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Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of

axons allows rapid saltatory conduction of nerve impulses and contributes to axonal

integrity. Devastating neurological deficits caused by demyelinating diseases, such as

multiple sclerosis, illustrate well the importance of the process. In this review, we

focus on the positive and negative interactions between oligodendrocytes, astrocytes,

and microglia during developmental myelination and remyelination. Even though many

lines of evidence support a crucial role for glia crosstalk during these processes, the

nature of such interactions is often neglected when designing therapeutics for repair of

demyelinated lesions. Understanding the cellular and molecular mechanisms underlying

glial cell communication and how they influence oligodendrocyte differentiation and

myelination is fundamental to uncover novel therapeutic strategies for myelin repair.

Keywords: oligodendrocyte, astrocyte, microglia, multiple sclerosis (MS), experimental autoimmune
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INTRODUCTION

Glial cells, neuroglia, or simply glia, in the adult mammalian central nervous system (CNS)
comprise astrocytes, oligodendrocytes, and microglia. Collectively, they are by far the most
abundant cells in the nervous system. The term glia, derived from the Greek word meaning glue,
reflects the nineteenth-century view of Rudolph Virchow that these cells had the function to hold
the nervous system together (Virchow, 1856). Today, we know that glia play many other roles, such
as modulation of homeostatic functions, myelination, synaptic function, nerve signal propagation
and responses to neural injury (for extended information please see reviews Herculano-Houzel,
2014; Zuchero and Barres, 2015).

Astrocytes have star-shape morphology and are the most abundant CNS glial cell type. They
play essential functions in blood brain barrier maintenance, neuronal survival, and in synapse
formation, strength, and turnover (Barres, 2008). First characterized by del Río-Hortega (1928),
oligodendrocytes are the myelinating glia of the CNS (Nave and Werner, 2014) and their myelin
sheaths enwrap axons to allow fast saltatory conduction of action potentials. They also provide
axonal metabolic support (Funfschilling et al., 2012) and contribute for neuroplasticity (Mckenzie
et al., 2014). While oligodendrocytes and astrocytes originate from a common lineage of neural
progenitor cells within the neuroectoderm, microglia are the main innate immune cells of the CNS
and arise from hematopoietic stem cells in the yolk sac during early embryogenesis that populate
the central nervous system. Being ontogenetically different from other tissue-macrophages they
have longevity and capacity for self-renewal (Chan et al., 2007; Prinz and Priller, 2014).
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The roles of glial cells in health and in disease have
been partially neglected because many basic aspects of their
physiology and pathophysiology are still not completely
understood. However, it is becoming more evident that glia-
glia crosstalk plays several important roles in brain function
during development and disease. This review discusses how in
their active interplay, astrocytes and microglia can modulate
oligodendrocyte homeostasis during myelination, demyelination
and remyelination.

GLIAL CELL INTERACTIONS IN CNS
(RE)MYELINATION AND DEMYELINATION

Oligodendrocyte Differentiation in Health
and Disease
Oligodendrocyte Differentiation in Developmental

Myelination
In the CNS, myelination is carried by oligodendrocytes. The
myelin sheath is a modified and extended glial plasma membrane
that enwraps around the axons enabling fast saltatory nerve
conduction and axon integrity (Nave and Werner, 2014).
Demyelination, the process or state resulting from the loss or
destruction of myelin, is a hallmark of numerous diseases, such
as multiple sclerosis (MS), contusion type spinal cord injury
(SCI), and stroke. Oligodendrocytes derive from oligodendrocyte
progenitor cells (OPC), which hold the capacity to proliferate,
migrate, and differentiate into myelinating oligodendrocytes.
Demyelination is often followed by remyelination, the default
spontaneous process by which new OPC are recruited to
differentiate into myelinating oligodendrocytes and the
myelin sheaths are restored to axons, protecting them from
degeneration. Ideally, remyelination should recapitulate
developmental myelination. However, the inflammatory
and activated milieu surrounding the demyelinated lesions
compromises and limits the efficacy of the remyelination process
(Franklin and Goldman, 2015).

OPC are highly proliferative, motile and bipolar cells
expressing high levels of the gangliosides recognized by the
A2B5 antibody, the receptor of PDGF alpha (PDGFαR), and
the NG2 proteoglycan. OPC specification and differentiation is
regulated by transcription factors such as Olig1, Olig2, Mash,
Myt1, Nkx2.2, and Sox10 and their differentiation along the
oligodendroglial lineage, can be regulated by molecules such as
IGF-1, FGF2, CNTF, and thyroid hormone T3 (see reviews from
Zuchero and Barres, 2013; Mitew et al., 2014; Figure 1).

There are at least two identified sources of OPC in the adult
brain: the progenitors from the subventricular zone (SVZ) (Menn
et al., 2006) and the NG2 and PDGFαR positive OPC, believed
to be homogeneously distributed within the CNS (Nishiyama
et al., 1996; Watanabe et al., 2002; Rivers et al., 2008; Richardson
et al., 2011). These cells account for 5–8% of all cells in the
CNS (Levine et al., 2001) and exist throughout regions such
as the optic nerve (Shi et al., 1998), motor cortex, corpus
callosum (Clarke et al., 2012), and cerebellum (Levine et al.,
1993), providing a substantial source of new oligodendrocytes
and, thus, a potential reservoir for remyelination. Adult OPC

are oligodendrocyte precursors with restricted lineage potential,
generating myelinating oligodendrocytes, but not astrocytes
or neurons, not even during disease (Kang et al., 2010).
Interestingly, these cells are constantly proliferating in the
CNS to maintain their homeostatic cell density (Hughes et al.,
2013), though at slower rate than during development or injury
(Shi et al., 1998; McTigue et al., 2001). Oligodendrocytes are
generated continuously in the healthy adult brain. In human
brain, although the oligodendrocyte turnover is very stable,
with an annual change of 0.3% (Yeung et al., 2014), increasing
evidence shows that myelin is produced and remodeled
throughout life, not just during childhood and adolescence.
Actually, it was shown that inhibiting the formation of new
oligodendrocytes during adulthood, without compromising pre-
existing oligodendrocytes and myelin, prevented mice from
learning new motor skills (Mckenzie et al., 2014), suggesting that
the formation of new myelinating oligodendrocytes during adult
life is an important mechanism for neuroplasticity. Moreover,
Birey and colleagues describe a new role for NG2 glial cells in
the regulation of CNS homeostasis, other than their myelinating
potential. The depletion of NG2 glia in the prefrontal cortex of
the adult mouse brain caused deficits in excitatory glutamatergic
neurotransmission and astrocytic extracellular glutamate uptake
and induced depressive-like behaviors (Birey et al., 2015). Finally,
Hughes and colleagues showed that NG2 positive cells also
participate in the formation and resolution of the glial scar,
suggesting that these progenitor cells are also able to detect CNS
injury and promote tissue repair (Hughes et al., 2013).

OPC differentiation into a myelinating oligodendrocyte is
characterized by a rapid increase in morphological complexity
followed by expansion of uncompacted myelin membrane. Such
profound morphological changes demand dynamic cytoskeleton
rearrangements of microtubules and actomyosin (F-actin) (Bauer
et al., 2009; Snaidero and Simons, 2014). In the past years, we and
others have contributed to the identification and understanding
of the role of regulatory proteins that govern the cytoskeletal
function during developmental myelination in the CNS, namely
the β1 integrin, the Rho GTPases Rac1 and Cdc42 and the
extracellular matrix (ECM) proteins fibronectin and laminin
(Relvas et al., 2001; Benninger et al., 2006; Thurnherr et al., 2006;
Lourenco et al., 2016).

Oligodendrocyte Differentiation after Myelin Damage
Following injury, and myelin damage, NG2/PDGFαR-expressing
adult progenitors differentiate into oligodendrocytes capable
of remyelinating axons (Zawadzka et al., 2010) and restoring
nearly normal nerve conduction. However, over the course
of MS changes in the microenvironment of the injured
nervous system cause OPC to gradually loose the ability
to respond to myelin damage limiting their remyelination
capacity (Kipp et al., 2012). It is thought that for remyelination
to occur, OPC need to be “activated.” These progenitor
cells become responsive to mitogens, growth factors,
chemokines and cytokines, which enhance their proliferation
and mobilization to the demyelinated area, and increase
the expression of genes associated with oligodendroglial
differentiation (Redwine and Armstrong, 1998; Di Bello et al.,
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FIGURE 1 | Oligodendrocyte, astrocyte, and microglia crosstalk during developmental myelination. In the non-diseased or non-insulted CNS, both

quiescent astrocytes and steady state microglia may potentiate (green) or prevent (red) the differentiation of oligodendrocyte progenitor cells (OPC) into mature

myelinating oligodendrocytes. Quiescent astrocytes can also support myelin maintenance, which will consequently enhance myelin production by myelinating

oligodendrocytes. Steady state microglia might additionally contribute to oligodendrocyte differentiation by providing trophic support to OPC. Furthermore, microglia

can modulate OPC differentiation directly after polarization by exogenous ligands. For instance, while the inflammagen LPS polarize microglia to prevent (red), the

anti-inflammatory cytokine IL-4 polarize microglia to promote (green) OPC differentiation.

1999; Fancy et al., 2004; Moyon et al., 2015). Experimental
evidence strongly suggests that in MS, OPC depletion is not
a limiting step for remyelination but rather the inhibition
of OPC recruitment and differentiation into myelinating
oligodendrocytes (Boyd et al., 2013). In fact, a quantitative

analysis of oligodendrocytes in MS lesions showed that only
30% of the lesions were devoid of OPCs, while the other
70% contain an increased number of OPC that were unable
to differentiate and remyelinate axons (Lucchinetti et al.,
1999). A recent study reported that rodent adult OPC have
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a transcriptome more similar to oligodendrocytes than to
neonatal OPC. However, in demyelinating conditions, adult
OPC are activated and revert their phenotype to a more
neonatal OPC, and produce the cytokine IL-1β and chemokine
CCL2 that enhance OPC mobilization and promote their
repopulation in demyelinating areas (Moyon et al., 2015). This
study shows that OPC can modulate neuroinflammation
and promote regeneration and are not simple
target cells.

Oligodendrocyte Injury: Cause or Consequence of

Inflammation?
MS is an inflammatory disorder causing CNS demyelination
and axonal injury. Although its etiology remains elusive, many
reports associate autoimmunity, genetic predisposition, and
environmental factors as triggers for MS pathogenesis. This
autoimmune response is thought to be mediated by myelin-
specific CD4+ T cells that initiate a series of neuroinflammatory
events conjugated with those of either innate and adaptive
infiltrating immune and CNS resident cells. This ultimately
leads to the attack of myelin-producing oligodendrocytes,
culminating in demyelination followed by axonal damage
(Bauer et al., 2009; Nicol et al., 2015). In alternative to
this long- favored hypothesis it has been proposed that
the disease process could be triggered by events primarily
occurring within the CNS. For example, it has been shown
that primary oligodendroglial dystrophy in type III and IV
lesions was followed by subsequent inflammation (Lucchinetti
et al., 2000). Based on observations of lesions of patients
with relapsing and remitting multiple sclerosis (RRMS) with
extensive oligodendrocyte apoptosis, microglial activation, and
few or no lymphocytes or myelin phagocytes (Barnett and
Prineas, 2004), it has also been suggested a novel mechanism
of new MS lesion formation initiation. This hypothesis is in
agreement with the identification of extracellular myelin in
MS leptomeninges and perivascular spaces, suggesting primary
myelin trafficking from the CNS to the secondary lymphoid
organs for further antigen presentation to immune cells to
mount the autoimmune neuroinflammatory response (Fabriek
et al., 2005; Kooi et al., 2009). Recently, using a transgenic
mouse model for inducible depletion of adult oligodendrocytes it
was verified that oligodendrocyte loss is followed by infiltration
of CD4+ T cells into the CNS leading to a secondary, fatal
demyelinating disease. Focal lesions with T cell infiltration
and macrophage/microglia inflammation characterized this late
onset demyelination. Moreover, myelin-specific T cells were
identified in peripheral lymphoid organs and after isolation
and in vitro activation could, by adoptive transfer, induce mild
neurological symptoms, and inflammatory white matter lesions
in the recipient animals (Traka et al., 2016). This study clearly
raises the concept of autoimmunity to another level of complexity
that requires a deeper understanding. Altogether, these data
suggest that CNS demyelination is caused by a multitude of
complex pathophysiologic mechanisms with several possible
scenarios and cellular players. Therefore, it is extremely relevant
to address when and how these interactions take place in
de(re)myelinating conditions.

Role of Astrocytes in (re)Myelination
Astrocyte Phenotypes
Astrocytes (Andriezen, 1893) are originated from neural
embryonic progenitor cells that line the lumen of the embryonic
neural tube. However, they can be formed indirectly via
radial glia, which in addition to function as scaffolding for
newborn neuron migration, can serve as progenitor cells
giving rise to astrocytes (Choi, 1981; Voigt, 1989; Kessaris
et al., 2008). Astrocytic heterogeneity is far more complex
than initially imagined and there is no complete consensus in
their categorization. However, the classification of astrocytes
by Ramón y Cajal into protoplasmic and fibrous astrocytes
(Ramón Y Cajal, 1909) based on differences in their morphology,
antigenic phenotype, location and function, is still valid and
useful. Type 1 astrocytes (protoplasmic astrocytes) are localized
in the gray matter and ensheath synapses and blood vessels to
promote synapse and blood brain barrier functions, respectively.
Type 2 astrocytes (fibrous astrocytes) are localized in the
white matter and contact the nodes of Ranvier and the blood
vessels (Barres, 2008; Sofroniew and Vinters, 2010). In addition,
astrocytes can also be diverse in their ability to react in response
to CNS insults. Astrocytes range from inactive or quiescent to
active and reactive. Quiescent astrocytes exist in the normal
resting CNS tissue. Upon injury or insult, astrocytes become
activated by various mechanisms that result in mild astrogliosis.
Reactive astrocytes are closer to the injury site and are responsible
for the glial scar formation (Nash et al., 2011a). Astrocyte
reactivity seems to influence myelination differently and it will
be discussed in the next sections.

Astrocyte-Derived Promoters of Oligodendrocyte

Proliferation, Differentiation, and Myelination
The processes by which astrocytes facilitate each step of
myelination, including OPC proliferation, differentiation, initial
oligodendrocyte-axon contact, and myelination, have been
addressed in several studies (Figure 1). It is generally accepted
that astrocytes support oligodendrocyte function. The first
evidence of interplay between astrocytes and oligodendrocytes
and its impact onmyelination dates back to the middle 80’s, when
type 1 astrocytes were identified to expand O-2A progenitors
from neonatal rat optic nerve. Such expansion was found to
be mediated by unidentified soluble growth factors (Noble and
Murray, 1984), later identified as platelet-derived growth factor
(PDGF) (Noble et al., 1988; Richardson et al., 1988) and basic
fibroblast growth factor (FGF2) (Bogler et al., 1990). PDGF and
FGF2 are both potent mitogens for OPCs and inhibit premature
oligodendrocyte differentiation.

Other soluble factors secreted by astrocytes have been
implicated in enhancing myelination. Bhat and Pfeiffer observed
that extracts from cultures enriched in astrocytes stimulated
oligodendrocyte differentiation (Bhat and Pfeiffer, 1986), thus
supporting the concept of a positive effect of astrocytes in
myelination. In agreement with these findings, Gard and
co-workers identified leukemia inhibitory factor-like protein
(LIF) in conditioned medium produced by astrocytes that
promoted oligodendrocyte survival and maintained them in
a mature myelinogenic state (Gard et al., 1995). Ishibashi
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and colleagues also showed that astrocyte release of LIF in
response to electrical activity in axons promoted oligodendrocyte
myelination (Ishibashi et al., 2006). Other examples are
neuregulin-1 (Taveggia et al., 2008), gamma-secretase (Watkins
et al., 2008), ciliary neurotrophic factor (CNTF) (Stankoff
et al., 2002), insulin-like growth factor 1 (IGF-1) (Ye et al.,
2004; Zeger et al., 2007), osteopontin (Selvaraju et al.,
2004), and neurotrophin-3 (NT3) (Kumar et al., 2007). Co-
cultures of astrocytes and oligodendrocytes revealed that
astrocyte proximity, in a contact-independent manner, induced
profound changes in the levels of oligodendrocyte gene
expression, in particular the expression of several myelin-related
and cytokine receptors genes (Iacobas and Iacobas, 2010).
Sorensen and colleagues showed that in cultures generated
from rat embryonic spinal cord, neurosphere-derived astrocytes
promoted myelination of CNS axons (Sorensen et al., 2008).
Finally, Nash and colleagues found correlation of astrocyte
phenotypes with their ability to support myelination. Activated
astrocytes by CNTF increased myelination, while quiescent
astrocytes induced by tenascin C through CXCL10 resulted
in less myelinated fibers (Nash et al., 2011b). The analysis of
postmortem brains of neonatal brain injury also revealed that
the presence of activated STAT3 signaling in reactive astrocytes
prevented the impairment of oligodendrocyte maturation
(Nobuta et al., 2012).

Physical contact with astrocytes can also facilitate the
maturation of oligodendrocytes (Sakurai et al., 1998). Astrocytes
were found to promote adult mouse oligodendrocyte survival
through a cell-contact dependent mechanism involving the
interaction of α6β1 integrin on oligodendrocytes with laminin on
astrocytes (Corley et al., 2001).

Moreover, myelin homeostasis in the CNS is dependent on
the proper function of oligodendrocyte and astrocyte connexins
(Orthmann-Murphy et al., 2008; Lutz et al., 2009). Astrocytes
express connexin 43 (Cx43) and Cx30 and may couple to other
astrocytes by homotypic gap junction composed of Cx43-Cx43
or Cx30-Cx30 while oligodendrocyte express Cx32 and Cx47
and also couple to one another using Cx32-Cx32 or Cx47-Cx47
gap junctions. Astrocytes and oligodendrocytes also establish
heterotypic gap junctions composed of Cx47-Cx43 or, to a
lesser extent, Cx32-Cx30 (Orthmann-Murphy et al., 2008). The
elimination of gap junctions coupling oligodendrocytes and
astrocytes in mice through oligodendrocytic Cx47 and astrocytic
Cx30 delayed myelination, revealing a role for connexins and
glial physical connection in myelin maintenance (Tress et al.,
2012). The observation of a unidirectional flow through gap
junctions, whereby cytosolic contents originating from astrocytes
are preferentially transported to oligodendrocytes suggests that
these cells are metabolically supported by astrocytes (Robinson
et al., 1993). It was also proposed that astrocytes might buffer
the concentration of potassium ions that accumulate in the white
matter during neurotransmission in oligodendrocytes through
gap junctions (Nagy and Rash, 2000).

In addition to promoting oligodendrocyte survival
and differentiation, astrocytes also affect other aspects of
oligodendrocyte biology. Astrocytes promote adult human
oligodendrocyte process extension through FGF2 in combination

with the ECM proteins fibronectin and laminin (Oh and Yong,
1996), in a protein kinase C (PKC)-dependent manner (Oh et al.,
1997).

Astrocyte-Derived Promoters of Remyelination
In remyelination models using chemical demyelination, Franklin
and colleagues showed that in vivo transplantation of type
1 astrocytes potentiated oligodendrocyte remyelination and
increased the thickness of myelin sheaths (Franklin et al., 1991).
In cuprizone-induced demyelination, the expression of TNFR2 in
astrocytes resulted in the autocrine expression of CXCL12, which
acted at its receptor CXCR4 on OPC, inducing their proliferation
and differentiation, therefore enabling remyelination (Patel
et al., 2012; Figure 2). In addition, CNTF was identified
within activated/reactive astrocytes in and around spinal cord
remyelinating lesions, and regulated FGF-2 production in
astrocytes during early remyelination, suggesting CNTF as an
important cytokine in demyelinating diseases (Albrecht et al.,
2003). Skripuletz and co-workers showed that astrocyte ablation
during cuprizone-induced demyelination did not prevent myelin
damage but rather inhibited the removal of the myelin debris and
delayed remyelination (Skripuletz et al., 2013). Interestingly, two
studies using different models of demyelination of spinal cord
white matter observed that the absence of astrocytes in the lesion
area decreased the oligodendrocyte-mediated remyelination and
increased remyelination mediated by Schwann cells (Talbott
et al., 2005; Monteiro De Castro et al., 2015). Altogether, these
results suggest that the astrocyte free regions of the lesion either
contained inhibitory signals preventing terminal differentiation
of OPC or lack appropriate signals necessary for OPC to undergo
terminal differentiation.

Astrocyte-Derived Inhibitors of (re)Myelination
Astrocytes have been initially described to have detrimental
effects on oligodendrocyte differentiation, in particular those
within the glial scar. Astrocytes within the glial scar inhibited
regeneration and impacted negatively on remyelination (Fawcett
and Asher, 1999; Silver and Miller, 2004). In vitro studies
showed that type 1 astrocytes inhibitedmyelination of dorsal root
ganglion axons by adult oligodendrocytes (Rosen et al., 1989).
Astrocytes also secrete factors implicated in the inhibition of
myelination and remyelination. Besides the above mentioned
PDGF and FGF2 (Noble et al., 1988; Richardson et al., 1988;
Bogler et al., 1990), which promote OPC proliferation and
inhibit premature differentiation, others such as tenascin C (Nash
et al., 2011b), bone morphogenetic proteins (BMP)2/4 (Wang
et al., 2011), and hyaluronan (Sloane et al., 2010) have also
been described. Hyaluronan is a glicosaminoglican (GAG) that
interacts with CD44, a receptor present in OPC. This interaction
impairs remyelination after lysolecithin-induced white matter
demyelination because OPC do not differentiate into myelin-
forming cells in demyelinating lesions where hyaluronan is
present. Paralleling these findings, OPC differentiation was also
blocked by treating OPC cultures with hyaluronan (Back et al.,
2005). Astrocyte-derived endothelin-1 (ET-1) was identified to
be a negative regulator of OPC differentiation and remyelination
by promoting Jagged1 expression that activates Notch on OPC
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FIGURE 2 | Oligodendrocyte, astrocyte, and microglia crosstalk during demyelination and remyelination. Upon an insult to the CNS parenchyma or in

neurodegenerative diseases, mature myelinating oligodendrocytes degenerate and eventually die, a processes termed active demyelination. Reactive astrocytes and

activated microglia directly participate in this process displaying both detrimental (red) and beneficial (green) roles. Astrocytes may also modulate the recruitment of

(Continued)
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FIGURE 2 | Continued

peripheral immune cells by secreting different set of cytokines and chemokines, which will further promote the degeneration of myelinating oligodendrocytes.

Furthermore, astrocytes secrete the chemokines CCL2 and CXCL10 to recruit overactive microglia, which may further increase oligodendrocyte loss. Microglial TAK1

signaling is also involved in the recruitment of peripheral immune cells to regulate active demyelination. On the other hand, astrocytes and microglia promote

remyelination after myelin damage by the generation of oligodendrocytes from the OPC pool in the neuronal parenchyma. During remyelination, and as occurs for

active demyelination, reactive astrocytes, and activated microglia can promote (green) or impede (red) the process. Astrocyte can further influence remyelination by

secreting the chemokines CXCL1, CXCL8, and CXCL10 to recruit OPC to demyelinated zones where they can differentiate into mature oligodendrocytes.

(Hammond et al., 2014). Blakemore and colleagues showed
that remyelination was more efficient after transplantation of
neonatal OPC into an astrocyte-free area of demyelination
than into an area with established astrocytes (Blakemore et al.,
2003). This contrasts with previous work from Franklin and
colleagues, in which they showed a positive effect of astrocytes
in remyelination, using a more acute model of demyelination
(Franklin et al., 1991) (Figure 2). Finally, a recent report
demonstrates that preventing astrocytic scar formation in SCI
significantly reduces stimulation of axon regrowth (Anderson
et al., 2016). Although no information concerning myelin was
provided, this study supports a positive role for astrocytes during
regeneration.

Overall, these studies suggest that the outcome of glial
interactions in myelination is affected by the surrounding
microenvironment, emphasizing that the activation state of
astrocytes likely determines their permissive or inhibitory
influence on oligodendrocyte development. Besides the different
possibilities of astrocyte phenotypes, it should also be considered
the distance of these populations to the lesion site, as relatively
small changes in the responsive milieu may have different
impacts on oligodendrocyte behavior. Nash and colleagues
hypothesized that while astrocytes more distal to injury are
activated cells that contribute in a greater extent to regeneration
via the secretion of growth factors and cytokines, astrocytes in
closer proximity to the lesion site are more reactive and may
hinder the remyelination process (Nash et al., 2011a).

Astrocytes in Demyelinating Diseases:
Focus on MS and EAE
Astrogliosis is one of MS pathological hallmarks. Astrocytes play
an active role in both promoting demyelination and impairing
remyelination by regulating peripheral immune cell trafficking,
modulating BBB integrity, and being a source of chemokines and
cytokines with pleiotropic functions (Figure 2).

Astrocytes and BBB Function
BBB dysfunction is also a hallmark of MS progression.
Astrocyte activation and loss of their end-feet around small
blood vessels represent an early event in lesion development
linked to BBB disruption in EAE (Correale and Farez, 2015).
Astrocyte activation increases HIF-1, up-regulating VEGF-A
expression, which induces the down-regulation of claudin-
5 and occludin, important proteins that compose the tight
junctions of endothelial cells, leading to BBB injury (Argaw et al.,
2006, 2009, 2012). Gimenez and colleagues demonstrated that
vascular adhesion molecule-1 (VCAM-1) expression, specifically
by astrocytes, is crucial for T cell invasion of the CNS parenchyma

in EAE (Gimenez et al., 2004). They also demonstrated that
the VCAM-1 expression by astrocytes is dependent on TNFR1
expression (Gimenez et al., 2004). Still, it was observed in an
in vitro BBB model (Megard et al., 2002), that IL-1β secretion
by astrocytes is pivotal in mediating TNF-induced paracellular
transport in endothelial cells (Didier et al., 2003).

Astrocytes and Chemokine Production/Immune Cell

Recruitment
Astrocytes secrete a plethora of chemokines and cytokines (Dong
and Benveniste, 2001) that regulate different immune events
during MS progression. Astrocytes were found to be the main
source of the chemokine CCL2 in EAE (Ransohoff et al., 1993).
This molecule is an essential chemoattractant for monocytes and
T cells and exerts a key role in the onset of MS (Huang et al.,
2001). Curiously, Toft-Hansen and colleagues, using transgenic
mice expressing herpes simplex virus-derived thymidine kinase
under the control of a glial fibrillary acidic protein promoter,
investigated whether inhibition of reactive astrocytosis influences
established EAE. In this experimental setting, the inhibition of
reactive astrocytosis blocked the infiltration of T cells while the
infiltration of monocytes were increased. It was also observed
that the mRNA expression of CCL2 was upregulated, and
of CXL10 downregulated, dissociating the reactive astrocytosis
(GFAP expression) from CCL2 mRNA expression (Toft-Hansen
et al., 2011). To corroborate the role of pro-inflammatory
chemokines produced by astrocytes in MS pathology, Brambilla
and colleagues blocked astroglial NF-κB activation in dominant
negative transgenic mice (glial fibrillary acidic protein-IκBα). A
clear reduction of chemokine gene expression was observed in
these animals, which attenuated disease severity and improved
functional recovery following EAE (Brambilla et al., 2009). In the
same animal model, the authors also demonstrated a reduction
of peripheral immune cell infiltration into the CNS at the chronic
phase of EAE (Brambilla et al., 2014).

There is evidence that cytokines produced by astrocytes, such
as IL-12, IL-23, and IL-15, regulate the myelin-specific auto-
reactive response of effector T cells, namely by inducing the
differentiation of CD4+ T cells in a pro-inflammatory phenotype
such as Th1 or Th17 and also the cytotoxic activity of CD8+

T cells (Correale and Farez, 2015). Reducing astroglial NF-κB
activation specifically attenuated the ability of T cells to produce
pro-inflammatory cytokines during acute disease, suggesting
that pro-inflammatory cytokines produced by astrocytes are
important to regulate the ability of T cells to produce pro-
inflammatory mediators (Brambilla et al., 2014). Th17 cells are
major mediators of EAE progression and mice lacking IL-17
display less severe inflammation, indicating that IL-17-mediated
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signaling plays a critical role in the effector phase of EAE
(Komiyama et al., 2006). The major function described for these
cells is the coordination of local tissue inflammation through
upregulation of pro-inflammatory cytokines and chemokines
(Jovanovic et al., 1998). IL-17 acts through an heteromeric
receptor complex, consisting of IL-17R (IL-17RA) and IL-17RC,
which is expressed by a variety of cells including astrocytes (Gu
et al., 2013). It was described that Act1 is an adaptor protein
essential for the signaling mediated by IL-17 receptor (Chang
et al., 2006) and induction of NF-κB activation (Li et al., 2000).
Kang and colleagues demonstrated that the deletion of Act1
in the neuroectodermal lineage in mice results in attenuated
EAE severity. Act1-deficient astrocytes showed impaired IL-17-
mediated inflammatory gene induction (Kang et al., 2010), which
was further corroborated by Yan and colleagues that knocked
down Act1 expression specifically on astrocytes and effectively
prevented EAE progression (Yan et al., 2012).

Astrocytes also regulate B cell activation by producing B cell–
activating factor (BAFF), a cytokine that belongs to the TNF
family. During MS, the production of this factor is increased
in astrocytes in MS lesions (Krumbholz et al., 2005) and such
increase may promote survival, expansion and activation of B
cells during MS progression.

It was demonstrated that hypertrophic astrocytes produce
the chemokines CCL2 and CXCL10 that activate microglia in
the rim of the secondary progressive multiple sclerosis lesions
(SPMS) with ongoing demyelination (Tanuma et al., 2006). As at
this stage, leucocyte infiltration is at a minimum or absent, glial
cells and glial-glial interaction might be the culprits sustaining
demyelination. Using dominant-negative transgenic inhibition
of astroglial NF-κB, it was observed that the number of total
and activated microglial cells is reduced in chronic EAE. This
resulted in a reduction of the overall inflammatory response
and improved neurological function in GFAP-IκBα-dn mice
(Brambilla et al., 2014).

Astrocytes Acting on Demyelination
In inflammatory and/or demyelinating conditions, astrocytes
proliferate andmay form glial scars composed of a dense network
of hypertrophic cells. These reactive astrocytes have pronounced
changes in the expression levels of adhesion molecules, antigen
presentation molecules, cytokines, growth factors, receptors,
enzymes, and protease inhibitors that modify the composition of
the ECM.

Reactive astrocytes at the edge of active MS lesions express
chemoattractant molecules for OPC, including CXCL8, CXCL1,
and CXCL10, inducing their migration toward the demyelinated
plaque, which might be important for remyelination (Omari
et al., 2005).

It is well-recognized that the glial scar formation is crucial
for helping restore blood brain barrier (BBB) integrity. However,
in demyelinating conditions it also poses a physical barrier
preventing OPC entry into the demyelinated area for interaction
with denuded neurons (Fawcett and Asher, 1999; Silver and
Miller, 2004; Nair et al., 2008; Wang et al., 2011). In the EAE
model, it was observed that OPC could migrate toward the
demyelinated lesion but were stuck at its margins, unable to

penetrate the lesion site (Bannerman et al., 2007a; Williams et al.,
2007). The glial scar not only represents a physical barrier but also
a biochemical obstacle for remyelination. Astrocytes are capable
of modifying the ECM in MS by secreting different components,
which can directly affect remyelination in MS lesions (Clemente
et al., 2013). For instance, astrocytes can produce a high
molecular weight form of hyaluronan found to accumulate
in chronic MS or EAE demyelinated lesions (Back et al.,
2005). Moreover, chondroitin sulfate proteoglycans (CSPG) are
produced by reactive astrocytes at the border of demyelinating
areas (Lau et al., 2012). This ECM component inhibits OPC
process outgrowth, differentiation and adhesion and impairs
remyelination. CSPG-mediated remyelination impairment is
dependent on protein tyrosine phosphatase sigma (PTPÏČ) and
Rho-associated kinase (ROCK) activation (Pendleton et al.,
2013). Inhibition of ROCK or RNAi-mediated down-regulation
of PTPÏČ increases oligodendrocyte process outgrowth and
myelination during exposure to CSPGs (Pendleton et al., 2013).
Fibronectin is a glycoprotein of the ECM that inhibits the
outgrowth of oligodendrocyte processes and myelin sheath
formation (Siskova et al., 2009). Astrocytes secrete fibronectin in
chronic MS lesions (Stoffels et al., 2013, 2015), stimulating OPC
proliferation (Stoffels et al., 2015), but impairing oligodendrocyte
differentiation and remyelination (Stoffels et al., 2013). Anosmin-
1 is another astrocytic-secreted ECM associated glycoprotein that
is deregulated in MS. Anosmin-1 is present at the core of chronic
active and chronic inactive plaques (areas where remyelination is
compromised). The presence of this component impedes OPC
colonization of MS lesions and oligodendrocyte differentiation
(Clemente et al., 2013). Reactive astrocytes over-secrete FGF-
2 during EAE (Messersmith et al., 2000) and in MS plaques
(Holley et al., 2003). This growth factor promotes OPC survival
and proliferation but prevents their differentiation into mature
oligodendrocyte (Goddard et al., 1999), impairing remyelination.
Endothelin-1 (ET-1) is a secreted signaling peptide also highly
expressed by reactive astrocytes in demyelinated lesions in MS
(Hammond et al., 2014). This peptide reduces the rate of
remyelination by acting indirectly in OPC and in an autocrine
manner on astrocytes through endothelin-B receptor activation
(Hammond et al., 2015).

Excitotoxic injury to the oligodendroglial lineage is another
way by which astrocytes may impair remyelination during
EAE. In normal conditions, astrocytes regulate glutamatergic
neurotransmission by taking up extracellular glutamate from the
CNS extracellular milieu and converting it into L-glutamine via
activity of glutamine synthetase. During EAE, the expression
of the glutamate transporters, GLAST, and GLT-1 (Ohgoh
et al., 2002), glutamine synthetase and glutamate dehydrogenase
(Hardin-Pouzet et al., 1997) are diminished in astrocytes, driving
glutamate accumulation in the extracellular milieu, contributing
to oligodendrocyte excitotoxic injury via activation of calcium-
permeable AMPA receptors (Bannerman et al., 2007b).

Astrocyte-induced inflammation is harmful to myelin
homeostasis and impairs remyelination. Inhibition of astroglial
NF-κB during EAE, increases myelin preservation, improving
myelin compaction, and remyelination (Brambilla et al., 2014).
On the other hand, deletion of gp130, the signal-transducing
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receptor for cytokines of the IL-6 family, specifically in
astrocytes during EAE leads to more severe disease. The loss of
astrocytic gp130 expression resulted in apoptosis of astrocytes
in inflammatory lesions, larger areas of demyelination, and
increased numbers of CD4+ T cells within the CNS parenchyma
(Haroon et al., 2011), demonstrating that the IL-6 signaling in
astrocytes is important to reduce demyelination in EAE.

Another important aspect in glial-glial interaction during
demyelination is the gap junction formation between astrocytes
and oligodendrocytes (Lutz et al., 2009). During acute EAE,
both Cx47 and Cx32 are severely reduced within and around
lesions. The Cx47 protein was relocated intracellularly in
oligodendrocytes, and its redistribution coincided with the loss
of Cx43 in astrocytes (Markoullis et al., 2012). Moreover, there
is loss of oligodendrocyte-oligodendrocyte and oligodendrocyte-
astrocyte gap junctions and an increase in astrocyte-astrocyte
gap junctions in gray matter MS lesions, suggesting that
oligodendrocyte dissociation from reactive astrocytes may
account for remyelination failure and disease progression in EAE
(Markoullis et al., 2014).

On the other hand, metalloproteinase inhibitors expressed by
astrocytes can play positive roles in oligodendrocyte response
to injury. One known example is the tissue inhibitor of
metalloproteinase (TIMP-1). In the EAE model, TIMP-1 is
increased in reactive astrocytes, which regulates the secretion
of matrix metalloproteinases from these cells (Nygardas and
Hinkkanen, 2002). Moreover, TIMP-1 deficient mice exhibit
poorer myelin repair in the EAE model (Crocker et al.,
2006), have a specific deficit of NG2 positive OPC, and
oligodendrogenesis is significantly impaired, correlating with
dramatically reduced numbers of white matter astrocytes in the
developing CNS (Moore et al., 2011).

Modulation of (re)Myelination and
Demyelination by Microglia
Microglia constitute the myeloid resident population of the
CNS, representing around 10% of the total glial cells within
the nervous tissue (Soulet and Rivest, 2008). Microglia are
critically involved in the scavenging of dying cells, pathogens,
and molecules that engage pattern recognition receptors. As the
major component of the immune effector system of the CNS at
steady-state conditions, surveillant microglia are usually claimed
to act as sensors of pathologic events (Hanisch and Kettenmann,
2007). Microglial activation has been described extensively in
autoimmune diseases such as multiple sclerosis in humans and
in the EAE mouse MS model. In these pathological contexts,
microglia can produce and release neurotoxic (reactive oxygen
and nitrogen species and glutamate) or neurotrophic molecules,
pro and anti-inflammatory cytokines or chemokines, and present
self-antigens to effector immune cells. Pathological evidence
indicates that the remyelination onset in fresh lesions of brain
and spinal cord of patients withMS occurs in acute, active lesions,
which are characterized by a robust inflammatory response
(Prineas et al., 1989). Following injury, different inflammatory
molecules such as cytokines and chemokines are secreted and
released by glial cells, inclusive microglia, in the surrounding

milieu. In this scenario, microglia become activated, expand,
migrate, and accumulate within the damaged area of the neuronal
parenchyma, playing both beneficial and detrimental roles during
myelin damage and repair (Figure 2).

Beneficial vs. Detrimental Roles of Microglia in

(re)Myelination and Demyelination
Although the literature relating microglia to myelination is
not very extensive, several reports show that in homeostatic
conditions microglia may also promote OPC survival and
differentiation (Figure 1). Early studies using microglia and
oligodendrocyte co-cultures showed that the former stimulated
the synthesis of sulfatide, a myelin-specific galactolipid, as well
as the expression of the myelin-specific proteins MBP and
proteolipid protein (PLP) in oligodendrocytes, suggesting a
positive role for microglia in myelination (Hamilton and Rome,
1994). In line with this, conditioned medium derived from
non-activated microglia enhanced OPC survival and maturation
through increase of PDGF-a receptor-signaling pathway and
modulation of NF-kB activation (Nicholas et al., 2001). The
same authors identified insulin-like growth factor-2 (IGF-2) to
be an active promoter of oligodendrocyte survival, present in
both conditioned media of non-activated and interferon gamma
(IFNγ)-exposed microglia (Nicholas et al., 2002). Microglia can
also promote OPC differentiation via galectin-3 but not galectin-
1. Cultured OPCs exposed to conditioned medium from WT
microglia had increased expression of MBP, while exposure of
OPCs to conditioned medium obtained from galectin-3 deficient
microglia resulted in decreased number of MPB+ cells (Pasquini
et al., 2011). Galectin-3 expression on microglia has also been
claimed to control OPC differentiation in vivo and to contribute
to remyelination in a model of cuprizone induced-demyelination
(Hoyos et al., 2014). On the other hand, galectin-1 biding to
CD45 on the surface of microglia has been shown decrease their
pro-inflammatory polarization, which attenuatedmyelin loss and
neurodegeneration in the spinal cord of EAE mice (Starossom
et al., 2012). Paralleling these findings, using the Cx3cr1 promoter
to drive Cre recombinase expression only in microglia, it has
been shown that the tyrosine TAK1 plays a crucial role in
demyelination during EAE (Goldmann et al., 2013). Conditional
ablation of microglial TAK1 largely attenuated myelin damage
and disease severity in mice with EAE, an effect claimed to
occur through defective recruitment of immune cell infiltrates,
especially in the spinal cord (Goldmann et al., 2013).

The iron status of microglia is also important for
oligodendrocyte survival. Increasing the iron load promotes
the release of H-ferritin by microglia and incubation of
oligodendrocyte cultures with conditioned medium of iron-
loaded microglia increases the survival of these cultures (Zhang
et al., 2006). In line with this, knocking down H-ferritin
abrogated the trophic effect of the conditioned medium from
iron-loaded microglia on oligodendrocyte cultures (Zhang et al.,
2006).

Conditioned medium of non-activated microglia cultures
was compared with that of astrocytes to evaluate their effect in
OPC proliferation and differentiation. The results showed that
astrocyte-conditioned medium was more efficient in promoting
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OPC proliferation, while microglia-conditioned medium
accelerated oligodendrocyte differentiation more efficiently
than that of astrocytes. Analysis of the media composition
revealed that astrocyte-conditioned medium had increased levels
of PDGF-AA, FGF2, FGF2 binding protein, CNTF, growth
hormone, TIMP-1 and thrombospondin. In contrast, levels of
IGF-1, E-selectin, fractalkine (CX3CL1), neuropilin-2, IL-2, IL-5,
and vascular endothelial growth factor (VEGF) were significantly
higher in microglia-conditioned medium. This distinct pattern
of cytokines and growth factors in the conditioned medium of
astrocytes and of microglia correlates with differentially activated
intracellular signaling pathways in OPC exposed to the two
different media (Pang et al., 2013).

In polarization conditions, such as in vitro stimulation with
lipopolysaccharide (LPS), the release of cytotoxic effectors by
both astrocytes and microglia produce the opposite effects
on OPC (Pang et al., 2000). LPS-activated microglia hinders
OPC differentiation by nitric oxide (NO)-dependent oxidative
damage in an early phase and TNF in a later phase (Pang
et al., 2010). In the presence of astrocytes, LPS-polarized
microglia is toxic to differentiating oligodendrocytes via TNF
signaling but not via NO-dependent oxidative damage (Li et al.,
2008). Interestingly, the presence of astrocytes was claimed
to quench the oxidative damage promoted by peroxynitrite,
suggesting that TNF is the dominant mechanism in killing
immature oligodendrocytes (Li et al., 2008). Oxidative stress,
induced by CD137 ligand-polarized microglia, has also been
demonstrated to promote oligodendrocyte apoptosis (Yeo et al.,
2012). The effect of LPS-activated microglia was compared
in OPC and mature oligodendrocytes in vitro and produced
different outcomes. Pro-inflammatory microglia were found to
reduce OPC viability (Miller et al., 2007) while alternatively
activated microglia were shown to upregulate the GSK3β/AKT
signaling pathway to enhance oligodendrocyte survival (Wang
et al., 2015). In another report, LPS-activated microglia were
shown to enhance the proliferation of Golli+ OPC in purified
cultures (Filipovic and Zecevic, 2005) while Taylor and colleagues
demonstrated that the conditioned medium of LPS-activated
microglia decreased OPC proliferation globally (Taylor et al.,
2010). Although LPS-polarized microglia increased the survival
of mature oligodendrocytes in primary cultures (Miller et al.,
2007), LPS activation of microglia in an ex vivo cerebellar
organotypic culture model was shown to induce extensive
demyelination via TNF production (Di Penta et al., 2013).
As expected, the LPS effect in promoting oligodendrocyte
toxicity is completely dependent on the expression of the LPS
receptor TLR4 onmicroglia (Lehnardt et al., 2002). Furthermore,
activated microglia accumulate in the early postnatal SVZ region
and enhance oligodendrogenesis via released cytokines, such as
TNF, IL-1β, IL-6, and IFNγ(Shigemoto-Mogami et al., 2014).

Microglia have also been shown to induce chemotaxis of
OPC in culture. This effect is mediated by microglial secretion
of hepatocyte growth factor when cultures are exposed to
TGFβ (Lalive et al., 2005). IFNγ-exposed microglia can promote
oligodendrogenesis; in this case, the microglial effect was highly
correlated with IFNγ dosage, with high IFNγ doses preventing
oligodendrocyte differentiation (Butovsky et al., 2006) and low

IFNγ doses being supportive of oligodendrocyte generation
(Butovsky et al., 2006). The effect of microglia polarized with
high dose IFNγ could be reverted by exposing these cells
to IL-4 (Butovsky et al., 2006). Besides, in chronic EAE,
delivery of IL-4-polarized microglia to the CNS parenchyma, via
injection into the third ventricle, could enhance oligodendrocyte
differentiation and attenuate disease severity (Butovsky et al.,
2006).

In remyelination, microglia have also been shown to play
dual roles. Microglia expressing the CCR5 receptor were
identified within early remyelinating lesions in patients at early
stages of MS, suggesting a possible role for these cells in
initiating remyelination (Trebst et al., 2008). Myelin repair
is also influenced by microglia. Using the LysM promoter
to ablate chondroitin sulfate proteoglycan 4 it has been
shown that this molecule in microglia plays a significant
role in promoting myelin repair after lysolecithin-induced
demyelination (Kucharova and Stallcup, 2015). The phenotype of
activated microglia was also shown to influence its beneficial role
in efficient remyelination. Miron and colleagues found that the
process of remyelination was dependent on microglia changing
from an M1- to an M2-dominant response in the lysolecithin-
induced demyelination model. Oligodendrocyte differentiation
was enhanced with M2 microglia-conditioned medium in vitro
and impaired in vivo following intra-lesional depletion of M2
microglia. Activin-A was identified to be one important mediator
of the oligodendrocyte differentiation-promoting effect of M2
microglia (Miron et al., 2013). The M2 polarization of microglia
induced by inhibiting class I/II histone deacetylases (Wang
et al., 2015) or by treatment with Omega-3 polyunsaturated
fatty acids (Chen et al., 2014), was also claimed to increase
the preservation of myelin homeostasis after injury to the
white matter caused by traumatic brain injury or cuprizone
intoxication.

Microglia Phagocytosis of Myelin Debris during

Myelin Damage
Another important aspect of microglia in remyelination concerns
its role in the clearance of myelin debris upon myelin injury.
Myelin removal is a critical step in the remyelination process.
To be effective, myelin debris must be cleared from the injury
site (Kotter et al., 2006) and microglia have been recognized
to play an active and beneficial role in this process (Neumann
et al., 2009). Myelin clearance by microglia after cuprizone-
induced demyelination was found to depend on the expression
of microglial triggering receptor expressed on myeloid cells 2
(TREM2), a surface receptor that binds polyanions, such as
dextran sulfate and bacterial LPS, and activates downstream
signaling cascades through the adapter DAP12 (Poliani et al.,
2015). This study showed that TREM2 is required for promoting
microglial expansion in response to myelin damage. Moreover, a
subpopulation of microglia was identified to be responsible for
producing IFNβ in demyelinated lesions of EAE, a commonly
used cytokine to treat RRMS. IFNβ-producing microglia are
closely associated with myelin debris in the injured CNS at
the peak of EAE and treatment of naïve microglia with IFNβ

improved removal of myelin debris in demyelinated organotypic
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cultures (Kocur et al., 2015). In the cuprizone model, astrocytes
are thought to recruit microglia to the lesion site in order
to phagocyte and clear damaged myelin, a process regulated
by the chemokine CXCL10. In the absence of astrocytes
and, consequently, microglia recruitment, removal of myelin
debris is significantly delayed inhibiting OPC proliferation and
remyelination (Skripuletz et al., 2013). In line with this, it has
been shown that the clearance of myelin debris by microglia
can be blocked in Cx3cr1-deficient mice, which have a clear
deficit in microglial phagocytosis and exhibit persistent myelin
deficits that correlate with a deficiency in OPC recruitment.
On the other hand, the tyrosine kinase Syk has been shown to
sensitize cultured microglia to phagocyte myelin (Hadas et al.,
2012). These data reinforce the important role microglia play
in myelin clearance and their impact in proper remyelination
(Lampron et al., 2015). Myelin can also down-regulate its own
phagocytosis by microglia through CD47-SIRPa, suggesting that
the same mechanism that protects myelin as “self ” antigen
from phagocytosis may turn disadvantageous when clearance of
degenerated myelin is necessary (Gitik et al., 2011).

CONCLUDING REMARKS

Homeostasis of the CNS myelination depends on the
crosstalk between oligodendrocytes, astrocytes, and microglia.
Understanding the nature and complex dynamics of such
interactions, which can play both beneficial and detrimental
roles during damage and repair, will increase our knowledge into
demyelinating diseases, and may help us to devise novel and
more holistic ways to manipulate and improve remyelination.
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