glypican 3
modulation is associated with development of endothelial, colon
and ovarian cancers in adults (Filmus, 2001). Mutant animals
for these glycosyltransferases tend to develop mild growth-
related phenotypes like variation in organ sizes and overgrowth
during the early stages of development (Filmus, 2001; Pandey
et al,, 2011; Yamamoto-Hino et al., 2015). During late stages of
development these animals eventually display severe phenotypes
due to the production and accumulation of defective and non-
functional proteoglycans. Repertoire of mutants needs to be
generated to precisely explore the various roles of functional
proteoglycans and understand physiological conditions required
for the growth factor signaling molecules binding to them
at different affinities. In addition, issues related to functional
redundancy among these HSPGs can be analyzed either by testing
the phenotypes of double mutants or by expressing a specific
HSPG core protein in the mutant background of the enzymes
involved in chain initiation. Mechanisms operate in Drosophila to
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FIGURE 1 | Defective and Non-functional proteoglycans lead to developmental disorders and tumorigenesis. Schematic representation of a functional
proteoglycan with long GAG branches and a non-functional proteoglycan with short GAG branches. Any change in the chain-initiation steps of glypican synthesis
leads to formation of non-functional proteoglycans. In a normal cell, functional proteoglycans with GAG branches bind to the signaling molecules. The proteoglycans
are either relocated or recycled to evenly distribute the signaling molecules. In tumorous cell, defective and non-functional GAG branches cannot either bind to the
signaling molecules or release them appropriately. Non-functional proteoglycans are either recycled continuously or mislocated leading to changes in distribution of
signaling molecules thereby producing developmental disorders and tumorigenesis.
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produce functional proteoglycans are similar to the one observed
in vertebrates and humans. The knowledge gained in fly model
may provide a further understanding into the molecular basis of
adult onset diseases and tumorigenesis in humans.
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