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Ordinary differential equation models have become a wide-spread approach to

analyze dynamical systems and understand underlying mechanisms. Model parameters

are often unknown and have to be estimated from experimental data, e.g., by

maximum-likelihood estimation. In particular, models of biological systems contain a

large number of parameters. To reduce the dimensionality of the parameter space,

steady-state information is incorporated in the parameter estimation process. For

non-linear models, analytical steady-state calculation typically leads to higher-order

polynomial equations for which no closed-form solutions can be obtained. This can

be circumvented by solving the steady-state equations for kinetic parameters, which

results in a linear equation system with comparatively simple solutions. At the same

time multiplicity of steady-state solutions is avoided, which otherwise is problematic

for optimization. When solved for kinetic parameters, however, steady-state constraints

tend to become negative for particular model specifications, thus, generating new types

of optimization problems. Here, we present an algorithm based on graph theory that

derives non-negative, analytical steady-state expressions by stepwise removal of cyclic

dependencies between dynamical variables. The algorithm avoids multiple steady-state

solutions by construction. We show that our method is applicable to most common

classes of biochemical reaction networks containing inhibition terms, mass-action and

Hill-type kinetic equations. Comparing the performance of parameter estimation for

different analytical and numerical methods of incorporating steady-state information, we

show that our approach is especially well-tailored to guarantee a high success rate of

optimization.

Keywords: non-linear ODE models, parameter estimation, biochemical reaction networks, steady-state, positive

solutions, multiplicity, multi-stability, success rate

1. INTRODUCTION

Dynamical systems are frequently modeled by systems of ordinary differential equations
(ODEs). Homogeneously distributed molecules are treated as continuous quantities
interacting with each other according to kinetic laws, e.g., mass-action or Michaelis-Menten
kinetics.
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A typical ODE system

ẋ = f (x, p, u(t)) , x(0) = x0 (1)

determines the time-evolution of an N-dimensional state vector
x(t). Here, p ∈ R

M
+ denotes the M-dimensional vector of non-

negative kinetic parameters. The vector x0 ∈ R
N
+,0, where

R+,0 = R+ ∪ {0}, gives the set of initial conditions. The kinetic
parameters and initial conditions together span the space of
model parameters θ = (p, x0). The explicit time-dependency via
u(t) corresponds to external driving forces, like drug stimuli in
biological dynamic systems.

In many fields where ODE models are used, parameter
values are not a priori known and have to be estimated from
experimental data. Commonly, this is achieved by minimizing
an objective function g(θ,D) that penalizes weighted differences
between model prediction x(t) and data D, e.g., by maximum-
likelihood estimation. For the case of non-linear ODE systems,
several local optima may exist. In order to find the global
optimum, several optimization methods, e.g., particle swarm
optimizers (Peng et al., 2010) or simulated annealing (Xiang
and Gong, 2000), include stochasticity to escape local minima.
Compared to that, deterministic algorithms may stick to local
optima during optimization. On the other hand, gradient
and Hessian information of the objective function can be
incorporated, increasing the performance of optimization by
a multiple. Combining the advantages of derivative-based
optimization and random sampling, a multi-start deterministic
optimization approach has proven to yield superior overall
performance for our problem class (Raue et al., 2013).
Throughout this work, we perform optimization by means of a
trust-region optimizer from multiple starting positions.

Specially in models of biological systems, available data is
sparse and parameters are often non-identifiable. Apart from
that, the high-dimensional parameter space hampers parameter
sampling. In order to reduce the number of parameters, the
system is assumed to initially (t = 0) be in a steady-state which is
determined by the constraint equation

f (x0, p, 0) = 0 . (2)

As a standard approach, the steady-state constraint is solved for
the initial values x0. Since Equation (2) is in general non-linear,
this may lead to higher-order polynomial equations for which
no general solution is available. Even for a rather simple case
of quadratic or cubic equations, solutions are not unique and
optimization would have to be performed for all possibilities.
Another aspect of steady-state calculation are negative solutions
for x0 and p that appear for certainmodel specifications. Negative
solutions are not only contradicting the biological setting with
positively defined concentrations and kinetic parameters but also
constitute a problem for optimization. Negative parameter values
change the sign of damping terms of the ODE’s right-hand side
whichmight lead to rapidly growing solutions and an abort of the
optimization before an optimum was reached.

In order to obtain a high convergence probability for the
optimization of randomly chosen initial parameter samples, our

aim is to derive non-negative, analytical steady-state expressions,
while multiple steady-state expressions are likewise circumvented
by a proper choice of kinetic and initial value parameters for
which Equation (2) is solved.

Over the last decades, steady-state analysis has been addressed
by many algorithms and methods. In the following, we give
an overview of existing approaches and summarize their
applicability to different types of model equations with a special
focus on parameter estimation in ODE models, see Table 1.

The earliest-proposed algorithm for deriving steady-states in
enzyme-catalyzed systems being described by simple mass-action
rules was developed by King and Altman (1956). In the original
paper, however, interactions that do not involve the enzyme
were not allowed which prohibits applicability to most of today’s
systems with proteins mediating the activation of other proteins
without being part of the reaction. After Chemical Reaction
Network Theory (CRNT) was formulated (Horn and Jackson,
1972; Feinberg, 1979), the method of King and Altman has been
improved by graph theory (Chou, 1990) and extended to special
subclasses of CRNs, e.g., layered signaling cascades (Feliu et al.,
2012) and post-translational modification networks (Feliu and
Wiuf, 2013). The same authors also published a more general
approach for CRNs in Feliu and Wiuf (2012). Here, a set of
core variables is introduced serving for a parametrization of the
steady-states whereby non-negative solutions are guaranteed due
to graph-theoretical arguments.

Another approach developed by Halasz et al. (2013),
introduces bilinearities of the system as new variables leading
to a linearized system solvable by application of Cramer’s rule.
The number of bilinearities, however, is restricted and negative
steady-state solutions are not prevented.

All mentioned approaches deal with steady-state analysis for
CRNs based on mass-action rules. However, modern modeling
approaches often make use of special reaction types such as
inhibition, Michaelis-Menten or Hill kinetics that cannot be
included into standard CRNT without changing the model
structure and introducing new dynamical variables. In the
approach of Halasz et al. (2013), inhibition and Michaelis-
Menten terms can easily be integrated by multiplying the
corresponding steady-state equation by the denominator of the
rate expression. However, since a state variable is contained in
the denominator, this can increase the number of bilinearities
significantly.

TABLE 1 | Covered reaction types and positivity for different methods of

steady-state determination.

Method CRN, Mass Inhibition, Hill Non-negative

action, Production, Michaelis- Kinetic Solutions

Degradation Menten

King-Altman Yes No No Yes

Feliu and Wiuf Yes No No Yes

Halasz et al. Yes Yes No No

Loriaux et al.
Yes Yes Yes No

(py-substitution)

Proposed Yes Yes Yes Yes
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In order to avoid problems of higher-order polynomial
equations, steady-state equations can be solved not only for initial
value- but also for kinetic parameters, which is done in the
steady-state solver py-substitution developed by Loriaux et al.
(2013). From N initial values and M kinetic parameters, a set
of N variables is chosen that have to be fixed in Equation (2).
In doing so, a lot of freedom is incorporated into the solution.
In fact, py-substitution is able to solve the very most steady-state
equation systems, since in principle N kinetic parameters could
be chosen as fixed variables directly leading to a simple linear
equation system.

Complementary to analytical approaches, steady-state
information can be incorporated into the system by numerically
computing the initial conditions during each optimization
step. Even gradient information that is necessary for efficient
optimization is available by means of the implicit function
theorem. A numerical incorporation of steady-state information
has the advantage that the complexity of the underlying
equation system is in principal not restricted. Furthermore, the
implementation remains untouched when model equations are
changed. However, convergence of the numerical steady-state
calculation is not guaranteed and issues of multiple steady-states
cannot be controlled.

In the following section, we present a method to derive non-
negative steady-state expressions for a large class of nonlinear
ODE models that are based on biochemical reactions. Our
approach picks up the idea of solving for kinetic parameters
in order to derive unique and simple steady-state expressions.
Due to the structure of the ODE system, solving for kinetic
parameters often leads to potentially negative steady-state
solutions, depending on the point of evaluation in parameter
space. By introducing appropriate parameter transformations
and exploiting the given model structure, our approach
guarantees a non-negative solution space. In the Results section,
we show how different steady-state parameterizations influence
the optimization procedure and compare our approach to the

standard approach of solving for initial value parameters as well
as to a numerical steady-state approach.

2. METHODS

2.1. Theoretical Background
Let us consider a model f as an N-dimensional ODE system ẋ =
f (x, p) with states x, parameters p and no external driving forces,
i.e., the ODE is autonomous. We write f as a matrix product

f (x, p) = S · F(x, p) , (3)

of the N × M-dimensional stoichiometry matrix S and the
M-dimensional flux vector F which depends on states and
parameters. For the entries of the flux vector, we allow rational
functions of x and p including e.g., mass-action, inhibition,
Michaelis-Menten and Hill-Type kinetics. Table 2 gives an
overview of the main reaction types covered by the presented
steady-state approach.

We assume that each single flux Fl is proportional to some flux
parameter kl and can be written as

Fl = kl · Gl(x, q) , (4)

where the function Gl only depends on the states and a set
of additional parameters q taken from the set of all model
parameters p. The union of flux parameters k and additional
model parameters q coincides with the parameter set p. Typically
all reaction types described by CRNT only need one flux
parameter and do not contribute to q, however, inhibition terms
and Michaelis-Menten kinetics contain at least one additional
parameter and Hill kinetics even two.

The signs of the entries of the stoichiometry matrix S
determine whether a flux contributes as an in- or an outflux to
the time evolution of the corresponding state. We assume that
each outflux is at least linearly dependent on the corresponding

TABLE 2 | Examples of typical reaction types of ODE models.

# Stoichiometry Reaction type Flux Contribution to dA
dt

1 ∅ −→ A Production k Positive/influx

2 A −→ ∅,B Degradation, transformation k · A Negative/outflux

3 A+ A −→ AA Dimerization k · A2 Negative/outflux

4 B −→ A Transformation k · B Positive/influx

5 B+ C −→ A Binding k · B · C Positive/influx

6 B −→ A Inhibition by C k · B · 1
q+C Positive/influx

7 B −→ A Michaelis-Menten k · B · 1
q+B Positive/influx

8 A+ B −→ C Binding k · A · B Negative/outflux

9 A −→ B Inhibition by C k · A · 1
q+C Negative/outflux

10 A −→ B Michaelis-Menten k · A · 1
q+A Negative/outflux

11 B −→ A Hill k · Bq2

q1
q2+Bq2

Positive/influx

12 ∅ −→ A Self-activation k · Aq2

q1
q2+Aq2

Positive/influx

13 B+ C −→ A Power-law k · Bq1 · Cq2 Positive/influx

All types are covered by our steady-state approach.
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state, as being always the case for mass-action systems. By means
of Equation (2), each initial value x0,i ≡ xi is directly related with
a steady-state equation of the form

0 =
∑

ini − xi ·
∑

outi , (5)

where ini and outi constitute functions of states and parameters.
For a majority of reaction types used in ODE models, the fluxes
ini and outi are independent of xi, compare Table 2. In these
cases, Equation (5) is linear in xi and has the solution xi =
∑

ini
∑

outi
. However, if the fluxes ini or outi still depend on xi,

e.g., reaction 12 in Table 2 for the case of self-activation or
reaction 3 with an outflux being quadratic in xi, Equation (5)
might be non-linear in xi.

In order to solve the complete set of steady-state equations,
we analyze their specific structure by means of graph theory. We
therefore rewrite Equation (5) as

xi =
∑

ini
∑

outi
(6)

and summarize appearances of states on the right-hand side
of Equation (6). Here, the set of states is defined by the set
of dynamic variables x that we want to fix by the steady-state
determination. Once a dynamic variable is fixed by a non-
negative expression or treated as a free parameter, it is removed
from the set of states.

Definition 1: A head of state xi is a state xj that appears on the
right-hand side of Equation (6). By h(xi), we refer to the set of
heads for a specific state xi. In particular, xi can itself be a part of
h(xi).

Proposition 1: If non-negative steady-state solutions for all
heads of xi are known, a non-negative steady-state solution for xi
can directly be obtained by Equation (6). This holds especially, if
the set h(xi) is empty.

Definition 2: The adjacency matrix M(f ) of an ODE model
f (x, p) with states x and parameters p is an N × N matrix with
entries

Mji =
{

1, if xj ∈ h(xi)

0, else .

Each dM-dimensional adjacency matrix M defines a directed
graph GM with nodes x1 to xdM which we call steady-state graph.
Each non-zero entry of M corresponds to a directed edge(xj, xi)
implying that xj occurs in the steady-state expression of xi, i.e.,
Equation (6). A non-zero diagonal entry Mii reflects that the
corresponding steady-state equation is non-linear in xi.

2.2. Splitting Cycles
The specific structure of the steady-state graph enables to
solve the steady-state equations step-by-step as is shown in the
following.

Definition 3: A cycle of a steady-state graph is a path through
the graph along its edges with equal starting and end point. Here,
we allow cycles of length one arising from non-zero diagonal
entries in the adjacency matrixM.

Definition 4: Graphs that do not contain cycles are called
tree-like.

Proposition 2: If a steady-state graph of an N-dimensional
model f is tree-like, non-negative steady-state solutions can be
obtained for all xi inside the graph.

Proof: For any tree-like steady-state graph, there exists at least
one root, i.e., state without head, called xr . Since h(xr) = ∅,
the corresponding steady-state expression can be obtained by
Proposition 1. In doing so, xr is removed from the steady-state
graph and a new state serves as root for which Proposition 1 again
gives the corresponding steady-state expression. By iteratively
applying Proposition 1 for each of the N nodes, the complete
steady-state solution is obtained.

Considering Proposition 2, it is clear that solving the steady-
state constraint Equation (2) for the set of initial values only
becomes intricate, if there are cycles inside the steady-state graph
such that higher-order polynomial equations arise. The idea of
our steady-state approach is to split all these cycles step-by-step
such that Proposition 2 can ultimately be applied to the remaining
graph.

The simplest way of splitting a cycle is bymeans of a conserved
quantity (CQ) of the system arising from the stoichiometry. A
general introduction can be found in Loriaux et al. (2013) or
Halasz et al. (2013). The following definition restricts to the
properties being relevant for the presented approach.

Definition 5: A conserved quantity (CQ) of the model f is
an expression of states and parameters which remains constant
during the time-evolution of f . For each CQ, the number of
independent steady-state equations is reduced by one implying
that one state or flux parameter that appears in the CQ can be
chosen freely. If all CQs can be derived from the stoichiometry
matrix, the number of CQs is given by ncq = N − RS, with the
model size N and the rank of the stoichiometry matrix RS. The
cases for which ncq > N − RS are discussed in Section 2.5.

In order to split a cycle by a CQ, one of the states, xc,
that appears both inside the cycle and in the CQ is chosen
freely. The corresponding steady-state equation is removed from
Equation (2), whereby the number of independent steady-state
equations remains constant. Since the state xc is treated as a
free variable, all edges originating from and leading to xc can be
removed from the steady-state graph and the considered cycle is
split. Note, that each CQ can only be used once.

If no states inside the cycle appear in CQs, the cycle can be
split by solving the steady-state equation of a specific cycle state
xi for a flux parameter kl. By means of Equations (3) and (4), the
steady-state expression of kl holds

kl =
−1

SilGl(x, q)

∑

j 6=l

SijkjGj(x, q) . (7)

Proposition 3: Let nkl be the number of appearances of the
flux parameter kl, see Equation (4), inside the steady-state
constraint Equation (2). Then nkl coincides with the number of
non-zero entries in the l-th column of the stoichiometry matrix S.

Unless kl does not appear in other steady-state equations, i.e.,
nkl = 1, the considered cycle is removed from the steady-state
graph without affecting other parts of the graph. However, if
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nkl > 1, all further appearances have to be substituted by
Equation (7) which creates new edges inside the steady-state
graph and possibly even new cycles. In order to keep the structure
as simple as possible, flux parameters with nkl = 1 play a special
role.

2.3. Enforcing Positivity
Although solving for flux parameters implies linear equations
and therefore structurally simple steady-state expressions, the
solutions are often negative for certain model specifications.
Here, we show how positivity of the expressions can be
guaranteed by appropriate transformations.

The steady-state expression, Equation (7), of the flux
parameter kl was derived by means of the steady-state equation
of xi. The expression contains minus signs if and only if at least
one of the stoichiometry entries Si,j 6=l has the same sign as Sil, In
this case, at least one further flux contributes to xi with the same
sign as Fl = klGl, namely as an in- or outflux.

Definition 6: For the steady-state equation of xi, Equation (5),
we define µi and νi as the number of in- and outfluxes,
respectively. Furthermore, we define the dimension of the state
xi as the minimum dim(xi) = min (µi, νi).

If dim(xi) = 1, a non-negative steady-state expression is
obtained by solving for the particular flux parameter being the
only in- or outflux, compare first examples in Table 3.

If dim(xi) > 1, positivity can be enforced by performing
an appropriate parameter transformation. In order to do so, we
divide the fluxes contributing to xi into influxes Fin,1 . . . Fin,µi

and outfluxes Fout,1 . . . Fout,νi . Then, Equation (5) reads

0 =
µi

∑

j= 1

Fin,j −
νi

∑

l= 1

Fout,l . (8)

Let us assume that we want to solve Equation (8) for the influx

parameter kin,1 =
Fin,1

Gin,1
. We perform a variable transformation

by defining the ratio between the remaining influxes and Fin,1 as

rz =
Fin,z

Fin,1

= kin,z ·
Gin,z

kin,1Gin,1

for z = 2, . . . , µi , (9)

TABLE 3 | Examples of solving steady-state equations for flux parameters.

Steady-state

equation

Solve

for

Type Solution

0 = k1A
2 − k2X k1 1 k1 = k2X

A2

0 = k1A
2 − k2X k2 1 k2 = k1A

2

X

0 = k1A
2 − k2X −

k3XB− k4X
q1+C

k1 1 k1 = X

A2

(

k2 + k3B+ k4
q1+C

)

0 = k1A
2 + k5B − k2X

− k3XB− k4X
q1+C

k1, k5 2
k1 = 1

A2
X

(

k2 + k3B+ k4
q1+C

)

· 1
1+r

k5 = 1
B
X

(

k2 + k3B+ k4
q1+C

)

· r
1+r

where the rz replace the kinetic parameters k2 to kµi . By means of
Equations (8) and (9), we obtain

∑

l

Fout,l = Fin,1 ·



1+
µi

∑

j= 2

rin,j





and therefore

kin,1 =
1

Gin,1

∑

l

Fout,l ·
1

1+
∑µi

j= 2 rj
. (10)

Since Gin,1 and Fout,l are positive and Equation (10) is a sum
of positive contributions, a non-negative steady-state expression
for kin,1 is guaranteed. By means of Equation (9), the remaining
flux parameters have to be substituted by the non-negative
expressions

kin,z =
1

Gin,z

∑

l

Fout,l ·
rz

1+
∑µi

j= 2 rj
for z = 2, . . . , µi .

(11)

For an outflux parameter, we analogously obtain

kout,1 =
1

Gout,1

∑

j

Fin,j ·
1

1+
∑νi

l= 1
rl

and (12)

kout,z =
1

Gout,z

∑

j

Fin,j ·
rz

1+
∑νi

l= 1
rl

for z = 2, . . . , νi .

(13)

2.4. Algorithm for Steady-State
Determination
In the previous sections, we showed how simple steady-state
expressions can be obtained (Section 2.2), while positivity is
likewise guaranteed (Section 2.3). In order to split one cycle of the
steady-state graph and solve for a flux parameter, a pair (xi, kj) of
state and flux parameter has to be chosen, which is not unique. In
the following, we suggest an algorithm based on a classification
of such pairs.

According to Definitions 5, 6 and Proposition 3, we associate
each pair with one of four different types:

(xi, kj) ≡



















Type 0, if xi appears in a CQ

Type 1, nkj = 1 and dim(xi) = 1

Type 2, nkj = 1 and dim(xi) > 1

Type 3, else .

Figure 1 shows a flowchart of the algorithm. At first, the set of
CQs is computed for the ODE system serving as an input for
the algorithm. If the graph is tree-like, the remaining equations
are obtained according to Proposition 2 and the complete set of
steady-state equations is returned.

In the case of a pair of Type 0, the cycle can simply be removed
by interpreting the corresponding state as a free variable. The CQ
that is thereby used is removed from the set of CQs and cannot
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FIGURE 1 | Flowchart of Steady-State Determination: After identification of all CQs of the system, the algorithm performs a loop where in each pass

one cycle of the steady-state graph is removed. Since for each cycle the nodes are analyzed with regard to the number of in- and outflux rates, the graph

structure as well as the structure of the steady-state equations is kept as simple as possible. Once the steady-state graph is tree-like, the remaining equations are

solved and equations are returned.

further contribute to the steady-state determination. Here, the
flux parameters remain unaffected.

Unless the cycle cannot be directly split by means of a CQ, the
corresponding steady-state equation, Equation (5), is solved for
one of the µi + νi flux parameters by use of a pair of Type 1,2 or
3. In order to keep the steady-state solution as simple as possible,
pairs of Type 1 are preferred, since this enables to split the cycle
both without substituting the flux parameter by its steady-state
expression, Equation (7), and without introducing flux ratios as
new parameters, Equation (9).

If no pairs of Type 1 are available, the algorithm scans the
steady-state graph for pairs of Type 2. In this case a parameter
transformation is necessary in order to guarantee positivity of the
solution. However, the flux parameter does not appear any more
in the system and therefore has not to be substituted. In all three
cases, Type 0, 1, or 2, the number of cycles of the steady-state
graph is reduced.

If pairs of Type 2 are also not available, all pairs are of Type
3. In this case, it is not a priori clear which pair is the best
choice. As a simply revisable choice, the algorithm then solves
the steady-state equation of the state with minimal dimension.
Subsequently, all further appearances of flux parameters have to
be replaced by their particular transformation, Equations (11)
or (13).

2.5. Calculating the Conserved Quantities
and Simplifying the Stoichiometry Matrix
In order to find CQs of the ODE system, linear combinations of
rows of the stoichiometry matrix S can be analyzed. According to
Equation (3), the N-dimensional ODE system can be written as

ẋ = S · F(x, p) . (14)

Multiplication of Equation (14) by an N × N-matrixM yields

M · ẋ = S̃ · F(x, p) , (15)

where the matrix S̃ = M · S defines linear combinations of
rows of S. For each row S̃i that is equal to zero, the quantity
Mi · x =

∑

jMijxj is conserved.

In fact, each set of linearly dependent rows of S implies a CQ.
For someODE systems, however, not all CQs can be derived from
S without accounting for the flux vector F. Equation (14) can be
written

ẋ = C(p, x) · x . (16)

where C(p, x) is an N × N-matrix dependent on the parameters
and states. Analyzing linear dependencies of C, all CQs of the
form

∑

j

aj(x, p) · xj = const. (17)

can be found, where the coefficients aj might depend on states
and parameters.

In order to determine symbolic expressions for the aj, we
transpose the matrix C and numerically search for linearly
dependent columns. All parameters and states appearing in CT

are replaced by random values to obtain a numeric matrix CT
ran

for which a QR-decomposition is performed. The matrix R
constitutes an upper triangular matrix, where the number of non-
empty rows corresponds to the rank of Cran. The first column
Rℓ with Rℓℓ = 0 is a linear combination of the columns Rj<ℓ.
Therefore, also the column Cℓ is a linear combination of the
columns Cj<ℓ implying that the equation system

∑

j ajCj = 0
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has a solution for the aj with aj>ℓ = 0 which can be calculated

symbolically. Thus, the quantity aT · x is conserved. Once a CQ
has been found, one of the corresponding linearly dependent
rows of the stoichiometry matrix is removed and the procedure
is repeated. In most ODE systems, all CQs of the system can
be obtained in that way. For all other cases, our Python code
provides a possibility to manually specify CQs.

The idea of taking linear combinations of the stoichiometry
matrix S, see Equations (14) and (15), can be augmented to
simplify S for the calculation of steady-state expressions. For
each matrix M, the original steady-state constraint, S · F = 0,
is replaced by a new set of steady-state equations, S̃ · F = 0.
With a clever choice ofM, these new steady-state equationsmight
be structurally simpler than the original ones. With respect to
our proposed algorithm, the matrix M should (1) minimize the
overall number of entries in the new stoichiometry matrix S̃ and
(2) prevent the creation of new cycles. In practice, the idea of
linearly combining rows of the stoichiometry matrix can lead
to structurally simpler steady-state expressions as we show by
means of a small example in the Supplementary Material.

2.6. Numerically Computed Steady-States
Besides calculating steady-states analytically, roots of the steady-
state constraint, Equation (2), can be computed numerically
during each step of the optimization. Here, we perform Newton’s
method which is fast compared to the time of the ODE
integration. The gradient information that is necessary within
our deterministic optimization scheme is determined by the
implicit function theorem, i.e., given the steady-state constraint

f (x0(p), p) = 0 ,

we derive the equation with respect to p and obtain

0 =
∂f

∂x0
·
∂x0

∂p
+

∂f

∂p
H⇒

∂x0

∂p
= −

(

∂f

∂x0

)−1
∂f

∂p
.

2.7. Technical Remarks
The steady-state algorithm was implemented in Python by use
of the libraries numpy and sympy. It can either be downloaded
from the author’s homepage as a Python code or can be
used from within the R-packages dMod/cOde available from
https://github.com/dkaschek/. Simulation of data and parameter
estimation with analytical and numerical steady-states were
performed in dmod.

3. RESULTS

When calculating steady-state expressions for parameter
estimation of ODE systems, several aspects have to be considered
simultaneously. Most importantly, the parameter space is to be
reduced as far as possible. Therefore, all available steady-state
constraints should be taken into account. Since solving for
state variables often leads to higher-order equations for which
solutions are difficult to obtain, one has at least partially to solve
for kinetic parameters. In doing so, the steady-state expressions

often lead to negative parameter values for certain model
specifications.

Due to mass balance, outfluxes contribute with a minus sign
to the time derivative of the corresponding state. Provided that
outflux rates are proportional to positive powers of their states,
they contribute damping terms to the time-evolution of the state.
However, if for a certain model specification the corresponding
flux parameter is negative, the sign of the outflux term becomes
positive which leads to an exploding model trajectory for the
state.

In Section 3.1, we show how our steady-state approach
determines simple steady-state equations for systems that lead
to higher-order equations when solved for the state variables. In
Section 3.2, we show how steady-state expressions with negative
realizations lead to optimization problems and a significantly
lower success rate, i.e., the probability to converge to a local or
the global optimum. Non-linear ODE systems often have several
steady-state solutions, when the steady-state equations are solved
for the state variables. For parameter estimation, multiple steady-
states constitute a problem, since all possible realizations have in
principle to be followed up. By solving for kinetic parameters,
our steady-state approach likewise avoids multiple solutions and
improves the optimization as we show in Section 3.3.

3.1. Determination of Non-Negative
Steady-State Expressions
To show the applicability of the presented steady-state approach,
we investigate a toy model with six state variables and nine
reactions of the form

∅ k0−→ A A
k1−→ B B

k2−→ A

A+ A
k3−→ C C

k4−→ ∅ B+ C
k5−→ D

D+ G
k6−→ F B

k7·F−−→ ∅ F
k8−→ G .

All reactions satisfy the law of mass action, the degradation of B is
mediated by F.With these assumptions, one obtains the following
ODE system

Ȧ = k0 + k2B− k1A− k3A
2

Ḃ = k1A− k2B− k5BC − k7BF

Ċ = k3A
2 − k5BC − k4C

Ḋ = k5BC − k6DG

Ḟ = k6DG− k8F

Ġ = k8F − k6DG .

The system contains one conserved quantity F + G = const,
reflecting that the steady-state equations of F and G are not
independent from each other. Therefore, the number of variables
that have to be fixed by the steady-state is five. In order to obtain
the corresponding steady-state equations, all time-derivatives of
the states are set to zero. Although the single equations of this
system are of degree two or lower, solving for the states leads to
a sixth order polynomial equation, see Supplementary Material,
for which no closed-form solution is available.
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TABLE 4 | Steps of steady-state determination for a model with six states and eight reactions.

Loop Steady-state graph Steady-state equations Simplification

1 A: 0 = k0 + k2B− k1A− k3A
2 Cycle: [A, A]

B: 0 = k1A− k2B− k5BC− k7BF Type 3

C: 0 = k3A
2 − k5BC− k4C

k0 = A2k3+Ak1
r1+1D: 0 = k5BC− k6DG

F: 0 = k6DG− k8F
k2 = r1

k0
B

= r1
A2k3+Ak1
B(r1+1)G: 0 = k8F − k6DG

2 B: 0 = k1A
1

r1+1 − k3A
2 r1
r1+1 Cycle: [B, B]

−k5BC− k7BF
Type 1

C: 0 = k3A
2 − k5BC− k4C

D: 0 = k5BC− k6DG
k1 = r1+1

A
[k3A

2 r1
r1+1

F: 0 = k6DG− k8F

G: 0 = k8F − k6DG +k5BC+ k7BF]

3 C: 0 = k3A
2 − k5BC− k4C Cycle: [D, G, D]

D: 0 = k5BC− k6DG Type 0

F: 0 = k6DG− k8F
G is part of CQ

G: 0 = k8F − k6DG

4 C: 0 = k3A
2 − k5BC− k4C

Tree-like
D: 0 = k5BC− k6DG

F: 0 = k6DG− k8F Solve for C, D and F

Table 4 summarizes how our steady-state solver determines
a non-negative steady-state solution by partially solving for flux
parameters. During the first loop, the cycle [A,A] of state A to
itself is split. The pairs of A and its contributing flux parameters
are all of Type 3, since there are two influx- and two outflux
parameters of which at least one is appearing in the other steady-
state equations, e.g., in the equation of B. The equation of A is
solved for the influx parameter k0, whereby k2 is transformed and
replaced by the new free parameter r1 = k2B/k0, see first loop in
Table 4. The appearance of k2 in the equation of B is substituted,
whereas k0 has no further appearances.

Whereas the state A is removed from the steady-state graph,
the state B has become a new head of itself in consequence of the
substitution. In the second loop, this new cycle [B,B] is split by
solving the equation of B for the flux parameter k1. Here, the pair
(B, k1) is of Type 1, since k1 is the only influx parameter and not
appearing in the remaining equations.

In the next loop, the algorithm splits the cycle [D,G,D] by
taking G as a free parameter, since it is part of the conserved
quantity F + G. The remaining steady-state graph in the last
loop is tree-like and therefore the steady-state equations can be
derived according to Proposition 2 starting with C which in this
case serves as the root of the graph.

For simplification of writing, our steady-state solver outputs
the equations in a specific order where fixed states or parameters
may still appear in the equations below. In order to obtain a
complete independent set of equations, one has to replace step
by step. For the presented example, the ultimately obtained
expressions are

F = A2 k3

k8

Bk5

Bk5 + k4

D = A2 k3

Gk6

Bk5

Bk5 + k4

C = A2 k3

Bk5 + k4

k1 = Ak3r1 +
r1 + 1

A

(

BCk5 + BFk7
)

k2 = r1
k3A

2 + k1A

B(r1 + 1)

k0 =
k3A

2 + k1A

r1 + 1
,

where six parameters are fixed, while one additional parameter r1
can be chosen freely.

3.2. Minus Signs Imply a Low Convergence
Rate
For a given data set and a given ODE model, each parameter
set determines the time-evolution of the states and its likelihood
L can be computed based on the data. Here, parameter
values are estimated by minimizing the negative log-likelihood
function− log L. For the case of non-linear ODE models, several
local optima may exist. In order to find the global optimum, we
perform multi-start optimization in combination with a trust-
region optimizer. A powerful optimization approach should have
a high probability to find a local or the global optimum.
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Let us consider an ODE system with four state variables and
six reactions of the form

∅ k0−→ A A
k7−→ ∅ A+ B

k2−→ C

∅ k1−→ B C
k3−→ D D

k4−→ ∅ .

The corresponding ODE system is given by

Ȧ = k0 − k7A− k2AB

Ḃ = k1 − k2AB

Ċ = k2AB− k3C

Ḋ = k3C − k4D .

In order to test if negative steady-state expressions lead
to optimization problems, we implemented four different
steady-state parameterizations, see Table 5, and compared the
success rate of parameter optimization. For each approach, six
parameters are optimized as shown in Table 5. Besides the
standard approach, i.e., exclusively solving for initial values, two
other parameterizations were derived by solving the equation
of state B for two different kinetic parameters, namely k7 and
k0. The latter guarantees a non-negative steady-state solution.
Apart from that, a fourth parameterization was constructed by
adding the equation k0 = k1 + 1k0 to the standard steady-
state formulation. In doing so, k0 is transformed such that
k0 > k1, with the new free parameter 1k0 describing the
difference between k0 and k1. This approach likewise implies
positivity.

TABLE 5 | Several steady-state representations for a model with four

states and six flux parameters.

Steady-state method Steady-state equations Parameters to

be estimated

Solved for initial values
A = k0/(k2B+ k7 )

k1, k2, k3, k4
B = k1k7/(k2 (k0 − k1 ))

(Standard)
C = k1/k3

k0, k7
D = k1/k4

Equation of B solved for k7

A = k0/(k2B+ k7 )
k1, k2, k3, k4

k7 = Bk2 (k0 − k1 )/k1

C = k1/k3
k0, B

D = k1/k4

Equation of B solved for k0

A = k0/(k2B+ k7 )
k1, k2, k3, k4

k0 = k1k7/(Bk2 )+ k1

C = k1/k3
B, k7

D = k1/k4

Standard
k0 = k1 + 1k0

k1, k2, k3, k4A = k0/(k2B+ k7 )

with additional B = k1k7/(k2 (k0 − k1 ))

parameter transformation
C = k1/k3

1k0
, k7

D = k1/k4

For simulation of data, we chose a set of kinetic parameters
for ODE integration, initialized the system with its steady-state
and excited it by displacement of A at time point t = 30.
Data points were generated for 16 different time points by
adding normally distributed noise to the model trajectories. In
order to study a scenario with different experimental conditions,
i.e., different stimulations, simulation was done for three different
displacement values, compare cond1, cond2, and cond3 in
Figure 2A.

Figure 2A shows data points and trajectories of a model
fit that reached the global optimum. For each steady-state
parameterization, we optimized 200 different parameter samples
and counted how often several optima were reached. In
Figure 2B, all converged fits are shown in order of the objective
value, in our case the negative log-likelihood value. Several
steps corresponding to local optima appear for all steady-state
parameterizations, the deepest step corresponds to the global
optimum. It can be concluded that the two parameterizations
without minus signs, i.e., Solving for k0 and Standard with Trafo,
show a significantly better convergence than the other two.
For example, in the parameterization with transformation, the
global optimum was twice as often reached than in the standard
approach.

In order to explain the convergence behavior of the different
steady-state implementations, we analyzed the correlation
between initial parameter guess and the success of optimization.
The steady-state of the presented model is negative, if and
only if k0 < k1. Figure 2C shows the starting samples along
the parameter axes of k0 and k1 for all four steady-state
parameterizations, colors indicate whether a sample did not
converge (black) or did converge to a local (blue) or the global
optimum (yellow). For comparison, Figure 2D shows starting
samples along axes of parameters that do not affect the sign of the
steady-state, namely k2 and k4. The sample distribution shows
that samples with k0 > k1 have a high probability to converge,
while samples with k0 < k1 tend to abort. On the other hand,
the relation of k2 and k4 does not have a significant impact on
the convergence probability. Furthermore, Figure 2C shows that
the reparameterized steady-states prohibit sampling in the region
with k0 < k1.

In addition to the starting samples, we analyzed the parameter
paths during the optimization. Figures 2E,F show the paths for
the first 50 starting samples with respect to the above used
parameter axes. Parameter samples with k0 < k1 usually abort
without any considerable steps in parameter space even though
several samples cross the border k0 = k1 and proceed. In the
opposite direction, some samples reach the border when started
in the area with k0 > k1 and abort exactly at the border.
The very most samples drawn with k0 > k1 converged to
a local or the global optimum G. Again, Figure 2F underlines
that the convergence behavior is unaffected by the relation of
k2 and k4.

We conclude that steady-state parameterizations that lead to
negative parameter values for certain model specifications
constitute a severe issue for optimization. Due to the
formulation of our steady-state algorithm, negative solutions are
automatically avoided in the obtained steady-state expressions.
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FIGURE 2 | Optimization results for different steady-state parameterizations. Data was simulated for three different displacements of A at t = 30 (A).

Convergent fits for all four steady-state implementations were sorted by increasing objective value (B). Steps correspond to local minima. Positive steady-state

parameterizations show a considerably better convergence behavior. Starting samples are shown in different colors in (C,D), indicating whether the corresponding

optimization converged. Parameter paths starting with k0 < k1 did mostly not converge as opposed to samples with k0 > k1 which mostly converged to a local or the

global optimum G (E,F).
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3.3. Dealing with Multiplicity of
Steady-States
Let us consider a system with three state variables and seven
reactions of the form

∅ k0−→ A A
k1−→ ∅ ∅ k2·A−−→ B ∅ k3·C−−→ A

B
k4−→ ∅ ∅ k5·A·B−−−→ C C

k6−→ ∅ .

The production of B is mediated by A, production of A is
mediated by C and production of C is mediated by both A and
B. The corresponding ODE system is given by

Ȧ = k0 + k3C − k1A

Ḃ = k2A− k4B (18)

Ċ = k5AB− k6C .

For this system, the steady-state can still be analytically solved for
the states A, B and C. The solution reads

C1/2 =
1

2k2k
2
3k5

(

1

k21k4k6
1 + 2k0k2k3k5 ±

√
1

)

B1/2 =
1

2k1k3k4k5

(

k21k4k6 ±
√

1

)

(19)

A1/2 =
1

2k1k2k3k5

(

k21k4k6 ±
√

1

)

,

with the discriminant 1 = k21k4k6 ·
(

k21k4k6 − 4k0k2k3k5
)

. For
1 > 0, two positive steady-state solutions S1 = (A1,B1,C1)
and S2 = (A2,B2,C2) are obtained, while the system has no real
steady-state for 1 < 0.

Linear stability analysis reveals that solution S1 is unstable
and solution S2 is stable, see Supplementary Material. If several
steady-state solutions exist, only one of them can be chosen
for an optimization run at a time. Here, the stable solution
was chosen.

For this system, the issue of multiplicity can easily be solved,
however, for more complicated systems several stable solutions
might exist. Stable solutions might even switch to unstable
solutions along the optimization path, e.g., in case of a Hopf
bifurcation. For higher-order equations, analytical solutions
become unfeasible and numerical steady-state computation
comes into play. However, since the numerical root finding
is performed by means of Newton’s method, the result
depends on initial guesses for A, B and C. Consequently, it
is not clear which of the solutions is obtained and stability
of the retrieved steady-state is not guaranteed. As we will
show, coexistence of stable and unstable steady-state solutions
leads to a reduced convergence probability in the numerical
approach.

Unlike solving the steady-state equations for A, B and C, the
steady-state expressions obtained by our proposed approach are

C = A2 k2k5

k4k6
B = A

k2

k4
k1 = A

k2k3k5

k4k6
+

k0

A
, (20)

where the kinetic parameter k1 is fixed, while the initial value of
A is taken as a free parameter. The obtained solution is unique,
since the steady-state equations are linear in the parameters B, C
and k1.

In general, our approach avoids multiple-steady-states by
choosing a combination of parameters for which the steady-state
equations are linear. In doing so, no solution is neglected as long
as all steady-state equations are fulfilled. As an analogon, let us
consider a single algebraic equation of the form ab3 + cb2 + db+
f = 0, with the five parameters a, b, c, d and f . On the one
hand this equation can be solved for bwherebymultiple solutions
are obtained. On the other hand it can be solved for one of the
parameters a, c, d or f for which the equation is linear leading to
a unique solution.

In the following, we compare the convergence behavior of
three different steady-state implementations, namely Standard,
i.e., analytically solved for the states, Numeric, i.e., numerically
solved for the states, and Proposed, i.e., our steady-state approach
with positive solutions. For the former two implementations, the
seven kinetic parameters k0 to k6 are estimated, whereas for the
proposed approach, the initial value of A in estimated instead of
k1, compare Equation (20).

Since natural systems are always subject to external noise,
unstable steady-states are never realized by the system. Therefore,
data was simulated by means of the stable steady-state solution.
Analogously to Section 3.2, three different displacements of the
state A were triggered at time point t = 30 to excite the
system. Here, data points were generated for eight different
time points.

In order to test the convergence behavior, we started 200
fits from randomly chosen parameter samples. Figure 3A shows
an example fit that converged to the global optimum. The
optimization result of the three steady-state approaches is
compared in Figure 3B. Steps correspond to local optima.
In our approach, nearly half of the samples converged to
the global optimum, whereas only about 10% of the fits
converged in the standard approach and even less in the numeric
approach.

Similar to Section 3.2, we analyzed the correlation between
initial parameter guess and success in optimization. Figure 3D
shows the distribution of starting samples with respect to the
sign of the discriminant 1. For 1 < 0 the discriminant of
the standard steady-state expression, Equation (19), becomes
negative, and all starting samples drawn from this region
did not converge. In addition, Figure 3E shows that the
optimization of these samples directly aborted, since the
path did not take any or at most a very small step in
parameter space.

Furthermore, we analyzed the correlation between the
coexistence of stable and unstable steady-state solutions and the
success of the numerical approach. During each optimization
step, the root of the ODE’s right-hand side is computed for
the current parameter values. Depending on the initial guess,
either the stable or the unstable solution is obtained. In order
to see, if the unstable solution causes optimization aborts, we
chose state A as a representative and compared numerically
and analytically calculated values at the end of the optimization
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FIGURE 3 | Optimization in the context of multiple steady-states. Data was simulated for three different displacements of A at t = 30 (A). Convergent fits from

200 starting samples for three different steady-state implementations were sorted by their final objective value (B). Fits that did not converge are not shown. In about

10% of the fits, the Standard and the Numeric approach converged, in the Proposed approach nearly 50% did. For each end point of the 200 numerical

optimizations, the ratio Anum/A2 between the numerical solution Anum and the stable, analytical steady-state solution A2 was computed (C). For Anum/A2 > 0, the

numerical root calculation converged to the unstable steady-state which effects the abort of the optimization. Starting samples are shown in different colors, indicating

whether the corresponding optimization converged. Many parameter samples starting with discriminant 1 < 0 did not converge, while most of the samples with

1 > 0 converged to the global optimum G, (D,E).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 May 2016 | Volume 4 | Article 41

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Rosenblatt et al. Steady-States for Parameter Estimation

path. The numerically calculated value Anum was taken from
the root calculation by Newton’s method and the value A2 of
the stable steady-state was calculated by means of Equation (19)
with the corresponding parameter values. Figure 3C shows
ratios Anum/A2 for all fits. If Anum/A2 = 0, the stable
steady-state was obtained, while Anum/A2 > 0 implies that
the unstable solution was obtained. Since nearly all fits that
reached the unstable solution did not converge, we conclude
that the coexistence of a second unstable steady-state causes
optimization aborts in the numerical approach of steady-state
determination.

Both problems arising from the existence of multiple steady-
states, i.e., negative discriminants and stable vs. unstable
steady-states, are automatically circumvented by our steady-
state algorithm resulting in a superior convergence rate during
parameter estimation.

4. DISCUSSION AND CONCLUSION

Parameter estimation in non-linear ODE models of biological
systems has to deal with several local optima and a high-
dimensional parameter space. In order to reduce the number
of parameters, steady-state constraints are taken into account.
Deterministic algorithms search for the global optimum
by performing the optimization with multiple starting
samples. The way of implementing steady-states, i.e., the exact
parameterization, has an impact on the convergence probability
of a randomly chosen starting sample. If optimizations tend
to abort before reaching an optimum, many starting samples
are necessary to find the best possible fit. Since incorporation
of steady-state information shifts parameter distributions and
contributes to gradient information, the exact steady-state
parametrization plays a crucial role in optimization.

For many systems, steady-state equations lead to higher-order
polynomial equations when being solved for the state variables.
To exploit the full steady-state information, equations can be
partially solved for kinetic parameters. If the obtained steady-
state expressions yield negative values for certain parameter
specifications, those might lead to rapidly growing solutions for
the ODE system. We showed that negative parameter values
have a considerable, negative impact on the success of the
optimization.

In many applications, multiplicity and multi-stability of the
steady-state constitutes the relevant question. In the case of
parameter estimation, however, multiple steady-states complicate
the estimation process. For the standard approach of solving
steady-state equations for the state variables, all solutions
principally have to be considered and optimization has to be
performed for all possibilities. For the numerical implementation
of steady-states also unstable steady-state solutions constitute
a problem, since the numerical root finding method might
converge to the unstable solution. In our case, the convergence
probability dropped by 80%.

In this work, we presented an algorithm that derives
steady-state expressions and circumvents negative and multiple
solutions by construction. The approach covers the most
common classes of ODE models consisting of e.g., mass-action
kinetics, inhibition terms, Michaelis-Menten or Hill-type
equations. By means of graph theory, cyclic dependencies
between dynamical variables, e.g., positive or negative feedbacks
inside a signaling cascade that lead to polynomial equations
of order two or higher are removed by solving for kinetic
parameters for which the equations are linear. In order to
guarantee positivity of all solutions, the algorithm performs
appropriate parameter transformations replacing kinetic
parameters by ratios of participating fluxes. Our approach
experiences a major limitation if simultaneously, the size of
the ODE model becomes large and combinations of several
in- and outflux parameters contribute to multiple states. Then,
the algorithm is not able to find a strictly positive solution for
the system. Furthermore, since the algorithm solves for rate
parameters, it might not be applicable if solving for parameters
is not allowed due to other reasons, e.g., if rate parameters must
take certain fixed values.

In summary, our approach enables steady-state calculation
for models with many cyclic dependencies that lead to higher-
order polynomial equations when solved for state variables.
Multiplicity and multi-stability are avoided and positivity of the
solution is guaranteed. The parameter space is reduced by the
number of independent steady-state equations while the nice
convergence behavior is preserved.
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