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Human pluripotent stem cell derivatives show promise as an in vitro platform to study

a range of human cardiovascular diseases. A better understanding of the biology of

stem cells and their cardiovascular derivatives will help to understand the strengths

and limitations of this new model system. G-protein coupled receptors (GPCRs) are

key regulators of stem cell maintenance and differentiation and have an important role

in cardiovascular cell signaling. In this review, we will therefore describe the state of

knowledge concerning the regulatory role of GPCRs in both the generation and function

of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth

muscle cells. We will consider how far the in vitro disease models recapitulate authentic

GPCR signaling and provide a useful basis for discovery of disease mechanisms or

design of therapeutic strategies.
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GENERAL DESCRIPTION OF GPCRs

G-proteins are heterotrimeric proteins consisting of α, β, and γ subunits that can bind to both
guanosine triphosphate (GTP) and guanosine diphosphate (GDP) nucleotides. G-protein-coupled
receptors (GPCRs) are seven-transmembrane domain receptors (7TM receptors), which function
through their interaction with G-proteins inside the cell. They can amplify extracellular signals to

Abbreviations: 7TM receptors, seven-transmembrane domain receptors; α-ARs, α-adrenergic receptor; AC, adenylyl

cyclase; ACE, angiotensin converting enzyme; ANF, atrial natriuretic factor; APC, adenomatosis polyposis coli; AT1,

angiotensin receptor1; β-AR, β-adrenergic receptor; BBB, blood-brain barrier; BMP4, bone morphogenetic protein 4;

BNP, B-type natriuretic peptide; cAMP, 3′,5′-Cyclic adenosine monophosphate; CK1a, casein kinase 1a; CRISPR, clustered

regularly interspaced short palindromic repeat; DCM, dilated cardiomyopathy; DMD, Duchenne muscular dystrophy;

DVL, Disheveled; EC, endothelial cell; ECM, extracellular matrix; ERK1/2, extracellular signal-regulated kinases 1/2; ETA,

endothelinreceptor A; FGF, fibroblast growth factor; FZD, Frizzled receptor; GDP, guanosine diphosphate; Gi, guanine-

coupled inhibitory protein; GSK3, glycogen synthase kinase 3; GPCR, G-protein coupled receptors; Gs, guanine-coupled

stimulatory protein; GTP, guanosine triphosphate; HCM, hypertrophic cardiomyopathy; hESC, human embryonic stem cells;

HF, heart failure; HGP, Hutchinson-Gilford progeria syndrome; hPSC, human pluripotent stem cells; JNK, c-Jun amino (N)-

terminal kinase; IP3, inositol-1,4,5-triphosphate; LEF lymphoid enhancer factor; LPA, lysophosphatidic acid; LQT, long QT

syndrome; mESC, murine ESC; MI, myocardial Infarction; NFAT, nuclear factor of activated T-cells; PAF, platelet activating

factor; PDGF, platelet derived growth factor; PE, phenylephrine; PI3-K, phosphoinositide 3-kinase; PKA, protein kinase

A; PKC, protein kinase C; PLC, phospholipase C; PP2A, protein phosphatase 2A; PSC-EC, pluripotent stem cell-derived

endothelial cells; PTX, pertussis toxin; S1P, sphingosine 1 phosphate; SDF1, stromal cell derived factor 1; SFRP, secreted

frizzled related protein; SM, smooth muscle; T3, triiodothyronine; TCF T-cell factor; TGF-β, transforming growth factor β;

VEGF, vascular endothelial growth factor; VSMC, vascular smooth muscle cell; ZFN, zinc finger nuclease.
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produce robust, varied, and cell-specific responses including
chemotaxis, neurotransmission, cell growth, differentiation, and
communication. GPCRs can bind a diverse range of ligands
from large proteins to photons (Kristiansen, 2004) and also
have a wide range of ligand-binding mechanisms (Gether
et al., 2002). There are more than 800GPCRs in the human
genome, making it the largest receptor superfamily. GPCRs are
divided into five distinct families using bioinformatic analysis:
Glutamate, Rhodopsin, Adhesion, Frizzled, and Secretin (GRAFS
classification system; Fredriksson et al., 2003; Gloriam et al.,
2007). An up-to-date list of all human GPCRs as agreed
by the International Union of Pharmacology subcommittee
on Receptor Nomenclature and Drug Classification (NC-
IUPHAR) can be found at http://www.guidetopharmacology.
org/.

GPCR signaling is activated via the receptor G-protein α-
subunit, which can be divided into four major classes comprising
of Gs, Gi, Gq, and G12/13, with each class consisting of multiple
subtypes. To date 16 α subunits have been identified, with a
total of 23 different isoforms. In addition, 5 β subunits and
12 γ subunits have also been identified in the human genome.
There are multiple combinations of various isoforms that exist
for each of the three G-protein subunits and the signaling
pathways activated by them (Figure 1; Li et al., 2002; Tuteja,
2009).

While all GPCRs share common features like 7TM structure,
interaction with the intracellular heterotrimeric G proteins
and internalization, it is important to note that Frizzled
(FZD) receptors which consist of 10 members and are classed
separately in this superfamily do not all follow the same
signaling mechanism as the other members and will be
further discussed later (Foord et al., 2005; Gloriam et al.,
2007).

Approximately 50–60% of all existing medicines are believed
to target GPCRs (Fredriksson et al., 2003). By identifying the
physiological role of GPCRs and their respective downstream
signaling pathways, our understanding of many cardiovascular
conditions has increased and new treatments have been
developed. Indeed, two of the most prognostically important
medications in treating heart failure target GPCRs and their
pathways: (1) beta-adrenergic (β-AR) pathway blockers and (2)
angiotensin converting enzyme (ACE) inhibitors/Angiotensin
II receptor type 1 blockers (Kober et al., 1995; Salazar et al.,
2007; Hunt et al., 2009; McMurray et al., 2012). Among an
estimated 200 cardiac GPCRs (Salazar et al., 2007), drugs
targeting adrenergic and angiotensin pathways alone account for
the majority of prescriptions in cardiovascular diseases (Tang
and Insel, 2004). In this review we aim to give an overview of
the role of GPCRs in human pluripotent stem cells and their
cardiovascular derivatives.

GPCRs IN HUMAN PLURIPOTENT STEM
CELLS (hPSC)

GPCRs exert a multitude of effects in pluripotent stem cells. A
wide range of GPCRs are expressed in human embryonic stem

cells (hESCs; Nakamura et al., 2009; Layden et al., 2010). Evidence
exists for their roles in stem cell maintenance (Pébay et al., 2005;
Inniss and Moore, 2006; Wong et al., 2007), pluripotency/self-
renewal (Faherty et al., 2007; Kobayashi et al., 2010; Layden et al.,
2010; Callihan et al., 2011), migration (McGrath et al., 1999;
Miller et al., 2008) and survival (Jiang et al., 2007; Wong et al.,
2007; summarized in Table 1). Less research however has been
performed with human induced pluripotent stem cells (hiPSC).

Maintenance and Survival
GPCRs have an important role in stem cell maintenance.
Lysophospholipid signaling, mediated by sphingosine-1-
phosphate (S1P) and lysophosphatidic acid (LPA), control a
wide range of cellular processes including stem cell maintenance
via their respective GPCRs; S1P1−5 and LPA1−5. Signaling
is mediated through phospholipase C (PLC), extracellular
signal-regulated kinases 1/2 (ERK1/2), adenylate cyclase (AC),
Ca2+ mobilization and activation of small GTPases. hESCs
express both S1P1−3 and LPA1−5 (Pébay et al., 2005; Dottori
et al., 2008). S1P in combination with platelet derived growth
factor (PDGF) is responsible for the maintenance of hESC in an
undifferentiated state via Gi- and ERK-dependent mechanisms
leading to the activation of pro-survival pathways, apoptosis
inhibition and increased proliferation (Pébay et al., 2005; Inniss
and Moore, 2006; Wong et al., 2007). From studies performed
in murine ESC (mESC) expression of both CB1 and CB2

TABLE 1 | GPCRs with roles in hESC/hiPSC and differentiation to

cardiovascular derivatives.

GPCR Species Cell type References

Maintenance

and survival

S1P Human ESC Pébay et al., 2005;

Inniss and Moore,

2006; Wong et al.,

2007

LPA Human ESC Dottori et al., 2008

CB1 and CB2 Murine ESC Jiang et al., 2007

CXCR4 Murine ESC Guo et al., 2005

Self renewal/

pluripotency

FZD Human ESC Sato et al., 2004;

Cai et al., 2007;

Melchior et al.,

2008

Migration CXCR4 Murine ESC Guo et al., 2005

Reprogramming

to iPSC

FZD Murine iPSC Marson et al.,

2008; Li et al.,

2011

Human iPSC Li et al., 2009

Cardiac

differentiation

FZD Human ESC/iPSC Lian et al., 2012;

Minami et al., 2012

APJ Human ESC Wang et al., 2012

AT Murine ESC Wu et al., 2013

Endothelial

differentiation

FZD Human iPSC Lippmann et al.,

2012; Lian et al.,

2014
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FIGURE 1 | GPCR signal transduction. Each GPCR forms a complex with a unique Gα subunit. When the receptors are inactive the Gα subunit is inactive, bound

to GDP and in a heterotrimeric conformation with βγ-subunits. The α and γ subunits are attached to the plasma membrane by lipid anchors. Once bound to a ligand,

the receptor is activated and undergoes a conformational change, and the Gα subunit releases GDP, binds to GTP and is activated. The Gα subunit then releases the

βγ complex leading to the activation of a variety of downstream effector molecules by the Gα subunit and βγ complex separately. The activated Gα subunit can bind to

and activate a number of enzymes including adenylyl cyclase (AC) which catalyzes ATP into cAMP. Increases in the concentration of cAMP lead to the activation of the

PKA enzyme which in turn activates the downstream signaling pathways resulting in a variety of cellular responses including glucose regulation and inotropy. The cycle

is completed when Gα-GTPase hydrolyzes GTP to GDP and becomes inactive. The G protein complex then re-couples the Gα with the Gβγ subunit.

cannabinoid receptors have been detected and demonstrated
to have a role in ESC survival (Jiang et al., 2007). Furthermore,
the expression of the endocannabinoid receptor, 2-AG, may
also contribute to ESC survival. The stromal cell derived
factor 1 (SDF1 or CXCL12)/CXCR4 pathway which is widely
known for its role in cell migration has also been found to
enhance survival of mESC (Guo et al., 2005). To date, the role
of these pathways has not been thoroughly investigated in
hESCs/hiPSCs.

Self-renewal/Pluripotency
Expression and activation of Gs- and Gi-coupled GPCRs
have been implicated in stem cell pluripotency in hESC and
hiPSC (Nakamura et al., 2009). Colony morphology correlates
closely with the maintenance of pluripotency. Gi inhibition
with pertussis toxin (PTX) results in hiPSC/hESC colonies
with a multi-layered appearance in contrast to a normal flat
morphology, thereby preventing colony outgrowth (Nakamura
et al., 2009). Proliferation, pluripotency and cell survival
however, were unaffected by Gi inhibition. Gs activation
on the other hand has been found to have no effect on

colony morphology. While there is little evidence available in
hPSCs, the activation of the Gαs-cAMP signaling pathway in
mESCs contributes to the maintenance of transcription factor
expression which is important for pluripotency (Layden et al.,
2010). In addition, evidence exists for the involvement of the
cAMP/PKA pathway in mESC self-renewal pathways (Faherty
et al., 2007).

One of the key signaling pathways implicated in ESC self-
renewal and pluripotency is the Wnt pathway. This signaling
pathway can manifest in one of the three ways: (i) the canonical
Wnt/β-catenin, (ii) Wnt/planar cell polarity (PCP) and (iii)
Wnt/calcium pathways (Huang and Klein, 2004; Figure 2). Wnt
ligands are lipid modified glycoproteins which bind to a Frizzled
(FZD) receptors and a co-receptor; LRP 5/6. The co-receptor
varies depending upon the signaling pathway.

In the past, while the Wnt/Ca2+ branch was recognized
as the G protein-dependent pathway, the Wnt/ß-catenin and
Wnt/PCP signaling pathways were regarded as heterotrimeric
G protein-independent. However, many important studies have
more recently shown that heterotrimeric G proteins play a more
global role in the general Wnt signaling pathway (Katanaev
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A CB

FIGURE 2 | Wnt signaling pathways. When Frizzled receptor (FZD) is bound to its agonist Wnt it can activate one of the three pathways: (A) the canonical pathway

in which the activation of disheveled (DVL) leads to the disassembly of the destruction complex; axin, adenomatosis polysis coli (APC), glycogen synthase kinase 3β

(GSK3β) from β-catenin. This in turn increases the cytosolic level of β-catenin which is then translocated to the nucleus and binds to transcription factor T-cell

factor/lymphoid enhancer factor (TCF/LEF) activating the transcription of target genes. β-catenin is phosphorylated by GSK3β and degraded when there is no Wnt

activation of FZD. Non canonical pathways include (B) Wnt-Calcium pathway in which DVL activates protein kinase C (PKC) leading to the release of intracellular

calcium thereby activating a calcium/calmodulin-dependent protein kinase II (CaMKII) and (C) Wnt-planar cell polarity pathway in which the activation of DVL signals to

Rho GTPases (Rho or Rac or both). While Ras activation is signaled through the c-Jun amino (N)-terminal kinase (JNK), the activation of Rho-GTPases induces

changes in the cytoskeleton. To date it has been found that Wnt signaling can not only lead to a direct activation of DVL independent of the heterotrimeric G proteins

as seen in (A) but may also lead to a G protein-DVL dependent activation whereby DVL can bind to or become activated subsequently by the G proteins in the cell.

et al., 2005; Egger-Adam and Katanaev, 2008). Since the two
intracellular scaffolding proteins for FZD are heterotrimeric G
proteins and Disheveled (DVL), what is still not clear in this
field is the nature of this interaction and signaling following an
agonist binding. Depending on the intermediary involvement of
the DVL this interaction can be either direct or indirect. In a
direct interaction FZD can act as either (a) a guanine nucleotide
exchange factor (GEF), catalyzing the exchange of GDP for GTP
on the Gαs subunit, releasing GTP-Gα and Gβγ or (b) a guanine
dissociation inhibitor (GDI) sequestering GDP-Gα releasing Gβγ.
However, in the indirect model of interaction FZDmay be acting
through a higher order complex consisting of FZD, DVL, and the
heterotrimeric G protein complex, whereby the FZD-GαGβGγ

binding and signaling is via DVL (Klipp and Liebermeister, 2006;
Schulte and Bryja, 2007; Nichols et al., 2013).

Expression of the pluripotency genes Sox-2, Nanog, OCT3/4
and brachyury are targets of the Wnt/β-catenin pathway (Sokol,
2011). hESCs have been shown to express Wnt1, members of the
frizzled receptor family FZD1,3−6 and secreted frizzled related
protein (SFRP) family (SFRP1, SFRP2, FRZB, SFRP4; Walsh and
Andrews, 2003). The SFRP family act as antagonists to the Wnt
pathway. There is contrasting evidence to support the role of
Wnt signaling in hESC. Wnt3a and Wnt1 have been shown to

stimulate hESC proliferation and maintain pluripotency via the
canonical Wnt signaling pathway (Sato et al., 2004; Cai et al.,
2007). In contrast, Wnt/β-catenin activation did not maintain
the undifferentiated and pluripotent state of hESC (Dravid et al.,
2005). The Wnt receptor FZD7 has also been identified as
important for hESC maintenance and self-renewal. Loss of OCT-
4 expression and alterations to colonymorphology were observed
after knockdown of FZD7 (Melchior et al., 2008).

Cell Migration
In addition to contributing to stem cell maintenance, the
SDF1/CXCR4 pathway is important in endogenous stem cell
trafficking during embryogenesis (McGrath et al., 1999; Miller
et al., 2008). Activation of CXCR4 by SDF1 stimulates a number
of pathways involved in motility, chemotaxis, adhesion and
secretion, via activation of a number of signaling cascades
including: adhesion, PI-3K-AKT, MEK-MAPK p42/44, and
JAK/STAT (reviewed in Kucia et al., 2004). Both SDF1 and
CXCR4 expression have been detected in mESCs and have been
shown to be chemotactic for these cells (Guo et al., 2005). Priming
of this pathway with sphingosine 1 phosphate (S1P) prior
to the transplantation of cells enhanced cardiac and vascular
remodeling in a rat model of pulmonary arterial hypertension
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(Kang et al., 2015). At the time of writing this review no evidence
existed for the expression of SDF/CXCR4 in hESC or hiPSC.

Reprogramming Somatic Cells to iPSC
The modulation of the Wnt signaling pathway appears to
play a role in reprogramming. Inhibition of the downstream
signaling molecule, GSK3, has the potential to replace Klf4 in
the Yamanaka reprogramming cocktail in murine cells (Lyssiotis
et al., 2009). The use of a combination of different small
molecules, including the GSK3β inhibitor CHIR99021, has
been reported to induced murine iPSC reprogramming in the
presence of a single transcription factor (OCT4; Li et al., 2011).
Additionally, CHIR99021 in combination with an inhibitor of
lysine-specific demethylase, has been used in the presence of
OCT4 and Klf4 to successfully reprogram human keratinocytes
(Li et al., 2009). Application of Wnt3a has been reported to
enhance reprogramming in conjunction with Klf4/OCT4/SOX2
in the absence of c-myc (Marson et al., 2008). A cocktail of small
molecules, including the cAMP activator forskolin, has also been
shown to have the potential to replace OCT4 during murine
iPSC-reprogramming (Hou et al., 2013). In addition to the
expression of the Yamanaka transcription factors, morphological
changes are necessary for cellular reprogramming.

GPCRs IN CARDIOVASCULAR
DIFFERENTIATION

GPCRs have a fundamental role in early and late mesoderm
formation during development and cardiovascular cell
differentiation. To date, there are three platforms for
cardiovascular cell differentiation: monolayer, embryoid body
(EB) and microcarrier cultures. The efficiency of these methods
depends on several factors including: (a) the biomolecules
used (growth factors or small molecule inhibitors), (b) the
condition of the hPSC culture expansion, and (c) the activation
or deactivation time of molecular signals in guiding the
differentiation toward cardiovascular lineages (Chen et al., 2014).
Differentiation is achieved through the coordination of diverse
molecular pathways. Elucidation of the complex molecular
signals that are evoked during hPSC differentiation have enabled
specific targeting of their activities to enhance cell differentiation
and promote tissue regeneration.

Earlier protocols for the production of cardiomyocytes (CMs;
Xu et al., 2002; Zhang et al., 2009), endothelial cells (ECs;
Goldman et al., 2009; Földes et al., 2010) and vascular smooth
muscle cells (VSMCs; Ge et al., 2012; Dash et al., 2015)
relied on EB formation, whereby hPSC undergo spontaneous
differentiation following the formation of 3D, non-adherent
structures. Although this method generated cells of the required
lineages, it was relatively inefficient. Differentiation has been
much improved in recent years with use of factors found to be
involved in mesoderm formation in vivo. GPCR Wnt signaling
molecules and non-GPCR fibroblast growth factor (FGF), bone
morphogenetic protein 4 (BMP4) and Activin A are all widely
used for cardiomyocyte differentiation (Laflamme et al., 2007;
Yang et al., 2008). In all protocols, the concentrations and

duration of each treatment depends on the platform as well as
the hPSC line in use.

For endothelial cell differentiation growth factors frequently
utilize FGF2, which has been shown to promote the formation
of endothelial progenitors (Evseenko et al., 2010), and BMP-4,
which acts to accelerate commitment to the endothelial lineage
(Goldman et al., 2009). Amongst the key pro-angiogenic growth
factors, vascular endothelial growth factor (VEGF) is arguably the
most important and has been demonstrated by multiple studies
to dramatically increase the yield of ECs during differentiation
(Tatsumi et al., 2011; Adams et al., 2013). GPCR agonists such
as thrombin and angiotensin II can directly modulate vascular
remodeling and they can also act indirectly through the induction
of VEGF (Richard et al., 2001).

Various differentiation protocols have been validated and
replicated to differentiate pluripotent stem cells into vascular
smooth muscle (VSMC) like cells with mature characteristics
displaying cellular markers (smooth muscle α-actin, calponin)
and an adult morphology (fibrous). In addition, they display
similar contractile responses to agonists such as carbachol (Ge
et al., 2012; Karamariti et al., 2013; Wanjare et al., 2013;
Sinha et al., 2014; Dash et al., 2015). For generating smooth
muscle cells, various limitations using the EB method of
differentiation led researchers to develop improved protocols
of VSMC differentiation from hiPSC using monolayers of
extracellular matrix (ECM) proteins in the presence of PDGF
subunit B homodimer (PDGF-BB) and transforming growth
factor beta (TGF-β; Karamariti et al., 2013; Wanjare et al., 2013)
and heparin (Bajpai et al., 2012).

Frizzled Receptor
Wnt signaling is necessary for different steps of the cardiac
development in embryonic stem cells, including myocardial
specification, cardiac morphogenesis, and cardiac valve
formation (Korkaya et al., 2009). It is believed the non-canonical
Wnt pathway plays a key role in cardiac morphogenesis and
affects the specification and expansion of cardiac progenitor cells
(Korkaya et al., 2009). Hence, most of the latest protocols in the
differentiation of hPSCs to CMs involve the use of various Wnt
inhibitors and downstream molecules like GSK3β.

Of the three stages of cardiomyocyte differentiation:
mesodermal induction, cardiac progenitor generation and
cardiomyocyte generation and maintenance, the initial step of
mesoderm induction is induced by the activation of the TGF-β
pathway (Watabe and Miyazono, 2009; Xu, 2012). This can be
achieved by the use of growth factors, BMP4 and Activin A. An
indirect activation of the TGF-β signaling pathway has been
performed in vitro by using small molecules, such as GSK3β
inhibitors (CHIR99021 or BIO) which have an increasing effect
on the endogenous levels of BMP2/4 (Lian et al., 2012; Minami
et al., 2012). For the second stage of cardiac progenitor induction
the TGF-β pathway has to be inactivated. This can be achieved
by: (a) the removal of the activators and addition of growth
factors including FGF2 and/or VEGF, which activate the ERK
signaling pathway, or (b) the addition of small molecule Wnt
inhibitors (KY02111, XAV939, DKK1, IWP-2, and IWR-1;
Chen et al., 2006). This results in the formation of the cardiac
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progenitor lineage from mesodermal cells and inhibits the
development of smooth muscle and endothelial cell lineages
(Woll et al., 2008; Yang et al., 2008). The final stage of CM
generation and maintenance, which takes place from day 8 is also
found to be dependent on the inhibition of the Wnt/β-catenin
signaling pathway (Gessert and Kühl, 2010). It can therefore be
concluded that Wnt signaling plays a biphasic role in human
cardiogenesis, being both activated during the early phase and
inhibited during the late phase of cardiac differentiation (Lian
et al., 2012).

During fetal growth the compact myocardium proliferates
more rapidly when compared to the trabecular myocardium in
luminal regions of the heart (Jeter and Cameron, 1971; Luxán
et al., 2013). The proliferation of fetal cardiomyocytes in this
region is necessary for the correct morphogenesis of ventricular
myocardium, trabeculae, and chamber cavities. It has recently
been shown that this regional expansion of ventricular myocytes
is regulated by the Wnt/β-catenin pathway. The increase in the
ventricular proliferation is maintained until birth. This fetal Wnt
signaling pathway is re-expressed upon myocardial infarction
and induced ischemic heart injury in mice (Buikema et al.,
2013a,b). Hence, it has been suggested that in adult myocardium
Wnt/β-catenin may play a role in endogenous cardiac repair;
however, the exact role of this pathway in the adult cardiac
homeostasis is not yet known (Oka et al., 2007; Oerlemans et al.,
2010).

In addition, the production of pluripotent stem cell-derived
endothelial cells (PSC-EC) has also been shown to be dependent
on small molecule activation of canonical Wnt signaling. This
was demonstrated to be an effective mechanism using a 2D
culture system, even in the absence of exogenous VEGF (Lian
et al., 2014). The canonical Wnt ligands, Wnt7a and Wnt7b,
have been implicated in blood-brain barrier (BBB) development
in vivo (Daneman et al., 2009). In order to generate human
BBB-ECs, theWnt pathway was targeted in differentiating hPSCs
(Lippmann et al., 2012). A Wnt target gene called Stimulated by
retinoic acid 6 (STRA6) which acts as a vitamin A transporter is
found in the BBB (Szeto et al., 2001). It is highly expressed in adult
brain ECs in comparison to lung or liver cells, and is up-regulated
during the course of BBB cell differentiation (Lippmann et al.,
2012).

Angiotensin Receptor
Angiotensin receptors are members of the GPCR family and are
composed of two main types; angiotensin receptors I and II (AT1

and AT2) which exhibit similar affinities for angiotensin II (Ang
II; de Gasparo et al., 2000). The activated AT1 binds to Gq/11

and Gi/o to activate phospholipase C and increase the cytosolic
Ca2+ concentration, whilst AT2 exerts its effect via coupling to
the Gi2/3 components of the heterotrimeric G-proteins (Higuchi
et al., 2007). Activated AT1 and AT2 have mutually counteracting
hemodynamic effects in the cardiovascular system. AT1 is
believed to be responsible for the contractile response while
AT2 is involved in the relaxation response to Ang II (Batenburg
et al., 2004). Ang II promotes the differentiation of mESC-CM
through AT1 (Wu et al., 2013). Currently no role in human
cardiovascular differentiation has been described. AT1 and AT2

are expressed on human hemangioblasts. The differentiation
into endothelial progenitors can be influenced by modulating
the signaling through these receptors. ACE activity is required
for hemangioblast expansion. AT1- or AT2 specific inhibitors
dramatically augment endothelial differentiation (Zambidis et al.,
2008).

Apelin Receptor
This receptor, also known as Angiotensin receptor like 1
(AGTRL1 or APJ) is a member of the GPCR family that
binds apelin (APLN; Tatemoto et al., 1998; Lee et al., 2000)
and ELABELA/Toddler (Chng et al., 2013; Pauli et al., 2014).
APJ is coupled to Gi and/or Gq and is expressed in the
mesodermal cells of the secondary heart field in mouse embryo.
It couples extracellular signaling with chromatinmodifications in
pluripotent stem cell cardiomyogenesis (D’Aniello et al., 2013).
During hESC differentiation, APJ marks mesodermal precursors
(Vodyanik et al., 2010). While on adult cardiomyocytes, the
expression of this receptor is a potent regulator of contractility
(Szokodi et al., 2002; Berry et al., 2004; Ashley et al., 2005); on
early embryonic cells it is believed to regulate the migration of
progenitor cells fated for cardiomyocyte differentiation (Scott
et al., 2007; Zeng et al., 2007). Hence, Apelin has been used
in the differentiation of both mouse and human ESCs to
cardiomyocytes in combination with mesodermal differentiation
factors including BMP4, bFGF, and Activin A. Using an EB
differentiation method and by administering these factors in a
specific temporal sequence, it has been shown that apelin can
indeed promote cardiac differentiation and lead to earlier beating
EBs when compared to controls (Wang et al., 2015). We and
others have shown that APJ and one of its ligands apelin have an
important regulatory role in angiogenesis (Scott et al., 2007). A
second ligand elabela (or Toddler) has been recently discovered
which is required for the normal development of vasculature
through activation of APJ. Elabela/APJ signaling pathway was
shown to be functional in the human system as well (Chng et al.,
2013; Wang et al., 2015). To date, no published data is available
for the new ligand in hPSCs.

Lysophospholipid Signaling
Lysophospholipid signaling is important for vascular
development and maturation, but in vitro stem cell models
are currently lacking. Knockout mice of S1P1 (Gi-coupled
receptor for sphingosine-1 phosphate) has been showing high
lethality at E12.5 (Soriano, 1999).This has been attributed to the
necessary function of ECs (Kataoka et al., 2003) and the receptor
has also been found to be essential for vascular maturation (Liu
et al., 2000). Furthermore, in vivo studies have shown that S1P
protein synergizes with FGF-2 and VEGF in angiogenesis and
vascular maturation through S1P1 (Garcia et al., 2001). While
S1P1 couples directly to the Gi pathway, the other receptor
isoforms known also as endothelial differentiation gene 3, 5
(Edg-3 and -5) stimulate Gi, Gq, and G13 pathways (Ancellin and
Hla, 1999; Windh et al., 1999).

Protease-activated Receptor-1
Protease-activated receptor-1 (PAR-1) is one of the four members
of the PAR subfamily of GPCRs, which are highly expressed
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in platelets as well as ECs, myocytes, and neurons (Macfarlane
et al., 2001). PAR-1 is activated by serine proteases including
thrombin, whereby the N-terminus of the receptor is cleaved and
this in turn acts a tethered ligand activating the receptor. As PARs
are involved in maintaining hemostasis and thrombus formation
in atherosclerotic vessels, these are being tested as drug targets
(Sambrano et al., 2001). As a member of the receptor family,
PAR-1 was shown to play a role in embryonic development
(Griffin et al., 2001), partially via modulation of downstream
signaling proteins such as the heteromeric G-protein subunit
Gα13 (Ruppel et al., 2005). The role in hPSC differentiation
remains to be defined.

Adrenergic Receptors
Adrenergic receptors can be broadly divided into alpha (α-AR)
and beta (β-AR) receptors. The β-ARs have been shown to have
a role in cardiomyocyte differentiation (Yan et al., 2011). β1-
ARs couple to stimulatory G proteins (Gs). Once stimulated, Gs-
proteins interact with the enzyme adenylyl cyclase (AC), which in
turn increases the production of cAMP. β2-ARs and β3-ARs can
also couple to the inhibitory G (Gi) protein (Gauthier et al., 1996;
Gong et al., 2000). β2-ARGi pathways decrease AC activation and
cAMP production as well as the downstream phosphorylation of
cardiac proteins including troponin I, myosin-binding protein
C and L-type calcium channels. The net result opposes the
action of the Gs resulting in reduced contraction of the cardiac
myocytes (Xiao et al., 1995; Woo and Xiao, 2012). Further
studies in mESCs have shown that β-ARs play a role in ESC-
CM differentiation via ERK and p38 activation using β-AR
agonists. β1-ARs and β2-ARs have been found at different stages
of cardiac differentiation both at mRNA and protein levels. The
expression of β1-AR is lower than β2-AR until day 7. After day
7 it increases gradually, reaching a peak at day 14, and remains
at a high level until day 21. In contrast, β2-AR is expressed at
a high level even before differentiation, with no obvious change
after inducing cardiac differentiation. It is therefore believed
that β2-AR might be the predominant subtype during the early
stage of differentiation, while β1-AR might be the predominant
subtype for the late stage of cardiac differentiation (Yan et al.,
2011).

GPCRs IN PLURIPOTENT STEM CELL
CARDIOVASCULAR DERIVATIVES

In recent years, the ability to derive human cardiovascular
cells from pluripotent stem cells, which have unlimited renewal
capacity, has generated considerable interest. hPSC-derived
cardiovascular derivatives have the potential to reduce the use of
animal models and provide more physiologically relevant models
of disease. They can be produced in quantities that are suitable
for use in medium to high throughput screens, and platforms
are being developed to measure their various functional outputs,
including calcium transients, contraction, tubule formation, and
cytotoxicity/signaling (Mioulane et al., 2012; Mercola et al., 2013;
Stoehr et al., 2014; Simons et al., 2015). The relative ease of
production and commercial availability further enhances their
appeal for pharmaceutical screening and organ repair.

Human Pluripotent Stem Cell-derived
Cardiomyocytes
Alpha-adrenergic Receptors
α-ARs (α1a, α1b, α1d) regulate the cardiovascular system
by activating the Gαq pathway. Once activated, Gαq

activates phospholipase C (PLC), which causes an increased
myo-inositol-1,4,5-trisphosphate level and subsequent increase
in calcium release from the endoplasmic reticulum (Exton, 1985;
Salazar et al., 2007). These receptors are primarily thought to
regulate blood pressure, inotropy and hypertrophy by cross talk
between the α-AR subtypes and also with β-ARs (Salazar et al.,
2007). For example, overexpression of the α1a-AR increases
cardiac contraction but not hypertrophy (Lin et al., 2001) and
overexpression of α1b-AR results in a decreased response to β-AR
stimulation by isoprenaline left ventricular (LV) contractility,
potentially as a result of additional Gi coupling (Akhter et al.,
1997). Additionally, a deficiency in the α1b-AR receptor results in
a blunted blood pressure response to the α1-AR receptor agonist
phenylephrine (PE; Cavalli et al., 1997). Alpha-2-adrenergic
receptors (α2-AR) are Gi-coupled receptors and oppose the
action of Gs signaling by inhibiting AC and therefore cAMP
production and the various downstream sequelae (Salazar
et al., 2007). α2-ARs are presynaptic and suppress presynaptic
noradrenaline release and their role is to oppose the sympathetic
stimulation of β1-AR, β2-AR, and α1-ARs during increased
adrenergic stimulation. Their importance was shown with
higher incidences of heart failure in patients with genetic
polymorphisms resulting in the loss of function of α2-ARs (Small
et al., 2002).

The expression of α-ARs in hPSC-CMs, as reported by
our own group, shows an early transient up-regulation during
differentiation followed by a rapid stable down-regulation of
ADRA1A in hiPSC-CM and hESC-CM. Conversely ADRA1B
was found to be increased in an apparently compensatory
manner. Other subtypes of α-AR namely ADRA1D and
ADRA2C have also been shown to be present in these cells, but
the overall expression of these receptors and their G-proteins; Gq,
Gβ1, and Gγ2 is believed to be insufficient for the hypertrophic
response to PE (Földes et al., 2014). However, when investigating
the exact localization of α1-ARs in adult cardiomyocytes, recent
studies found them expressed in the nuclei rather than just the
sarcolemma itself: this may contribute to the differences observed
in the response levels of various cell types to PE (Wu and
O’Connell, 2015).

Beta-adrenergic Receptors
There are three main types of β-ARs present in the human
cardiovascular system; β1-ARs are the most abundant accounting
for 75–80% in healthy human hearts (Rockman et al., 2002); with
β2-ARs and β3-ARs making up the remainder. β1-ARs primarily
modulate the inotropic and chronotropic responses of the human
heart. Once activated, stimulatory Gs-proteins interact with AC,
which in turn increases the production of cAMP. The increased
levels of cAMP result in increased binding to protein kinase
A (PKA) and subsequent phosphorylation of many myocyte
proteins (troponin I, voltage L-type calcium channels, cardiac
ryanodine receptor) involved in cardiac contractility (Rockman
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et al., 2002; Xiang and Kobilka, 2003). The importance of β1-ARs
in cardiovascular regulation has been shown in β1-AR knockout
mice. Many did not survive past embryo stage and if they did,
an increased heart rate in response to isoprenaline was found
to be absent while the inotropic response to exercise/agonist
stimulation was still present (Rohrer et al., 1996). On the other
hand, transgenic mice with overexpression of β1-ARs develop
marked hypertrophy and increased contractility initially, but
this is soon followed by the onset of heart failure (Engelhardt
et al., 1999). β2-ARs have some similarities with β1-ARs in
regulating contractility by utilizing Gs-proteins and the AC
pathway with the eventual downstream release of calcium from
L-type Ca2+ channels (Salazar et al., 2007). They differ in that
β2-ARs can additionally couple to Gi (Daaka et al., 1997).
Mice with overexpression of the β2-AR at 60-fold exhibited
enhanced basal cardiac function without increased mortality
when followed for 1 year. However, after 100-fold or more
overexpression they developed a fibrotic cardiomyopathy and
heart failure which increased in severity with overexpression
level (Liggett et al., 2000). Knockout mice, however, display
a relatively normal phenotype but develop a higher degree of
hypertension in response to stress (exercise, adrenaline) when
compared to control mice (Chruscinski et al., 1999). This may
indicate the importance of the inhibitory G-coupled protein
pathway in prolonged adrenergic stimulation (Salazar et al.,
2007). β3-ARs are expressed the least in the heart and their
role in cardiovascular regulation is a little less certain with
inotropic effects in response to agonists in mice overexpressing
human β3-ARs; however, a negative inotropic response in the
human heart has been seen (Gauthier et al., 1996; Kohout et al.,
2001). β3-ARs are also up-regulated in human heart failure
(Moniotte et al., 2001). Studies on hPSC-CMs have shown that
β-AR responses are well developed in cardiomyocytes derived
from hESCs and hiPSCs (Ali et al., 2004; Dambrot et al., 2014).
Furthermore, the expression of both β1-AR and β2-AR has also
been established, with β1-AR being suggested as the predominant
subtype for the late stage of cardiac differentiation (Wu et al.,
2013, 2015).

Angiotensin, Muscarinic, and Adenosine Receptors
Other GPCRs also present on hPSC-CMs are ATs andmuscarinic
receptors as shown by expression studies and agonist responses in
these cells. Muscarinic receptors reduce spontaneous beating rate
in hPSC-CM from an early time after differentiation, although
the muscarinic receptor subtype has not been delineated (Brito-
Martins et al., 2008). Adenosine can produce similar effects
through the A1-R in adult ventricular or atrial cardiomyocytes
(Headrick et al., 2013) but to date no published data exists for
hPSC-CMs. We have shown previously that angiotensin acting
via Gq can produce only a small increase in cell size in hESC-
CM despite a robust increase in the expression of both atrial
natriuretic factor and B-type natriuretic peptide (ANF and BNP;
Földes et al., 2008, 2014).

Endothelin Receptors
Endothelin receptors, specifically the endothelin-A (ETA)
receptor, are subtypes of receptors involved in cardiac

remodeling/hypertrophy. ETA is expressed in the cardiovascular
system and has a plethora of roles including vasoconstriction,
tachycardia, positive inotropy and hypertrophy (Concas et al.,
1989; Salazar et al., 2007; Bupha-Intr et al., 2012). In addition, ET
receptors are up-regulated in chronically failing human hearts
(Asano et al., 2002; Salazar et al., 2007). In hPSC-CM, ETA

induces hypertrophic gene expression; such as BNP and ANF
(Carlson et al., 2013; Földes et al., 2014). The exact downstream
signaling mechanisms have not yet been published.

Disease Modeling with hPSC-CM
Predominant manifestations of pathology investigated in
hPSC-CM are acute, including depressed contraction,
electrophysiological alterations and arrhythmia, or longer-
term, such as aberrant morphology, hypertrophy and increased
susceptibility to cell death. While the acute characteristics have
strong superficial similarities to adult cardiomyocytes, a clear
difference in long term viability is seen in the prolonged survival
in culture of hPSC-CM (>1 year) compared to adult cells (∼2
days). This of course is one of the main attractions of hPSC-CM
as a model system. Although proliferation rates in hPSC-CM
are initially far higher than in adult cardiomyocytes, these drop
rapidly around 1 month after differentiation, as the sarcomere
structure develops (Földes et al., 2011). Morphology is initially
less organized, but can develop with time or physical cues.
The nature of the differences between adult and hPSC-CM
phenotypes and the consequent limitations for modeling are
discussed further below.

One pathological process where GPCR signaling plays a
prominent role is cardiac hypertrophy. This is an adaptive
response and is characterized by a thickening of cardiac
myocytes. Physiological hypertrophy occurring in pregnancy and
athletes is not detrimental and results in normal or enhanced
heart function. In contrast pathophysiological hypertrophy,
which can be caused by pressure overload in response
to hypertension, myocardial infarction or other inherited
conditions, leads to cardiac dysfunction and increased mortality.
Approaches have been taken to model hypertrophy in vitro using
hPSC-CM.

The predominant α-ARs in the myocardium are α1-ARs
(Brückner et al., 1985) and stimulation with catecholamines
induces pathological cardiac hypertrophy (Rokosh et al., 1996;
Zhong and Minneman, 1999). We have previously reported an
increase in cell size in hESC-CM in response to the α-AR agonist
PE (Földes et al., 2011), attributed to activation of p38 MAPK
signaling pathways. As described above, α1A-AR gene expression
was lost upon differentiation in hESC-CM (and hiPSC-CM),
while α1B-AR was up-regulated and mediated the hypertrophic
response (Földes et al., 2014). In addition ETA, Ang II and cyclic
stretch also increased cell size in hESC-CM (Földes et al., 2011,
2014) with corresponding increases in ANF expression. β2-AR
stimulation did not induce cellular hypertrophy.

Hypertrophic responses in hiPSC-CM remain controversial.
In contrast to hESC-CM, we found hiPSC-CM to be
unresponsive to PE, with cell size (assessed by high content
automated microscopy) and ANF expression remaining
unchanged (Földes et al., 2014). In addition, ET-1 and Ang II did
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not produce significant increases in cell size and correspondingly
increased ANF and BNP expression was only seen in response
to ETA. Hypertrophic modeling in commercially available
hiPSC-CM assays have been described which rely on detection
of ANF expression in response to ETA (Aggarwal et al., 2014). In
other studies, mild increases in hiPSC-CM size (∼10% or less)
have been seen with PE, and up to 25% with ET-1 (Carlson et al.,
2013; Tanaka et al., 2014). In addition, enhanced myofibrillar
disarray and nuclear factor of activated T-cells (NFAT) nuclear
translocation were also reported (Zhi et al., 2012). There is
conflicting data for the presence of cardiomyocyte hypertrophy
in response to β-adrenergic stimulation. We found no increase in
hiPSC-CM size (Földes et al., 2014), whereas Zhi and colleagues
found the opposite (Zhi et al., 2012). It has been reported that
serum containing media causes hypertrophy in hESC-CM and
hiPSC-CM, which could explain the lack of cellular hypertrophy
in response to hypertrophic stimuli in some studies (Dambrot
et al., 2014). This was found not to be the explanation in
our study (Földes et al., 2014); the difference between hESC-
CM and hiPSC-CM was caused rather by an imbalance in
anti-hypertrophic signaling. It was also found that a combination
of inhibitors could restore the PE response in hiPSC-CM.

A number of hiPSC-CM disease models have a hypertrophic
phenotype, including LEOPARD syndrome and hypertrophic
cardiomyopathy (HCM). Patient-derived HCM hiPSC-CM
exhibit increased basal cell size compared to controls (Lan
et al., 2013; Tanaka et al., 2014). β-AR stimulation exacerbates
cellular hypertrophy in HCM cells (Lan et al., 2013). A hiPSC-
CM model of LEOPARD of syndrome exhibits a hypertrophic
phenotype, displaying increased cell size and nuclear located
NFAT (Carvajal-Vergara et al., 2010). It still remains to be
determined whether HCM patient-derived cardiomyocytes or
control cells treated with hypertrophic stimuli are the best
model to use for the study of hypertrophy. Furthermore, a
greater understanding of hypertrophic signaling in hPSC-CM
is required to ensure conclusions drawn from these models are
physiologically relevant.

In addition to hypertrophy, disease models have also
provided further insight into pathological mechanisms involving
GPCRs (Table 2). Patient-derived dilated cardiomyopathy
(DCM) hiPSC-CMs display an increased susceptibility to
stress. Desensitization of the β-AR response was observed
in DCM hiPSC-CM both basally and in response to acute
noradrenaline treatment (Sun et al., 2012). This goes against the
current understanding of β-AR desensitization as an acquired
characteristic of prolonged sympathetic stimulation in the
heart failure patient. Either the troponin mutation has some
mechanistic link to the control of β-AR function, or there is a
co-inherited β-AR variant in this group of patients: either option
is intriguing. In addition, long term β-AR stimulation resulted
in sarcomeric disorganization and decreased inotropic and
chronotropic responses. In patient-derived HCM hiPSC-CM, β-
adrenergic stimulation also exacerbated the observed abnormal
calcium handling and arrhythmia (Lan et al., 2013). In long QT
syndrome (LQTS2 and LQTS1) hiPSC-CM models, arrhythmia
was observed in response to β-adrenergic stimulation, which
could be prevented using β-AR blockers (Tseng et al., 2006;

Matsa et al., 2011). This correlates with clinical observations,
where β-AR blockers are routinely used to treat such conditions.
The majority of these disease models originate from patient
derived-hiPSC, but the trisomy 21 model described by Bosman
and co-workers utilizes patient hESC-derived cardiomyocytes
(Bosman et al., 2015). In this study trisomic cells showed an
increased β-AR response to isoprenaline in comparison to
euploid control (Bosman et al., 2015).

Vascular Derivatives
ECs form a single-cell monolayer lining the blood vessels.
Their essential functions include the ability to regulate vascular
tone, vascular permeability, angiogenesis, platelet function and
inflammatory responses (Michiels, 2003). ECs are involved
in inflammation and interact closely with leukocytes. GPCRs
expressed in these cells play a key role in sensing the presence of
chemoattractants, transducing signals that lead to the production
of cytokines and regulating vascular permeability (Table 3).
ECs are therefore critical for vascular homeostasis, and cellular
dysfunction is strongly associated with an increased risk of
cardiovascular events (Lerman and Zeiher, 2005). Generating
novel ECs is a powerful in vitro technique to study cellular
responses under various culture conditions and to develop
constructs for tissue engineering. PSC-ECs are suggested to have
many of the properties of endogenous ECs and their phenotypes
are being investigated to determine whether characteristics of
vascular disease can be reproduced in vitro.

VSMCs have a plethora of roles in the cardiovascular system
from producing extracellular matrix proteins which provide
elasticity and the ability to withstand high circulating pressures
to being involved in arterial repair and regulation of vascular
tone. They are primarily contained in the media layer of blood
vessels (Lacolley et al., 2012). The sympathetic nervous system
regulates vascular tone and primarily acts on VSMCs via ARs.
β2-ARs agonists cause vasodilation and hypotension while α-
AR (α1/2) agonists cause vasoconstriction (Barbato, 2009). Like
PSC-ECs, PSC-VSMCs are an interesting area of research and are
being used in tissue engineering strategies as well as an avenue for
studying human diseases of the vascular smooth muscle (Xiang
and Kobilka, 2003; Salazar et al., 2007). Little has been reported
regarding GPCR function in PSC-VSMC apart from a contractile
response to carbachol, and even then the muscarinic subtype was
not identified (Dash et al., 2015).

CXCR4 Receptor
The SDF-CXCR4 axis plays an important role in stem
cell trafficking, chemotaxis, engraftment, and therapeutic
angiogenesis (Hoggatt et al., 2013). CXCR4 is required for
normal vascularization of the small intestines and mesentery
branching (Tachibana et al., 1998). Murine iPSC-ECs express
abundant CXCR4 protein intracellularly, but not on the cell
surface. When iPSC-ECs were systemically delivered, these did
not home to the site of hindlimb ischemia in vivo. It was also
noted that iPSC-ECs did not respond to chemotactic gradients
of SDF. Overall this suggests that these cells retain an immature
phenotype (Huang et al., 2013). Because GPCR proteins are
typically expressed at low levels in endogenous tissues, the
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TABLE 2 | PSC-CM models of cardiac-related diseases.

Condition Cell source Mutation GPCRs investigated Phenotype References

LEOPARD syndrome hiPSC Protein tyrosine phosphatase,

non-receptor type 11 gene

(PTPN11)

Unknown Entigines, electrocardiographic

abnormalities, ocular

hypertelorism, pulmonary valve

stenosis, abnormal genitalia,

retardation of growth and

deafness

Carvajal-Vergara et al., 2010

Long QT syndromes

(LQTS)

hiPSC A614V missense mutation in the

KCNH2 gene, c.A2987T (N996I)

KCNH2 mutation, KCNH2 G1681A

mutation

β-AR Delayed repolarization of the

heart, arrhythmia

Itzhaki et al., 2011; Matsa et al.,

2011; Bellin et al., 2013

Catecholaminergic

polymorphic ventricular

tachycardia (CPVT)

hiPSC p.F2483I mutation in ryanodine

receptor 2

β-AR Ventricular arrhythmia Kujala et al., 2012; Novak et al.,

2012; Zhang et al., 2013

Dilated cardiomyopathy

(DCM)

hiPSC Point mutation R173W in exon 12

of troponin T2 gene

β-AR Non-ischemic cardiomyopathy Sun et al., 2012; Karakikes et al.,

2015; Wu et al., 2015

Hypertrophic

cardiomyopathy (HCM)

hiPSC Missense mutation on exon 18 of

the β-myosin heavy chain gene

(Arg663His)

β-AR Non-ischemic cardiomyopathy,

enlargement of the cardiac cells

Lan et al., 2013; Han et al., 2014

Arrhythmogenic right

ventricular

cardiomyopathy

(ARVD)

hiPSC c.2484C>T mutation in PKP2 β-AR Ventricular arrhythmia Kim et al., 2013

Timothy syndrome hiPSC Missense mutation in the L-type

calcium channel CaV1.2

Unknown Heart QT prolongation,

arrhythmias, structural cardiac

defects, webbing of fingers and

toes and autism spectrum

disorders

Yazawa et al., 2011; Song et al.,

2015

Barth syndrome hiPSC Mutation of gene encoding tafazzin Unknown Cardiomyopathy, neutropenia,

underdeveloped skeletal

musculature and muscle

weakness, growth delay,

cardiolipin abnormalities

Wang et al., 2014

Diabetic

cardiomyopathy

hiPSC N/A Endothelin, β-AR Cardiomyopathy Drawnel et al., 2014

Duchenne muscular

dystrophy (DMD)

hiPSC Mutation in DMD gene encoding

dystrophin

Unknown Muscle degeneration and

premature death

Lin et al., 2015

Down’s syndrome hESC Trisomy 21 β-AR Delayed physical growth, facial

features, and intellectual disability

Bosman et al., 2015

use of proteomic profiling approaches for identifying further
endothelial-specific GPCRs proves problematic.

Angiotensin Receptor
Ang II stimulates VSMC contraction and aldosterone release with
consequent sodium retention. It also stimulates the production
of ECM proteins and is pro-inflammatory (Wollert and Drexler,
1999). Ang II is the main mediator of this pathway and signals
primarily through the AT1 receptor (Touyz and Schiffrin, 2000).
AT1 receptors are upregulated in response to hypertensive rats
and hypertrophic stimuli (Suzuki et al., 1993). In contrast,
they are down-regulated in systolic heart failure (Rogg et al.,
1996). Overexpressing AT1A in mice resulted in hypertrophy and
fibrosis of myocardial tissue (collagen deposition; Paradis et al.,
2000). AT1A deficient mice, however, were more resistant to the
effects of myocardial ischemia with less ventricular dilatation
and fibrosis and a better recovery in LV function 4 weeks after
infarction (Harada et al., 1999). To date, the effect of Angiotensin
receptors and stem cells has only been investigated in mice. AT1R

stimulation has been found to enhance not only the proliferation
but also the differentiation of undifferentiated pluripotent stem
cells into mesodermal progenitor cells (Ishizuka et al., 2012).

Endothelin Receptor
The endothelin pathway also has a regulatory role in hPSC-
ECs. Differentiation of hESC into endothelial cells (hESC-ECs)
can be a potential source of cells and endothelial factors for
ischemic diseases by supporting angiogenesis and vasculogenesis
(Burdon et al., 1999; Lesman et al., 2010). Protocols for new ECs
from hPSC generated cells with high initial clonal proliferative
potential with self-repopulating activity and in vivo vessel-
forming ability have been devised (Ingram et al., 2004; Földes
et al., 2010; James et al., 2010). However, a number of differences
between hPSC-derived cells and adult ECs have been noted. For
example, we found that hESC-EC failed to release the GPCR
ligand endothelin-1 (ET-1) at levels comparable to human aortic
ECs or to blood outgrowth ECs (Reed et al., 2014). However, in
a separate study it was demonstrated that hiPSC-EC were able
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TABLE 3 | GPCRs present in human endothelial cells.

GPCR Ligand Role References

Platelet

activating

factor receptor

(PAF)

Platelet

activating

factor (PAF)

Vascular permeability,

increasing gap

formation between

endothelial cells

Handley et al.,

1984

Histamine

receptor (H)

Histamine Vascular permeability Bakker et al., 2002

Protease

activated

receptor (PAR)

Thrombin Vascular permeability,

cellular differentiation,

migration, and

proliferation of VSMC,

angiogenesis and

vascular development

Patterson et al.,

2001

S1PR S1P Stabilization of the

endothelial barrier

English et al., 1999

CXCR4 SDF Chemotaxis Hoggatt et al.,

2013

AT Ang Vasodilation, growth

inhibition, vascular tone

Pueyo and Michel,

1997

ET ET-1 Vasoconstriction,

vascular homeostasis

Kedzierski and

Yanagisawa, 2001

to upregulate ET-1 expressionin response to atheroprone flow
(Adams et al., 2013).

Disease Modeling with PSC-ECs and PSC-VSMC
In contrast to myocytes, limited studies using disease models in
EC and VSMC are available. They have been used for vascular
repair: the first model using ESC-ECs has recently been evaluated
in myocardial infarction and hindlimb ischemia as a therapeutic
option to promote angiogenesis and neovascularization (Cho
et al., 2007; Yu et al., 2009). iPSC-ECs derived from diet-
induced obese mice exhibits endothelial dysfunction and may
not be suitable for therapeutic transplantation in a hindlimb
ischemia model. Furthermore, the administration of statins
reversed endothelial dysfunction both in vitro and in vivo (Gu
et al., 2015).

Recently, hiPSC lines were differentiated from patients with
supravalvular aortic stenosis (William’s syndrome). The VSMCs
displayed a blunted maturation profile with fewer organized
smooth muscle α-actin filament bundles networks and also had
a higher proliferation rate (a hallmark of the disease). Reversion
to a wild type phenotype was achieved by the addition of
recombinant elastin protein or enhancing small GTPase RhoA
signaling (Ge et al., 2012). In addition, hiPSC-VSMCs have
been derived from patients with Hutchinson-Gilford progeria
syndrome (HGP), a disease carrying a lamin A mutation and
increased progerin levels, leading to premature aging and early
mortality by myocardial infarction/stroke. The differentiated
VSMCs contained high levels of progerin and also exhibited
a new phenotype, calponin-1 staining inclusion bodies in the
cytoplasm. Additionally, the VSMCs had nuclear abnormalities
and increased DNA damage compared to controls (Zhang et al.,
2011). To date, the GPCR related signaling of these human
diseases have not been clarified.

SUMMARY: FOCUSSED TARGETING OF
GPCR SIGNALING IN HUMAN
CARDIOVASCULAR SYSTEM

hPSCs show potential as a platform for both studying disease as
well as an autologous source of cells for possible transplantation
therapy (Lee et al., 2010a). Particularly for cardiomyocytes, where
adult cells are difficult to manipulate in culture and options
for cell lines are severely limited, the advent of disease-specific
hiPSC-CM represents a great step forward. Differentiation
methods are improving in efficiency and reproducibility.
However, models should never be accepted uncritically, and
a more sophisticated dissection of their fidelity has begun to
appear. One major limitation is the greater resemblance of hPSC-
CM to immature cardiomyocytes, although this may also be a
reflection of the general differences induced by 2D cell culture.
This could present a problem for models of late onset diseases.
A wide array of approaches are being undertaken to improve
maturation of these cells in an attempt to provide better models
of disease. These include; prolonged time in culture (Ivashchenko
et al., 2013), application of triiodothyronine (T3; Lee et al., 2010b;
Ivashchenko et al., 2013; Yang et al., 2014; Ribeiro et al., 2015),
manipulation of culture substrate (Rao et al., 2013; Tallawi et al.,
2015), 3D culture (Schaaf et al., 2011) and long term electrical
pacing (Lieu et al., 2013; Hirt et al., 2014). hPSC-EC also display
an immature phenotype (Huang et al., 2013), which still requires
further investigation.

Another limitation is the use of correct controls, particularly
for disease models. Obtaining control material from familial
relatives of patients can prove difficult, which makes drawing
solid conclusions from these disease models problematic. Gene
editing technology approaches, such as the clustered regularly
interspaced short palindromic repeats (CRISPR) system and zinc
finger nucleases(ZFN) have arisen as useful tools to generate
control lines on the same genetic background as the diseased
cells. Alternatively, recreation of disease causing mutations
in wild type cell lines using these technologies is an option
and will allow multiple mutations to be compared in a more
controlled manner. Additionally, identifying pharmacologically-
relevant phenotypes in these models is important. It also
remains to be determined whether monogenic disease and
pharmacological models are comparable in cardiovascular
diseases. The expected phenotype is not always present, for
example in cardiac hypertrophy (Földes et al., 2014), which may
be a limitation of the in vitro models. Modeling conditions
with a broader tissue based-phenotype including scar formation,
fibrosis and tissue disarray are also not possible using hPSC-
CM in 2D culture, although the reconstruction of 3D tissue
models may allow advances in this area. In particular, a
greater understanding of GPCR signaling in hPSC-CM is
needed to ensure accurate disease modeling and to determine
suitability for use in pharmaceutical compound screening. More
focussed investigation into the expression profile and functional
characterization of GPCRs in PSC-derived cardiovascular
cells is required to establish their resemblance to in vivo
models.
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