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ERK1/2 MAP Kinases become activated in response to multiple intra- and extra-cellular

stimuli through a signaling module composed of sequential tiers of cytoplasmic kinases.

Scaffold proteins regulate ERK signals by connecting the different components of

the module into a multi-enzymatic complex by which signal amplitude and duration

are fine-tuned, and also provide signal fidelity by isolating this complex from external

interferences. In addition, scaffold proteins play a central role as spatial regulators of

ERKs signals. In this respect, depending on the subcellular localization from which the

activating signals emanate, defined scaffolds specify which substrates are amenable to

be phosphorylated. Recent evidence has unveiled direct interactions among different

scaffold protein species. These scaffold-scaffold macro-complexes could constitute an

additional level of regulation for ERK signals and may serve as nodes for the integration of

incoming signals and the subsequent diversification of the outgoing signals with respect

to substrate engagement.
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Exhaustive research efforts undertaken during the past decades, have positioned the signaling
module mediated by Extracellular signal-Regulated Kinases 1 and 2 (ERKs) Mitogen-Activated
Protein Kinases (MAPKs), among the best known signal transduction processes ever studied.
ERKs signaling cascade encompasses sequential tiers, composed of sundry types of molecular
intermediaries, which become activated in response to a broad panel of intra- and extra-cellular
stimuli. The ERKs cascade is generally activated at its origin by GTPases of the RAS family that
subsequently switch-on, by not fully understood mechanisms, an upstream echelon constituted by
MAPKKKs of the RAF family. These, at their turn, convey signals downstream by phosphorylating/
activating dual-specificity MAPKKs MEK 1 and 2, ultimately responsible for the phosphorylation
and the unleashing of ERKs activity (Roskoski, 2012). It is also well-known that this signaling
pathway is involved in the regulation of prime physiological processes, such as cellular proliferation,
differentiation, cell cycle control, development and survival, in addition to hundreds of cell- and
tissue-specific events. Consequently, unregulated or aberrant ERK signaling results in multiple
pathological conditions ranging from psoriasis to cancer (Robinson and Cobb, 1997; Raman et al.,
2007; Shaul and Seger, 2007).

SCAFFOLD PROTEINS: ORCHESTRATORS OF ERK SIGNALS

ERKs pathway signal output is not solely the result of the diverse phospho-transfer reactions
that occur among the constituents of the echelons that build up the route. In addition to
the main players, the kinases, past research has unveiled the existence of several types of
regulatory and ancillary proteins that participate at different stages of the cascade, and provide
further levels of control to the signal flux. Scaffold proteins represent the most abundant,
diverse and widespread category (Dhanasekaran et al., 2007). Among the regulatory proteins that
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associate to the constituents of a signaling cascade, the accepted
requisite for considering a protein a “scaffold,” is its capacity to
simultaneously bind to at least two members of such cascade,
forming a functionally stable complex. The primeval evidence for
a protein serving a scaffolding role in aMAPK cascade came from
studies in the budding yeast S. pombe, in which the protein Ste5
was found to stabilize the complex formed by Fus3 (a MAPK),
Ste7 (MAPKK), and Ste11 (MAPKKK) and to increase their
local concentration at the tips of mating projections, in response
to mating pheromones (Choi et al., 1994). The identification
of mammalian scaffold proteins involved in ERKs signaling
followed soon after, with the characterization of KSR1 (Kinase
Suppressor of Ras) as a protein binding to CRAF, MEK1/2,
and ERK1/2, forming a high-molecular weight macrocomplex
(Therrien et al., 1996) whereby signaling flux through the RAS-
ERK cascade was regulated. The identification of MP1 (MEK
Partner 1) was next. Such scaffold was found to bind MEK1 and
ERK1 but nor CRAF, and it exhibited isoform specificity as it
potentiated the activation of ERK1 but not ERK2 (Schaeffer et al.,
1998). Since then, the list of mammalian proteins that qualify
as scaffolds for the RAS-ERK pathway has steadily expanded
up to 15-odd members (Table 1). Intriguingly, none of these
proteins share significant sequence homology, neither among
themselves nor with Ste5 of which no mammalian homolog
has been identified yet (Kolch, 2005; Dhanasekaran et al.,
2007).

Our knowledge on the MAPKs scaffold proteins has grown
significantly in recent years. We currently know that their
functions extend beyond their central role as hubs for the
assembly of the kinases signaling module, whereby MAPKs
signals amplitude and duration are fine-tuned (Witzel et al.,
2012). In this respect, several notions have gained a solid foothold
in the literature. Whilst in some cases not fully demonstrated,
an in others subject to vivid controversy, the concepts that
follow constitute the bedrock on which our understanding of
scaffold proteins has been built upon (for extensive reviews see
Kolch, 2005; Dhanasekaran et al., 2007; Good et al., 2011; Witzel
et al., 2012; Smith and Scott, 2013; Garbett and Bretscher, 2014),
though, as usual in science, they may be far from covering all that
there is to be learned about these proteins.

From the structural aspect, the prevailing model is that
scaffold proteins would optimize signaling: on one hand, by
tethering, thereby increasing the effective concentrations of
enzymes and substrates. And on the other hand, by orienting
these proteins relative to each other in order to facilitate
the phospho-transfer reactions, in such a way that MAPKs
will be optimally phosphorylated by the overlaying MAPKKs
in a processive fashion (Scott et al., 1995; Levchenko et al.,
2000). In addition, scaffolds can also enhance signal flux by
acting as allosteric stimulators. For example, it has been shown
that overexpression of KSR potentiates RAF activation. This
is achieved via the kinase-homology domain of KSR directly
binding to RAF and allosterically inducing its kinase activity
(Rajakulendran et al., 2009). Furthermore, RAF interaction with
KSR in cis, triggers a conformational switch on MEK in such
a way that its activation loop is exposed and amenable for
phosphorylation by RAF in trans (Brennan et al., 2011; Figure 1).

These allosteric mechanisms represent additional modes of
optimizing signal flux, beyond the simple tethering of the
different constituents of the cascade together.

Another deep-rooted concept is that scaffold proteins
somewhat shield MAPKs from dephosphorylation, by isolating
them from soluble phosphatases (Levchenko et al., 2000). A
notion that impinges on a hotly debated aspect of scaffold
proteins: whether they promote or impede signal amplification.
Conceptually, free kinases can activate multiple targets, so the
signal is amplified exponentially along the pathway. Contrarily,
when tethered onto a scaffold a kinase can only phosphorylate
its accompanying substrate kinase, something that would prevent
signal amplification. However, if the phosphatases levels are
high, a situation in which a system based on freely diffusing
kinases will be strongly down-regulated, the enhanced “local”
concentration effect achieved by scaffolding will result in
signal amplification, by increasing the chances for a successful
encounter between kinases in the midst of surrounding high
levels of deactivating phosphatases (Locasale et al., 2007;
Figure 2).

In addition to these ideas, it is now well established that
scaffold proteins serve a central role as spatial regulators of
ERKs signals, acting in a sublocalization-specific fashion. In this
respect, KSR1 acts preferentially upon ERKs signals originated
in lipid rafts domains (Matheny et al., 2004). MP-1 acts at
endosomes (Teis et al., 2002), Sef is ERKs main scaffold at
the Golgi complex (Torii et al., 2004) and Paxillin at focal
adhesions (Ishibe et al., 2003). Apparently, such spatial selectivity
is important for the definition of ERKs substrate specificity. It
has been demonstrated that the type of membrane from which
Ras signals emanate dictates which substrates are amenable to
be phosphorylated by ERKs, and this is achieved through the
participation of defined scaffolds depending on the origin of
Ras signals (Casar et al., 2009a). The molecular mechanism
whereby scaffold proteins confer substrate specificity to ERKs,
is based on the fact that scaffold proteins would facilitate the
formation of ERK dimers, in such a way that one ERK molecule
would bind to the scaffold and the other to the pertinent
substrate (Casar et al., 2008). Thus, scaffold proteins serve as ERK
dimerization platforms and in so doing agglutinate the assembly
of the enzymatic complexes competent for the activation of ERKs
cytoplasmic substrates. In support of this notion we detected that
ERKs cytoplasmic substrates such as cPLA2, RSK1, and PDE4,
bind exclusively to ERK dimers, while a dimerization-deficient
ERK2 mutant was incapable of interacting with cytoplasmic
substrates (Casar et al., 2008, 2009b; Herrero et al., 2015).
Accordingly, the overexpression of some scaffolds like KSR1, β-
arrestin and Sef has been shown to promote ERKs functions at
the cytoplasm (Sugimoto et al., 1998; DeFea et al., 2000; Tohgo
et al., 2002; Torii et al., 2004) while attenuating those occurring
at the nucleus. At this compartment, ERKs functions would be
primarily undertaken in monomeric form (Casar et al., 2008;
Figure 3).

Finally, a pivotal concept in the scaffolds theory is that for
any given scaffold there exists an optimal concentration that
yields maximum signal efficiency, resulting in a bell-shaped
MAPK activation kinetics. In this process, sub-optimal MAPK
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TABLE 1 | Locations and functions of ERK MAPK scaffolds in mammalian cells.

Scaffold Subcellullar Localization Functions

KSR1, 2 Cytoplasm, Plasma membrane In resting cells, KSR, Kinase Suppressor of Ras, is bound to MEK in the cytoplasm. Upon

Ras activation, KSR translocates with MEK1/2 to the plasma membrane and coordinates

the assembly of a multiprotein complex containing Raf, MEK, and ERK which facilitates

signal transmission (Roy and Therrien, 2002; Raman et al., 2007; Lavoie and Therrien,

2015). KSR1 acts to both potentiate and attenuate ERK cascade activation (McKay et al.,

2009). Deficiency of KSR1 prevents oncogenic Ras signaling in mice (Lozano et al., 2003).

KSR1 acts preferentially on ERK1/2 signals emanating from PM cholesterol-rich domains

(Matheny et al., 2004). cPLA2 activation is regulated by KSR1 when ERK1/2 are activated

from lipid rafts (Casar et al., 2009a).

IQGAP 1 Cytoplasm, Focal adhesion,

Cell-Cell junctions,

Cytoskeleton

IQGAP1 binds B-Raf, MEK, and ERK and facilitates ERK activation by EGF (Roy et al.,

2005). IQGAP1 regulates the phosphorylation of EGFr by ERK (Casar et al., 2009a). Other

proteins that bind IQGAP1 include Cdc42 and Rac1, E-cadherin, β-catenin, calmodulin

(White et al., 2009). IQGAP1 is over-expressed in some cancers, in some of these, high

IQGAP1 levels is a sign of poor prognosis (Brown and Sacks, 2006; Jadeski et al., 2008).

Blocking the interaction between IQGAP1 and ERK inhibits skin carcinogenesis driven by

Ras-ERK pathway oncogenes (Jameson et al., 2013).

IQGAP 2 Cytoplasm, Cytoskeleton IQGAP 2 associates with Cdc42, Rac1, F-Actin and calmodulin and regulates cell-cell

adhesion. Deficiency of IQGAP2 predisposes to development of hepatocellular carcinoma

and diabetes (Vaitheesvaran et al., 2014). Silencing of IQGAP2 contributes to gastric

cancer metastasis (Jin et al., 2008).

IQGAP 3 Cytoplasm IQGAP 3 interacts with ERK1 and enhances its phosphorylation following treatment with

EGF (Nojima et al., 2008; Kunimoto et al., 2009). Overexpression of IQGAP3 promoted

tumor cell growth, migration and invasion, whereas suppression of IQGAP3 in lung cancer

reduces tumorigenicity (Yang et al., 2014). IQGAP 3 plays a role in FGFR1-Ras-ERK

signaling, and loss of function of IQGAP3 affects both cell proliferation and cell motility

(Fang et al., 2015).

Paxillin Focal adhesion Paxillin regulates ERK signaling at focal adhesions through other kinases such as Focal

Adhesion Kinase (Ishibe et al., 2004). Paxillin—MEK-ERK complex serves as a regulator of

HGF-stimulated FAK and Rac activation in the focal adhesions, thereby regulating tumor

cell invasion, plasticity, and metastasis (Deakin et al., 2012). Paxillin is over-expressed in

lung adenocarcinoma high-risk patients. Mutations in Paxillin have been associated with

enhanced tumor growth and invasion in lung cancer (Mackinnon et al., 2011).

β arrestin 1 and 2 Cytoplasm β-arrestins mediates ERK activation in clathrin-coated pits (DeFea et al., 2000). β-arrestins

act as a scaffolds that bind C-Raf, MEK, and ERK and direct signaling to the cytosol

preventing ERK translocation to the nucleus (DeWire et al., 2007; Shenoy and Lefkowitz,

2011) Dysregulation of β-arrestins expression, localization, or phosphorylation is

associated with more aggressive cancer phenotypes and poorer prognosis in breast,

prostate, lung, brain, and hematological tumors (Sobolesky and Moussa, 2013).

Sef 1 Golgi apparatus Sef resides at the Golgi apparatus and binds active MEK/ERK complexes preventing ERK

translocation to the nucleus but retaining it in the cytoplasm (Torii et al., 2004). Sef acts as

a spatial regulator for MAPK signaling allowing phosphorylation to cytosolic substrates but

not nuclear targets (Philips, 2004).

ß-Dystroglycan Plasma membrane, Nucleus ß-Dystroglycan interacts with MEK and active ERK, modulating ERK activity in response to

integrin engagement on laminin (Spence et al., 2004). ß-Dystroglycan is involved in

adhesion and adhesion-mediated signaling. Loss of the dystroglycan functions give rise to

distinct disease phenotypes including muscular dystrophies and cancer (Mathew et al.,

2013; Mitchell et al., 2013).

MP 1 Late Endosomes MP1, MEK Partner-1, specifically binds to MEK1 and ERK1, but not MEK2 or EKR2

(Schaeffer et al., 1998). Over-expression of MP-1 increased ERK phosphorylation whereas

down-regulation of MP-1 reduced MAPK signaling (Teis et al., 2002). MP-1 interacts with

the adaptor protein p14 and enhances ERK signaling by targeting this complex to late

endosomes (Teis et al., 2006)}.The MP1-p14 scaffold also enhances MEK activation by

binding PAK1 to regulate cell adhesion and spreading on fibronectin (Pullikuth et al., 2005).

(Continued)
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TABLE 1 | Continued

Scaffold Subcellullar Localization Functions

RKIP Cytoplasm In unstimulated cells RKIP, Raf Kinase Inhibitor Protein, is bound to Raf and prevents MEK

phosphorylation (Park et al., 2005). Following mitogenic stimulation, RKIP dissociates from

Raf to allow MEK and ERK activation (Kolch, 2005; Shin et al., 2009) RKIP functions as a

metastasis suppressor in multiple solid tumor types such as prostate and breast cancer

(Keller, 2004). RKIP is down-regulated in some types of cancers and is associated with

resistance of cancer cells to anti-neoplastic treatments (Granovsky and Rosner, 2008).

MORG 1 Cytoplasm MORG 1, MAPK organizer, binds C-Raf, MEK, ERK, and MP1 and facilitates ERK

activation when cells are stimulated with lysophosphatidic acid or serum, but not in

response to EGF (Vomastek et al., 2004).

OSBP Cytoplasm Oxysterol-binding protein, OSBP is a sterol-binding protein that induces ERK activation

regulating vesicle transport, lipid metabolism, and signal transduction (Chen and Wang,

2004).

RGS12 Cytoplasm, Plasma membrane Regulator of G-protein signaling, RGS associates with NGF receptor tyrosine kinase TrkA,

activates Ras, B-Raf, and MEK2 and facilitates their coordinated signaling to prolonge

ERK activation (Willard et al., 2007). RGS12 modulates PDGF beta receptor signaling in

smooth muscle cells (Sambi et al., 2006) and regulates osteoclastogenesis in bone

remodeling and pathological bone loss (Yuan et al., 2015).

archvillin Cytoplasm Archvillin form a complex with B-Raf, MEK, ERK and 14-3-3 in smooth muscle cells to

regulate differentiation and contractility (Gangopadhyay et al., 2004, 2009).

grb10 Cytoplasm, Plasma membrane grb10 functions as a negative regulator in the insulin –stimulted ERK signaling interacting

with Raf-1 and MEK in response to IGF-I or insulin (Charalambous et al., 2003; Langlais

et al., 2004; Deng et al., 2008). Grb10 loss promotes Ras pathway hyperactivation, which

promotes hyperproliferation, (Mroue et al., 2015).

dyrk1a Cytoplasm dyrk1a prolongs the kinetics of ERK activation by interacting with Ras, B-Raf, and MEK1

to facilitate the formation of a Ras/B-Raf/MEK1 multiprotein complex. Dyrk 1a is required

for promoting or maintaining neuronal differentiation and its overexpression contributes to

the neurological abnormalities observed in Down syndrome patients (Kelly and Rahmani,

2005). Dyrk1a regulates cell cycle exit, oncogene-induced senescence, and cell

differentiation and acts as an oncogene in myeloid leukemias and gliomas (Abbassi et al.,

2015; Lee et al., 2016).

GIT1 Cytoplasm, Plasma membrane GIT1 acts as a scaffold that exerts spatial control of ERK1/2 activation. GIT1 colocalizes

with ERK1/2 at focal adhesions. GIT1 overexpression prolongs EGF stimulation of

ERK1/2, and knocking down GIT1 expression inhibits EGF stimulated ERK1/2 activity (Yin

et al., 2004, 2005).

activation occurs both when there are not sufficient scaffolds to
unite all of the available MAPKs, MAPKKs, and MAPKKKs, and
also when an excessive scaffold concentration scatters MAPKs,
MAPKKs, and MAPKKKs in incomplete, thereby unproductive,
complexes. This phenomenon has been termed “combinatorial
inhibition” and “prozone effect” (Levchenko et al., 2000; Heinrich
et al., 2002). Thus, it would be conceivable that by controlling
fluctuations on scaffold concentrations, a biological system
would find an efficient mode for regulating MAPKs signal
output. Theoretically, maximum intensity for a MAPK signal
would be attained only when scaffolds concentrations are at
optimal levels. Thus, tilting scaffolds expression, either up or
down, could be a valid means to attenuate MAPK signals.
Noticeably, the expression of most scaffold proteins is rather
stable and not subject to major, immediate changes in response
to external stimuli and other factors that govern MAPKs
activation. Something that does not preclude that alterations

on scaffolds levels, when they do occur, can have profound,
long-term effects on the biological outcomes mediated by
MAPKs, even contributing to pathological processes. Indeed,
it is well documented that some ERK scaffold proteins
exhibit altered expression levels in certain types of tumors
(www.oncomine.com; www.cBioportal.com).

COORDINATED SCAFFOLDS?

An intriguing aspect about ERKs scaffold proteins is that
depletion, or overexpression, of any of them has dramatic effects
on ERKs total signal intensity. This is somewhat counterintuitive,
considering the sheer number of scaffold proteins and their,
supposedly, localized mechanism of action. Conceptually, if we
consider a cell in which ERK signals are tuned independently by
15 scaffold proteins, most of them acting in a sublocalization-
specific fashion, any alteration on the expression of one of them
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FIGURE 1 | Allosteric regulation of KSR2. A regulatory RAF interacts with KSR in cis to induce a conformational switch on MEK to expose its activation loop,

subject to phosphorylation by RAF in trans. In the KSR2–MEK1 hetero-tetramer (left), the inaccessible activation segment of MEK1 is released through the interaction

of KSR2 with RAF, induced by a conformational change, allowing a “catalytic” RAF to phosphorylate MEK (right).

FIGURE 2 | Scaffolding promotes signal amplification in the presence of phosphatases. High phosphatase activity in the absence (A) or presence (B) of

scaffold proteins. When there are no scaffolds, the signal will be strongly down-regulated by phosphatases. Scaffold proteins enhance the local concentration of

kinases and shields them from dephosphorylation, facilitating signaling.

should only affect ERKs total activity by about one fifteenth.
However, this seems not to be the case. For example, in several
studies in which KSR1 levels are down-regulated, either by gene
knock-out or using RNA interference, ERK activation levels
consistently drop by over 80% (Nguyen et al., 2002; Lozano et al.,
2003). A similar situation is observed for IQGAP1 (Roy et al.,
2004; Jameson et al., 2013), and forMP1 (Sharma et al., 2005; Teis
et al., 2006), just to mention a few cases. Apparently, tampering
with scaffold proteins expression levels has far more profound

effects than would be expected from proteins that, supposedly,
influence ERK signals locally and partially.

One hypothetical explanation for this conundrum would be
that scaffold proteins somehow influence the functions of other
scaffold proteins. This can be easily envisioned, considering
that overexpression of any scaffold should have an impact
on other scaffold species that compete for the same pools of
kinases, resulting in an increment on the number of incomplete
scaffold complexes, for every scaffold, and therefore on less
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FIGURE 3 | Scaffold proteins as spatial regulators of ERK signaling. In response to stimulation, phosphorylated ERK monomers detach from MEK and may

follow three destinies: (1) translocate as monomers to the nucleus; (2) dimerize freely in the cytoplasm, and (3) specific scaffolds act as dimerization platforms in a

sublocalization–specific fashion, where ERK dimers are assembled and the new complexes can interact with different cytoplasmic pools of substrates.

efficient signaling overall. By the same token, depletion of
scaffold A could even benefit signaling as mediated by scaffold
B, by reducing the competition for the same kinases and
thereby increasing the number of complete scaffold B complexes
(Figure 4).

Other plausible explanations have a more mechanistic basis,
for example in the case of multi-domain scaffolds, such as
paxillin or those of the IQGAP family, involved in multiple
signal transduction events (Deakin and Turner, 2008; Smith
et al., 2015). It is not unlikely that under- or overexpression
of these scaffolds can have an impact on other signaling
pathways that, at their turn, may induce changes in the
pattern of post-translational modifications of other ERK scaffold
species. Many scaffolds, for example KSR1, MP1, and SEF, are
subject to phosphorylation, acetylation, ubiquitylation, and other
post-translational processes (www.phosphosite.com). In most
cases, the functional consequences of these modifications are
completely unknown, but it is quite conceivable that, one way
or another, they could have some bearing on their behavior as
ERK pathway scaffolds. Indeed, it is well documented that the
role played by KSR in the RAS-ERK pathway is regulated by
diverse phosphorylation events (Muller et al., 2001; Razidlo et al.,
2004; Dougherty et al., 2009). Specifically, KSR performance
as a RAS-ERK scaffold is regulated by calcium and cAMP
signals via phosphorylation (Dougherty et al., 2009; Shen et al.,
2013), while these type of signals are tightly regulated by

IQGAP1 (Logue et al., 2011). Thus, perturbations on IQGAP1
expression levels might impact on ERK activation both as
a direct consequence of IQGAP scaffolding and indirectly,
via KSR scaffolding through its regulation by Ca2+/cAMP
signals.

Alterations on the expression of a given scaffold could also
have broader consequences than expected if scaffold proteins
don’t act alone mechanistically. As previously mentioned, the
prevailing notion is that scaffold proteins act as autonomous
entities, regulating ERK signals generated by some specific
stimulus, at defined subcellular localizations. However, it cannot
be discarded that different scaffolds act in a coordinated fashion
to regulate flux through the ERK cascade. Indeed, evidence in
mounting showing that scaffold proteins can directly associate
among themselves in macromolecular complexes. Several
adaptor proteins, docking proteins and scaffold proteins of
diverse types are well known to interact in order to form “macro”
signaling platforms (Pan et al., 2012). In the case of scaffolds
for the ERK pathway, associations between different entities
have been demonstrated for: IQGAP1 and MP1 (Schiefermeier
et al., 2014), MP1 and MORG1 (Vomastek et al., 2004),
IQGAP1 and β-arrestin2 (Feigin et al., 2014), and paxillin and
GAB1 (Ren et al., 2004). And this kind of interactions seems
to be important for certain cellular processes. For example,
the association between IQGAP1 and MP1 appears to be
critical for the regulation of focal adhesion dynamics during
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FIGURE 4 | Hypothetical model showing how alterations on scaffolds levels can impact on the functions of other scaffolds. (A) Overexpression of the red

scaffold attenuates signals from itself and from the blue scaffold, that competes for the same pools of kinases. (B) Depletion of the red scaffold attenuates its own

signals but promotes signaling by the blue scaffold as a consequence of the increment on available kinases that increase the number of complete blue scaffold

complexes.

cellular migration (Schiefermeier et al., 2014). However, what
orchestrates interactions among different scaffolds and how these
interactions impact on the ability of each individual scaffold for
regulating ERK signaling, are completely open questions at this
moment.

Overall, the unveiling of this novel kind of associations
is enough to start considering the existence of higher-order
“macro-scaffolding” complexes, in which the participation,
maybe in some coordinated fashion, of different scaffold
species could add one further degree of complexity to the
regulation of ERK signals. For example, considering that signals
evoked by different stimuli, or emanating from distinct sub-
localizations, could engage diverse scaffolds and target distinct
pools of substrates (Casar et al., 2009b). It is conceivable
that complexes formed by the association of two different
scaffold proteins, and competent for “trans-phosphorylation”
between the different kinase tiers, may serve as nodes for
the integration of incoming, distinct spatially-defined signals,
and for the subsequent diversification of outgoing signals with
respect to substrate specificity (Figure 5). As an example, MORG
facilitates ERK activation as evoked by serum but not by EGF
(Vomastek et al., 2004). Contrarily, MP1 responds to EGF (Teis
et al., 2002) but not to serum (Sharma et al., 2005). If MORG
and MP1 directed ERK to different sets of substrates, EGF or
serum stimulation would result in activation of just a narrow

collection of substrates. However, a MORG-MP1 association
would make available the whole spectrum of substrates
both to serum- and to EGF-induced ERK signals, provided
that trans-phosphorylation occurred between both scaffold
complexes.

Furthermore, the possibility exists that an incomplete scaffold
complex (missing one or more kinases) could interact in
trans with another type of scaffold, also partially occupied, to
allow trans-phosphorylation. This would enable the different
scaffolds to complement, and compensate, each other’s kinase
deficiencies (Figure 6). In this fashion, incomplete scaffold
complexes, apparently impaired for supporting efficient
signaling, would be capable of contributing to the flux of
signals. Thus, if scaffolds were to function cooperatively,
signal optimization could be possible under situations in
which different scaffold species, acting on their own, would
be at a disadvantage. For example, when the levels of some
kinase are limiting. This cooperation would be particularly
advantageous in those cases in which the collaborating
scaffolds exhibit markedly different affinities for the limiting
kinase.

Such interdependence among different scaffold species, could
offer a plausible explanation for the dramatic consequences on
ERK signaling, frequently observed when tampering with the
expression levels of most scaffold proteins. If proven to be
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FIGURE 5 | Scaffold-Scaffold interactions as nodes for signal integration. (A) Working independently, defined scaffold proteins respond to specific stimuli and

convey signals to a limited number of ERK substrates. (B) Scaffold complexes composed of two (or more) scaffold proteins, where trans-phosphorilation among the

different kinase tiers would be feasible, would facilitate signal integration, serving as nodes for various incoming signals and for the diversification of outgoing signals

with respect to the number of substrates.

FIGURE 6 | Scaffold-Scaffold interactions may compensate deficiencies in kinases, facilitating signaling. Provided that trans-phosphorylation was

possible, complexes formed by two (or more) partially occupied scaffolds would be able to complement each other’s kinase deficiencies, so incomplete scaffold

complexes, apparently impaired for supporting efficient signaling, would be capable of improving the flux of signals.
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correct, associations among different scaffold proteins will add
one further degree of regulation for an already tightly regulated
cascade and could provide a novel means for manipulating ERK
signals, even with therapeutic purposes.
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