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The body-wall musculature of adult planarians consists of intricately organized muscle

fibers, which after amputation are regenerated rapidly and with great precision through

the proliferation and differentiation of pluripotent stem cells. These traits make the

planarian body-wall musculature a potentially useful model for the study of cell

proliferation, differentiation, and pattern formation. Planarian body-wall muscle shows

some ambiguous features common to both skeletal and smooth muscle cells. However,

its skeletal nature is implied by the expression of skeletal myosin heavy-chain genes and

the myogenic transcription factor myoD. Where and when planarian stem cells become

committed to the myogenic lineage during regeneration, how the new muscle cells are

integrated into the pre-existing muscle net, and the identity of the molecular pathway

controlling the myogenic gene program are key aspects of planarian muscle regeneration

that need to be addressed. Expression of the conserved transcription factor myoD has

been recently demonstrated in putative myogenic progenitors. Moreover, recent studies

suggest that differentiated muscle cells may provide positional information to planarian

stem cells during regeneration. Here, I review the limited available knowledge on planarian

muscle regeneration.

Keywords: planarian, myosin heavy chain, MyoD, regeneration, stem cells, myogenesis, myocytes, positional

information

INTRODUCTION

In the last 10–15 years stem cell-based regenerative medicine has emerged as a vigorous research
field within the biological sciences (Atala et al., 2011). The obvious long-term goal is to develop
treatments for diseases and traumatic injuries for which no cure is currently available. One of the
consequences of growing interest in regenerative medicine is that the scientific community has
refocused its attention on animal models capable of regenerating different cell types, tissues, organs,
and structures under natural conditions. Vertebrates in general, and mammals in particular, have
very limited regenerative capabilities. However, compared with other tissues, mammalian skeletal
muscle shows a significant degree of repair and regeneration. This capacity is conferred by muscle
stem cells, known as satellite cells, which are usually quiescent but can be activated in response to
injury or stress to proliferate and give rise to muscle progenitors that differentiate into new muscle
tissue (see Dumont et al., 2015 for a recent review). Quiescent satellite cells express the gene Pax7
and have been shown in several studies to be essential for skeletal muscle regeneration (Lepper
et al., 2011; Sambasivan et al., 2011). Among vertebrates, salamanders are well known for their limb
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regenerating abilities. Remarkably, a recent study reported
that 2 different species of salamanders use different strategies
to regenerate their skeletal muscle (Sandoval-Guzmán et al.,
2014): while Pax7-positive satellite cells are the main source of
regenerated muscle in axolotls, most new muscle fibers in newts
are derived from the dedifferentiation of pre-existing muscle cells
that re-enter the cell cycle to give rise to new muscle cells.

Among the several regeneration models commonly used,
freshwater planarians are unique in that (i) they can regenerate
an entire animal from a tiny portion of the body; and (ii) can
do so thanks to the presence of a population of adult somatic
pluripotent stem cells (Reddien and Sánchez Alvarado, 2004;
Baguñà, 2012; Rink, 2013). These animals are thus an attractive
model for the in vivo study of the behavior of totipotent stem
cells (Gentile et al., 2011). Here, I review the rather scarce
current knowledge of planarian muscle and its regeneration
and report on the existing tools used to study how planarian
stem cells are regulated in vivo to give rise to new muscle cells
during regeneration and daily cell turnover. Moreover, I discuss
recent data suggesting that planarian muscle fibers, in addition
to providing skeletal support, may play a key role in providing
positional information to stem cells so they differentiate into the
correct cell types and tissues.

PLANARIAN MUSCULATURE

Platyhelminthes are acoelomate, triploblastic, bilaterally
symmetrical animals that lack circulatory, skeletal, and
respiratory systems. Their bodies are surrounded by a dense
and compact net of subepidermal muscle fibers arranged in
different orientations. Locomotion in these planarians basically
occurs through ciliary gliding. Muscles may support this
locomotion and are mainly used to orientate the direction of
the movement. Moreover, the muscle network acts against
the hydrostatic skeleton consisting of the fluids of the gut,
parenchymal cells, and other organs (Clark, 1964; Rieger et al.,
1994). The musculature thus mainly serves to maintain the
shape and integrity of the body. In addition to the body-wall
musculature, Platyhelminthes possess muscle fibers around the
digestive system, reproductive organs, and mouth opening, and
within the pharynx.

The body-wall musculature of Platyhelminthes consists of
a variable number of layers of muscle fibers lying in different
orientations, and its structure varies depending on body size
(for reviews see Rieger et al., 1991; Hooge, 2001). Small
Platyhelminthes such as acoels and catenulids have a simple
body-wall musculature, consisting of an outer layer of circular
fibers and an internal layer of longitudinal fibers (Crezée, 1975;
Moraczewski, 1981). Larger Platyhelminthes possess a thicker
musculature, in many cases accompanied by a layer of diagonal
fibers between the outer and inner muscles (Rieger et al., 1994).
On the other hand, the body-wall musculature of most polyclads
consists of up to 5 or 6 layers of fibers (Prudhoe, 1985). The
origin of the diagonal muscle fibers is not entirely clear: whereas
Westblad (1949) proposed that these fibers are produced by the
longitudinal musculature, Riser (1987) maintained that they are
derived from circular muscle. According to Clark (1964) the

diagonal fibers may act to flatten the body in larger platyhelminth
species with very extensible bodies (e.g., triclads). In general, the
body-wall musculature of the ventral aspect is more developed
than that of the dorsal aspect.

The body-wall musculature of the freshwater planarians
Dugesia trigrina and Schmidtea mediterranea consists of 4 layers
of fibers: circular, longitudinal, diagonal, and longitudinal fibers
(from outside to inside). The inner longitudinal fibers are thicker
than the outer ones. These layers are compressed within a region
of 7–12µm thick below the epidermis (Cebrià et al., 1997; Cebrià,
2000). In addition, a large number of dorsoventral fibers connect
dorsal and ventral body surfaces. These fibers are more abundant
in the tips and margins of the animal than in the central region of
the body. All these fibers are arranged to form a dense, compact
muscle net (Cebrià et al., 1997; Figure 1). The pattern of the inner
longitudinal fibers differs between the dorsal and ventral surfaces
of the anterior tip of the animal; dorsally, these fibers appear
to converge toward a central zone at the anterior tip, whereas
the ventral fibers run in parallel or even diverge in a fan-shaped
pattern as they approach this tip (Figure 1).

PLANARIAN MYOSIN HEAVY-CHAIN
GENES

Myosin proteins are highly conserved in all eukaryotic cells, in
which they provide the motor force necessary for different kinds
of movements, including cytokinesis, phagocytosis, organelle
movement, and muscle contraction (Hartman and Spudich,
2012). Among the different types of myosins, myosin II proteins
include those involved in muscle cell contraction. These consist
of 2 heavy and 4 light chains. Two different myosin heavy-
chain (mhc) genes encoding 2 different muscle fiber types have
been identified in freshwater planarians. One is expressed in
the muscle fibers of the pharynx, the muscles surrounding the
gastrodermis, in a few scattered cells throughout the body-wall,
and in some muscle fibers in the mesenchyme at the base of the
pharynx. The other mhc gene is expressed in the subepidermal
body-wall musculature and in the dorsoventral fibers (Kobayashi
et al., 1998; Cebrià et al., 1999; Cebrià, 2000; Orii et al., 2002;
Figure 2). The MHC protein possesses ATPase activity which
provides the energy required for muscle contraction. Since the
contraction velocity and ATPase activity of a muscle fiber can
vary depending on its mhc isoform composition (Bárány, 1967),
it is possible that the different expression patterns of planarian
mhc genes confer different physiological properties to planarian
muscle fibers. Accordingly, each MHC isoform may mediate
different biological functions, such as locomotion (body-wall
muscle) or peristaltic movements during food intake (pharynx
and enteric muscle).

Vertebrates possess 3 main types of muscle: skeletal, cardiac,
and smooth. Most invertebrates also have striated and smooth
muscles, and in some cases, an oblique musculature with
intermediate features. The muscle of planarians (and other
Platyhelminthes) exhibits several ambiguities: like vertebrate
smooth muscle cells planarian muscle cells are mononucleated,
and can range from 150–200µm in length and 5–10µm in
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FIGURE 1 | Body-wall musculature of Schmidtea mediterranea. (A) Live animal. (B–G) Whole-mount immunostaining with TMUS-13 antibody, which recognizes

the myosin heavy-chain (MHC) protein. The hole in (E) corresponds to the mouth opening. Scale bar: 1mm for (A) and 50µm for (B–G). Image adapted from Cebrià

(2000).

width (MacRae, 1963; Baguñà and Romero, 1981). At the
physiological level, the lack of inhibition of ATPase activity at
low pH values shown by Girardia tigrina muscle is a feature
typical of the mature smooth fibers and embryonic skeletal
fibers of vertebrates (Sarnat, 1984). At the ultrastructural level,
the muscle myofilaments of many Platyhelminthes are arranged
in a configuration typical of vertebrate smooth muscle, with
dense bodies irregularly distributed (Rieger et al., 1991). In
some cases however, these dense bodies are substituted by other
structures known as Z bars, which are also irregularly distributed
(MacRae, 1963, 1965; Morita, 1965; Reuter, 1977; Hori, 1983;
Ehlers, 1985). These Z bar-containing muscles can in fact be
considered obliquely striated (Lanzavecchia, 1977; Ehlers, 1985).
Moreover, electron microscopy analyses of muscles with dense
bodies reveal an oblique alignment (MacRae, 1965; Rieger and
Mainitz, 1977).

Although planarian mhc genes are expressed in different
muscle types with different physiological functions, phylogenetic
analyses indicate that they are more similar to mhc genes in
striated muscle from other animals, including vertebrates, than
to smooth muscle-typemhc genes (Kobayashi et al., 1998; Cebrià,
2000).

PLANARIAN MUSCLE REGENERATION

Freshwater planarians are mainly known for their extraordinary
regenerative capabilities. These animals can regenerate an entire
organism, including a de novo central nervous system, from a tiny
piece of their bodies in only a few days (Newmark and Sánchez
Alvarado, 2002; Reddien and Sánchez Alvarado, 2004; Cebrià
et al., 2010). These abilities are conferred by the presence of a
unique population of pluripotent adult stem cells called neoblasts
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FIGURE 2 | SmedmhcA expression in intact planarians. In situ hybridization on sagittal histological sections. The cartoon represents the level and orientiation of

the sagittal sections in (A–D). The pharynx (ph) and the higly branched intestine (i) are highlighted. (A) The SmedmhcA gene is expressed in the body-wall musculature

and dorsoventral fibers. No expression is detected in the pharynx (ph), around the intestinal ducts (i), or around the mouth opening (black arrow). (B) Higher

magnification images reveal that ventral body-wall muscle is more developed than the corresponding dorsal muscle. (C) The dorsoventral muscle fibers attach to the

body-wall surface as individual myofibers (arrowheads). (D) The nuclei of the dorsoventral muscle fibers (black arrows) are aligned and closer to the dorsal surface.

Red arrows point to body-wall musculature. Green arrows poin tto dorsoventral fibers. In all figures, the anterior end is oriented to the left and the dorsal side to the

top. Scale bars: (A), 200µm; (B), 100µm; (C,D), 50µm. Image adapted from Cebrià (2000).

(Newmark and Sánchez Alvarado, 2000; Baguñà, 2012; Rink,
2013; Adell et al., 2014). Upon amputation, neoblasts around
the wound proliferate and give rise to the regenerative blastema,
in which they differentiate into all the cell types required to
restore the missing structures. Thus, unlike other organisms in
which muscle regeneration depends on either the reactivation of
unipotent stem cells (i.e., satellite cells) or the dedifferentiation
of preexisting muscle cells that then re-enter the cell cycle to
produce an expanded population of new muscle cells and fibers
(Lepper et al., 2011; Sambasivan et al., 2011; Sandoval-Guzmán
et al., 2014), newmuscle cells in planarians arise from pluripotent
neoblasts.

Planarian Neoblasts and Muscle
Progenitors
Neoblasts are the only dividing cells in planarians and are
basically defined by morphological criteria (small round cells
of 5–10µm of diameter with a very large nucleus and a
scant cytoplasm) and by the expression of genes and proteins
associated with cell division including histone H2B, PCNA,
phosphohistone H3, and Smedwi-1 (a piwi gene homolog;
Reddien et al., 2005a). However, recent studies have shown that
neoblasts are in fact a heterogeneous cell population consisting
of truly pluripotent stem cells, the c-neoblasts (Wagner et al.,
2011) as well as distinct subpopulations of lineage-committed

progenitor cells (Scimone et al., 2014). These progenitors have
been defined based on the expression of the neoblast marker
Smedwi-1 and of specific transcription factors whose silencing
impairs the regeneration of different cell types (Scimone et al.,
2014). Thus, for example, a FoxA homolog is expressed in
differentiated pharynx cells (Smedwi-1 negative) and in Smedwi-
1-positive cells in the mesenchyme surrounding this organ.
These FoxA/Smedwi-1 cells are lineage-specific progenitors;
RNAi silencing of FoxA inhibits the differentiation of a new
pharynx during regeneration (Adler et al., 2014). As described
for pharyngeal progenitors, a collection of other transcription
factors define different lineages, such as those that give rise to
photoreceptors (Lapan and Reddien, 2011, 2012), protonephridia
(Scimone et al., 2011), and several neuronal subpopulations
(Cowles et al., 2013; Currie and Pearson, 2013; März et al.,
2013; Scimone et al., 2014). A myoD homolog has been
identified in the muscle lineage in Schmidtea mediterranea
(Cebrià, 2000). myoD belongs to a family of well-known and
evolutionarily conserved bHLH transcription factors that plays
a key role in the commitment and differentiation of the
skeletal myogenic lineage (Davis et al., 1987; Weintraub et al.,
1991; Buckingham and Rigby, 2014). In planarians myoD is
expressed in discrete subepidermal cells throughout the animal
(especially on the ventral surface) that correspond to the body-
wall musculature (Cebrià, 2000; Reuter et al., 2015), suggesting
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that planarian muscle is primarily skeletal in nature.myoD is also
expressed in neoblasts, strongly suggesting that it is expressed in
myogenic progenitors (Scimone et al., 2014). However, additional
functional data is necessary to fully determine the role of
myoD in planarian muscle differentiation. To date, the only
relevant data indicate that planarians can regenerate after RNAi
silencing of myoD, but form pointed blastemas and heads
(Reddien et al., 2005b), possibly due to defects in the body-wall
musculature.

Early Muscle Differentiation during
Blastema Formation
Previous studies based on morphological criteria and electron
microscopy suggested that the first myogenic cells within the
blastema are detectable on days 2–3 of regeneration (Sauzin,
1967; Pedersen, 1972; Hori, 1983; Morita and Best, 1984).
More recently however, the use of the planarian monoclonal
antibody TMUS-13 (Romero et al., 1991; Bueno et al., 1997a)
against myosin heavy chain (MHC) clearly demonstrated that
differentiating myocytes are present as early as day 1 of
regeneration in a narrow strip of pre-existing tissue adjacent
to the site of amputation (Cebrià et al., 1997). As regeneration
proceeds, these myocytes also appear within the blastema,
although some appear to intercalate with the pre-existing
musculature outside the blastema (Cebrià et al., 1997). Myocytes
at different stages of differentiation are observed within the
blastema (Cebrià et al., 1997).

In systems in which regeneration involves the formation of
a blastema within which the missing structures are formed,
2 main scenarios are proposed regarding the cellular nature
of the blastema: (i) blastema cells are naïve undifferentiated
cells that are committed and differentiate within the blastema;
or (ii) blastema cells are a heterogeneous population of cells
which enter the blastema already committed to specific cell
lineages. Recent data from different models favor the latter
scenario (Tanaka and Reddien, 2011; Reddien, 2013). Multiple
studies characterizing the spatial and temporal distribution
of distinct lineage-committed cell populations in planarians
support this specialized progenitor model (Reddien, 2013;
Scimone et al., 2014). Furthermore, this view is in agreement
with ultrastructural observations indicating that neoblasts
with a clear undifferentiated morphology are usually detected
outside of the blastema, while those within the blastema
show signs of differentiation (Morita et al., 1969; Pedersen,
1972; Hori, 1992). Morita et al. (1969) and Pedersen (1972)
also described small groups or clusters of neoblasts with no
morphological signs of differentiation in the boundary separating
the blastema from the rest of the animal. Studies of the
body-wall musculature using immunostaining with the TMUS-
13 antibody against MHC and in situ hybridization for the
myoD homolog also support this model: the first differentiating
cells expressing these markers are seen at very early stages of
regeneration in the pre-existing tissues adjacent to the blastema
(Cebrià et al., 1997; Cebrià, 2000). As regeneration proceeds
these myocytes migrate into the blastema where they fully
differentiate to regrow the body-wall musculature (Cebrià et al.,
1997).

Pharyngeal Muscle Regeneration
The planarian pharynx is a muscular tube delimited by external
and internal monostratified epithelia. Circular and longitudinal
fibers are found beneath these 2 epithelia, which are also
connected by radial muscle fibers (Bueno et al., 1997a,b).
This organ does not contain neoblasts and therefore pharynx
regeneration and cell renewal depends on the entry of neoblasts
from the mesenchyme. In situ hybridization for the mhc gene
has shown that very early during the regeneration of new
pharyngeal muscle, small mhc-expressing cells appear as early
as days 1–2 in the mesenchymal space in a region defining
the pharynx rudiment (Kobayashi et al., 1999). Importantly,
throughout the entire process by which this rudiment grows into
a new pharynx, mhc-expressing cells are consistently detected in
the mesenchyme surrounding the pharynx rudiment as well as
inside the rudiment itself (Kobayashi et al., 1999; Cebrià, 2000;
Figure 3). These results suggest that during regeneration the
new pharyngeal muscle cells are derived from the neoblasts in

FIGURE 3 | Gtmhc expression in the regenerating pharynx. The cartoon

represents the level and orientiation of the sagittal sections in (A,B). In situ

hybridizations for a myosin heavy chain gene on sagittal sections of

regenerating tails from the species Girardia tigrina, 6 days after amputation. (A)

Lateral section showing an accumulation of myocytes (arrow) in the

mesenchyme surrounding the pharynx. (B) Central section containing the

regenerated pharynx (ph) with myocytes evident in the mesenchyme at its

base (arrows). Scale bar: 50µm. Image adapted from Cebrià (2000). Anterior

to the right. Dorsal to the top.
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the mesenchymal space and migrate into the pharynx rudiment
as pre-committed muscle progenitors. This scenario resembles
that described above for the body-wall musculature, albeit
with one important difference: whereas the myocytes detected
outside the blastema during body-wall muscle regeneration
are already positive for MHC protein (Cebrià et al., 1997),
those surrounding the pharynx rudiment express the mhc
gene but are not positive for MHC protein (Bueno et al.,
1997b). The first myocytes expressing MHC are only detected
within the pharynx rudiment at 5–6 days of regeneration
(Bueno et al., 1997b), suggesting that regulation of MHC
protein production may depend on different spatial and/or
temporal cues in these 2 muscle types. It should be noted that
although the TMUS-13 antibody recognizes all planarian muscle,
the mhc genes expressed in the body-wall and pharynx are
distinct.

In conclusion, more detailed studies are required to confirm
these observations and unambiguously trace the origin of the new
muscle progenitors, their migration, and ultimate fates inside the
blastema, and to elucidate the exact role of myoD in planarian
muscle determination and differentiation.

RESTORATION OF THE BODY-WALL
MUSCLE PATTERN

During regeneration, the intricate muscle fiber pattern of the
body-wall musculature is not only fully restored, but also
becomes a perfect extension of the pre-existing musculature.
How this occurs remains unclear. As described above (Figure 1)
the muscle pattern at the tip of the head, especially that of
the longitudinal fibers, differs between the dorsal and ventral
surfaces. During anterior regeneration morphological differences
are also observed between dorsal and ventral sides of the
blastema (Cebrià and Romero, 2001). Thus, at day 1 a “hole”
lacking muscle fibers and delimited by disorganized pre-existing
fibers is evident in the anterior-most part of the dorsal region
(Figure 4A). By contrast, the muscle fibers of the ventral surface
show a much more organized pattern, with longitudinal fibers
running in parallel up to the anterior-most tip (Figure 4B), as
also observed in intact heads. By day 2, pre-existing longitudinal
fibers appear to elongate into the blastema, which retains a
disorganized pattern (Figure 4C, arrows). At this stage, ventral
fibers are not observed within the blastema. By day 3, the
dorsal muscle fibers show an incipient arrangement resembling
the pattern observed in intact animals, with longitudinal fibers
converging centrally. New circular fibers are observed in the
ventral region of the blastema (Figures 4E,F). In the following
days the muscle pattern is completely restored (Cebrià and
Romero, 2001).

It remains unclear whether the differences observed in the
pattern and dynamics of the early regeneration of dorsal and
ventral fibers are related to wound healing. Chandebois (1976,
1980) suggested that during anterior regeneration the dorsal
epithelium expands to heal the wound whereas in posterior
regenerant blastema the ventral epithelial cell population expands
to heal the wound. Interestingly, during posterior regeneration

in the flatworm Macrostomum spp. the wound appears to shift
ventrally, resulting in an opposing dynamic to that described
for anterior regeneration in planarians, in which the dorsal pre-
existing fibers reach the caudal-most end of the posterior tip and
a ventral “hole” containing very few muscle fibers is observed
(Salvenmoser et al., 2001). Therefore, the dynamics of body-wall
muscle pattern restoration may differ in anterior versus posterior
regeneration. Further studies will be necessary to determine
whether these differences are observed within the same animal,
as to date anterior regeneration has been described in the
planarian Schmidtea mediterranea and posterior regeneration in
Macrostomum spp. If these differences do indeed exist it would
be of interest to analyze in detail whether the manner in which
wound healing occurs in anterior and posterior regions plays a
role in determining polarity during regeneration, as proposed by
Chandebois (1976, 1980).

Finally, it seems clear that in addition to the differentiating
myocytes derived from the stump, pre-existing muscle fibers are
always found within the blastema during regeneration (Cebrià
et al., 1997). Longitudinal fibers appear to grow from the
truncated pre-existing fibers, while the circular fibers appear de
novo within the blastema (Cebrià and Romero, 2001). These pre-
existing fibers may play a role in guiding the entering myocytes
and/or mediating their arrangement in order to restore muscle
pattern. For example, in the flatworm Macrostomum spp., new
circular fibers develop frommyocytes oriented perpendicularly to
the longitudinal fibers (Salvenmoser et al., 2001). This predicted
instructive/guiding role of the pre-existing muscle fibers for
the restoration of the planarian body-wall musculature pattern
would be in agreement with several studies in other models
in which muscle founders cells or muscle cells serve also as a
template or cues for the subsequent development and patterning
of the musculature and other cell types (Ho et al., 1983; Jellies and
Kristan, 1991; Farrell et al., 1996; Lee et al., 2013).

MUSCLE CELLS MAY PROVIDE
POSITIONAL INFORMATION DURING
REGENERATION

During regeneration in planarians (and during daily cell turnover
in uncut animals), pluripotent neoblasts must differentiate into
all missing cell types. This process needs to be tightly regulated
to ensure differentiation into the exact cells types required in
each territory. As many cell types and organs are differentially
distributed along the anteroposterior (AP) and dorsoventral
(DV) axes, neoblasts need to receive precise information about
the specific tissues that are missing in the different regenerative
contexts (i.e., anterior vs. posterior regeneration). Little is known
about how positional identities are maintained and re-established
during planarian regeneration. Some findings suggest that such
positional information resides in differentiated cells (Kato et al.,
2001). Studies of the participation of the Wnt/β-catenin, BMP,
and FGFR signaling pathways in axial polarity and patterning
have identified a collection of genes with key roles in these
events (Cebrià et al., 2002; Kobayashi et al., 2007; Molina et al.,
2007, 2011; Orii and Watanabe, 2007; Reddien et al., 2007;
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FIGURE 4 | Planarian body-wall muscle regeneration. Whole-mount immunostaining with TMUS-13 antibody during head regeneration. Planarians were

amputated at a pre-pharyngeal level as indicated in the cartoon. Head regeneration from the trunk piece was monitored. (A,B) Show dorsal and ventral views,

respectively, of 1-day regenerants. A dorsal “hole” lacking fibers is evident in (A). (C,D) Show dorsal and ventral views, respectively, of 2-day regenerants. Pre-existing

dorsal longitudinal fibers enter the blastema (arrows in C). The ventral region of the blastema contains mainly longitudinal fibers (arrows in D). (E,F) Show dorsal and

ventral views, respectively, of 3-day regenerants. Dorsally, the muscle fibers converge at the center of the blastema, restoring the pattern observed in intact planarians.

Ventrally, new circular muscle fibers are evident (arrow). Scale bar: 50µm. Image adapted from Cebrià and Romero (2001).

Gurley et al., 2008; Iglesias et al., 2008; Petersen and Reddien,
2008, 2011; Felix and Aboobaker, 2010; Gaviño and Reddien,
2011). Because these genes show a regionalized expression
along the body axes and their silencing by RNAi results in
polarity and patterning defects they are collectively described as
“position control genes” (PCGs) (Reddien, 2011). Remarkably,
most of these genes display subepidermal expression and very
often co-localize (Witchley et al., 2013). More interestingly,
PCGs are co-expressed in 95.7–99.8% of all muscle cells
analyzed from different body regions, including body-wall,
enteric, and pharyngeal muscle cells (Witchley et al., 2013).
During regeneration the polarity determinants notum (Petersen
and Reddien, 2011) and Wnt1 (Adell et al., 2009; Petersen

and Reddien, 2009) are rapidly induced in muscle cells. This
induction occurs in differentiated pre-existing muscle cells,
dynamically altering the expression of PCGs in these cells in
response to amputation. Moreover, planarian muscle cells can
re-adjust the PCG expression profile to correspond to the area
of the body axis in which they are positioned after amputation
(Witchley et al., 2013; Reuter et al., 2015). Based on these
observations a model has been proposed whereby planarian
muscle cells, by expressing different combinations of PCGs,
provide positional information to the surrounding neoblasts,
which in turn differentiate into the required tissues and organs in
response to specific cues arriving along the body axes (Witchley
et al., 2013).
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It will be interesting to test this model in future studies,
for example by characterizing differences in PCG expression
in specific muscle cells from different regions in various
regenerative contexts, or by analyzing the regenerative
capabilities of muscle-deficient planarians, if possible.

CONCLUSIONS AND PERSPECTIVES

Freshwater planarians have a complex body-wall musculature
that functions mainly as a skeletal support and during
locomotion. In addition, the digestive system consists of a highly
muscular tubular organ, the pharynx, and a highly ramified
gut surrounded by enteric musculature that mediates peristaltic
movements during food intake and digestion. At the gene
expression level the 2 muscle types express distinct forms of
myosin heavy-chain genes. Planarians can regenerate and renew
any type of cell and tissue through the differentiation of neoblasts,
a population of adult pluripotent stem cells. These animals thus
constitute an ideal model for the in vivo study of how these
stem cells become committed and differentiate into the muscle
lineage during regeneration. Preliminary results suggest that
neoblasts become committed to the myogenic lineage before
they enter the regenerative blastema, supporting the recently
proposed existence of specialized neoblasts. However, definitive
experimental proof is required, preferably obtained by studying
the distribution and dynamics of myoD-positive cells during
regeneration. Similarly, the process by which new muscle fibers
are integrated into the pre-existing muscle and the role of these
pre-existing fibers as a scaffold during the regenerative process
needs to be better characterized. Planarians are also useful for
the study of the behavior of stem cells and muscle progenitors as
animal’s age, a line of investigation that may help explain the loss
of muscle stem cells observed in aging mammals (Sousa-Victor
et al., 2015). Finally, recent studies have suggested that planarian
muscle cells may provide positional information to stem cells,
thus regulating their fates.

Therefore, future studies should address some of the
important lacuna that we have in the field mostly related to the
regulation of the planarian stem cells and muscle progenitors.

How conserved is the myogenic program in planarian stem cells
compared to other systems? Is planarian myoD sufficient for
the differentiation of the myogenic lineage? What about other
important transcription factors such as Mef2 genes and pax7
required for myogenesis in other models? Also, the fact that
mature muscle cells could provide with positional information
to planarian stem cells may be of great relevance to understand
the regulation of those stem cells, as the existence of a niche for
their activity has not been shown so far in these animals.

Finally, recent studies have shown that, in mammals,
stem cells may have different behaviors under homeostatic
or regenerative scenarios meaning that different signals from
their changing environments trigger specific behaviors in each
situation (Donati and Watt, 2015). In this sense, planarians are
an excellent model in which to study in vivo how stem cells and
muscle progenitors could be differently regulated in these two
scenarios (Adler and Sánchez Alvarado, 2015) and to determine
what are the signals that induce the myogenic lineage in them. It
has been suggested that differentiating signals for the neoblasts
probably come from differentiated tissues (Adler and Sánchez
Alvarado, 2015) but, where do you they come from for the
myogenic lineage?

In conclusion, planarian muscle may represent an attractive
paradigm in which to study basic aspects of regeneration
including stem cell biology, pattern formation, and positional
information with further implications for the field of regenerative
medicine.
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