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There is emerging evidence that exocytosis plays an important role in regulating T cell

receptor (TCR) signaling. The trafficking molecules involved in lytic granule (LG) secretion

in cytotoxic T lymphocytes (CTL) have been well-studied due to the immune disorder

known as familial hemophagocytic lymphohistiocytosis (FHLH). However, the knowledge

of trafficking machineries regulating the exocytosis of receptors and signaling molecules

remains quite limited. In this review, we summarize the reported trafficking molecules

involved in the transport of the TCR and downstream signaling molecules to the cell

surface. By combining this information with the known knowledge of LG exocytosis and

general exocytic trafficking machinery, we attempt to draw a more complete picture

of how the TCR signaling network and exocytic trafficking matrix are interconnected

to facilitate T cell activation. This also highlights how membrane compartmentalization

facilitates the spatiotemporal organization of cellular responses that are essential for

immune functions.
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INTRODUCTION

The key signaling molecules involved in the T Cell Receptor (TCR) signaling network have been
well-characterized. T cell signaling is initiated upon TCR engagement by major histocompatibility
complex (MHC) molecules bound to peptide antigens (pMHC). Upon TCR engagement, the TCR-
associated CD3 dimers are phosphorylated by the kinase Lck on intracellular immunoreceptor
tyrosine-based activation motif (ITAM) consensus sites, leading to the recruitment and activation
of downstream signaling molecules, such as the adaptor protein Linker for Activated T cells (LAT).
Subsequent activation responses including the secretion of lytic granules (LG) target infected or
cancer cells for lysis. The formation of a structured interface between a T cell and an antigen-
presenting cell (APC), termed the immunological synapse, is critical for the efficient delivery
of effector molecules to the APC and intracellular signals in the T cell. The architecture of
the immunological synapse was first described in 1998 as a “bull’s eye pattern,” consisting of
the central supramolecular activation cluster (cSMAC), where signaling molecules such as the
TCR accumulated, surrounded by a ring of adhesion molecules known as the peripheral SMAC
(pSMAC), with other molecules such as CD45 being excluded and localized in the distal SMAC
(dSMAC, Figure 1; Monks et al., 1998; Grakoui et al., 1999; Freiberg et al., 2002).

Fluorescence microscopy has aided our understanding of the mechanisms underlying the
coalescence and segregation of receptors and signaling molecules in the plasma membrane during
synapse formation. Many studies focused on how the two-dimensional organization of proteins
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FIGURE 1 | Polarized exocytosis initiated by cytoskeleton reorganization upon TCR activation. (A) T cell receptors encounter their cognate antigen on the

APC leading to the formation of an immunological synapse and polarized intracellular trafficking established by the reorganization of actin and microtubule networks.

Polarized intracellular trafficking is essential for directed release of effectors and local accumulation of signaling molecules at the immunological synapse. (B)

Enlargement of the red region in panel (A). Vesicles travel along actin and mainly microtubule networks beneath the synapse. Rabs and SNAREs, and linker proteins

connect the cytoskeletal network with the plasma membrane to ensure precise spatio-temporal control of the delivery of effectors and signaling molecules to the

different domains of the synapse: the secretory domain, the central (cSMAC), peripheral (pSMAC), and distal (dSMAC) central supramolecular activation clusters. IS,

immunological synapse; APC, antigen presenting cell; MTOC, microtubule organizing center.

within the synapse contributes to T cell activation. However, as
three-dimensional objects, cells can utilize an additional layer
of regulatory mechanisms to control TCR signaling outcomes.
Emerging evidence suggests that intracellular vesicular trafficking
plays an important role in orchestrating TCR signaling. Engaged
TCRs are internalized and targeted for degradation, but can
also remain phosphorylated and signaling-competent (Luton
et al., 1997; Coombs et al., 2002; Yudushkin and Vale, 2010;
Benzing et al., 2013). Continuous delivery of the TCR into the
immunological synapse is essential for sustained signaling and
T cell activation (Grakoui et al., 1999; Lee et al., 2003; Soares
et al., 2013b; Choudhuri et al., 2014;Martin-Cofreces et al., 2014).
For example, although Lck activity is enhanced by TCR ligation
(Stirnweiss et al., 2013), it is thought that the spatial organization
and subcellular redistribution of Lck, in conjunction with
antigen-binding induced conformational changes of the TCR-
CD3 complex (Martinez-Martin et al., 2009; Swamy et al., 2016),
control the extent of TCR-CD3 phosphorylation (Ehrlich et al.,
2002; Thoulouze et al., 2006; Anton et al., 2008; Nika et al., 2010;
Rossy et al., 2013). In the case of the adaptor protein LAT, the
docking of sub-synaptic vesicles was observed in response to the
initial wave of TCR signaling to sustain TCR signaling (Bonello
et al., 2004; Billadeau, 2010; Purbhoo et al., 2010; Williamson
et al., 2011; Larghi et al., 2013). In addition to the classical

process of vesicles forming inside the cell, docking, and fusing
at the immunological synapse, TCR-enriched microvesicles can
also form and be released from the center of the IS to transmit
signals to the APC (Choudhuri et al., 2014).

In T cells, there is a continuous flow of proteins and
membranes along the endocytic and exocytic pathways.
When a T cell encounters an APC, ligation of the TCR
with cognate pMHC molecules leads to rapid cytoskeletal
reorganization/polarization, which ensures the initiation of
receptor and signaling protein endocytosis, and polarized
secretion of LG and other vesicles (Dustin and Cooper, 2000;
Angus and Griffiths, 2013). The internalization of the TCR-CD3
complex and downstream signaling proteins including LAT and
SLP76 (SH2 domain containing leukocyte protein of 76 kDa)
is relatively well-studied. Upon TCR activation, both engaged
and bystander TCR can be internalized by clathrin independent,
and/or dependent endocytosis (Monjas et al., 2004). Internalized
engaged TCR-CD3 complexes are mainly degraded, while
bystander TCR-CD3 complexes are predominately recycled back
to the immunological synapse (Liu et al., 2000; Monjas et al.,
2004; von Essen et al., 2004). SLP76 and LAT are first recruited
to TCR and ZAP70 clusters in the plasma membrane and then
segregate from these clusters during the transport of engaged
TCR toward the central region of the immunological synapse
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within the membrane. This initiates LAT and SLP76 endocytosis
(Barr et al., 2006). Internalized LAT were found to co-localize
with transferrin positive vesicles, indicating a clathrin-mediated
endocytic trafficking route, as well as cholera toxin B positive
vesicles that do not co-localize with transferrin-positive vesicles
in T cells and distinct SLP76-positive vesicles (Balagopalan et al.,
2009). The E3 ubiquitin ligase Cbl and Cbl-b are known to play
a key role in both TCR and LAT internalization (Naramura
et al., 2002; Balagopalan et al., 2007). Noteworthy, no detectable
LAT degradation seems to occur in response to TCR activation,
indicating LAT is mainly recycled instead of being degraded after
internalization, although LAT was ubiquitinated in response to
TCR signaling (Balagopalan et al., 2007).

Vesicles containing cargo such as signaling molecules or
effector molecules are transported along the microtubules or
actin filament networks by molecular motors and delivered to
the immunological synapse. The precise sorting and delivery of
cargo are dependent on a subfamily of Ras GTPases, called Rab
proteins (Fukuda, 2008; Wandinger-Ness and Zerial, 2014), and
on membrane docking and fusion machinery proteins, known
as soluble N-ethylmaleimide-sensitive-factor accessory-protein
receptors (SNAREs; Das et al., 2004; Jahn and Scheller, 2006;
Figure 1). Endosomal sorting complexes required for transport
(ESCRT) components mediate the release into the extracellular
space of vesicles that form at the immunological synapse
(Choudhuri et al., 2014). In this review, we will summarize the
known Rab and SNARE proteins involved in both the delivery
of signaling molecules and the secretion of effectors at the
immunological synapse in response to TCR activation. We will
also summarize the known protein–protein interactions that may
facilitate efficient and precise delivery of signaling molecule-
containing vesicles in the activated TCR signaling network, using
LAT-containing vesicles as an example.

EXOCYTOSIS MACHINERY OF EFFECTOR
AND SIGNALING MOLECULES

The TCR and downstream signaling proteins undergo constant
internalization and exocytosis in resting T cells (Geisler,
2004). Upon TCR activation, polarized exocytosis is initiated
by cytoskeletal rearrangements, which may be sufficient for
receptors and signaling molecules to locally accumulate in
the immunological synapse. So far, little is known about the
molecular machinery involved in exocytosis of TCR and TCR
signaling proteins, neither in resting nor in activated T cells. The
monomeric G protein Rabs are the coordinators of intracellular
membrane trafficking of TCR and downstream signaling
proteins. Soares and colleagues have evaluated he role of 17
Rabs known to be involved in exocytic processes and examined
TCR, Lck, and LAT exocytosis during TCR activation. They
demonstrated that TCRζ can be delivered to the immunological
synapse from fast recycling Rab4b compartments. A newly
synthetized pool of TCR is also brought to the immunological
synapse via Rab3d and Rab8b-positive compartments (Soares
et al., 2013a). In addition, the TCR has been reported to co-
localize with Rab35 and transferrin-positive compartments. It has

been further shown that a Rab35-dominant negative mutation
impairs TCR enrichment at the immunological synapse (Das
et al., 2004; Patino-Lopez et al., 2008). Lck-containing vesicular
compartments co-localized with the recycling endosome marker
Rab11b (Soares et al., 2013a). Further, LAT vesicles co-localized
with late endosomemarker Rab7, newly synthesized protein pool
Rab8 positive compartments, as well as Rab27a and Rab37, two
Rab molecules known to regulate LG and cytokine secretion,
respectively (Hong, 2005; Fischer et al., 2007; Purbhoo et al.,
2010; Fukuda, 2013; Soares et al., 2013a; Figure 2). Hence,
according to these studies, there is very little overlap between
the identities of vesicles containing the TCR, Lck, and LAT,
which suggest that distinct trafficking mechanisms exist for
different signaling molecules. Hence, the intracellular reservoir
of TCR, Lck, and LAT destined for transport to the plasma
membrane and/or exocytosis are clearly distinct from each other,
and range from slow and fast recycling compartments, to Golgi,
and late endosome/lysosome (Figure 2). The contribution of this
complex organization to T cell signaling and activation remains
to be fully understood.

In general, GTP-bound active Rab proteins regulate many
steps of intracellular membrane trafficking by recruiting different
effectors to restricted membrane domains (Grosshans et al.,
2006). Rab effectors are very diverse and can be divided into three
groups according to the vesicle trafficking steps they are involved
in, such as vesicle formation, trafficking along cytoskeletal
networks, and vesicle fusion. Within the LG secretion pathway,
the role of Rab27a and its effectors has been identified in relation
to familial hemophagocytic lymphohistiocytosis (FHLH) and
Griscelli syndrome type2 (GS; Fukuda, 2008, 2013; Krzewski and
Cullinane, 2013). Granule exocytosis by cytotoxic T lymphocytes
(CTLs) is defective in these patients, and this was found to be due
to dysfunctional Rab27a (Menasche et al., 2000; Haddad et al.,
2001). Rab27a effectors are synaptotagmin-like proteins (Slp) and
typically contain a Slp homology domain (SHD, Rab27a-binding
domain) and two C2 domains (for binding to phospholipids
and potentially calcium). Slp3-a forms a complex with Rab27a
and the motor protein kinesin-1 and was demonstrated to
mediate the terminal transport of LG to the immune synapse
(Kurowska et al., 2012). There is evidence that Slp2-a is also
involved in docking of LG in CTLs by binding to Rab27a and
the plasma membrane (Menasche et al., 2008). Mutations of
another Rab27a effector (Holt et al., 2008), Munc13-4, caused
immunodeficiency in patients with type 3 FHLH. Munc13-4
plays a role in LG maturation and also drives the SNARE
assembly process and is critical for the priming/fusion step of
LG exocytosis (Feldmann et al., 2003). In addition, Munc13-4
has been also demonstrated to mediate fusion of Rab11-positive
recycling vesicles with Rab27-positive late vesicles, constituting
a pool of vesicles destined for regulated exocytosis (Menager
et al., 2007). Munc18-2 promotes SNARE complex assembly
(Hackmann et al., 2013; Spessott et al., 2015) and is not a direct
effector but binds to another Rab27a effector, Slp-4a (Fischer
et al., 2007; Jenkins and Griffiths, 2010; Hackmann et al., 2013;
Krzewski and Cullinane, 2013).

Until now, limited information has been obtained regarding
the role of Rab effectors in the regulation of exocytosis of
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FIGURE 2 | Distinct intracellular compartments control TCR, LAT, and Lck exocytosis. Regulated exocytosis of receptors and signaling molecules is initiated

upon TCR activation. According to current understanding, exocytosis of the TCR-CD3 complex is mainly facilitated by newly formed Rab8- and Rab3-positive

vesicles. Fast (Rab4-positive vesicles) and slow (Rab11-positive vesicles) recycling compartments can also contribute to the delivery of the TCR-CD3 complex to the

immunological synapse. Lck co-localizes with Rab11-positive vesicles. LAT vesicles mainly contain the late endosome/lysosome markers of Rab27 and Rab37 but

LAT also co-localizes with newly synthesized Rab8-positive vesicles. There appears to be little overlap between the TCR, LAT, and Lck exocytic trafficking pathways,

indicating that distinct trafficking routes of signaling molecules may facilitate segregation before stimulation, and efficient delivery to and high number of encounters

within the immunological synapse after stimulation. EE, early endosome; LE, late endosome; RE, recycling endosome; SV, secreting vesicle.

TCR and signaling molecules. Table 1 summarizes the known
effectors that are expressed in T cells for Rabs involved in
exocytosis of TCR and signaling molecules (Grosshans et al.,
2006; Fukuda, 2013;Wandinger-Ness and Zerial, 2014). Through
Rab effectors, the Rab network is connected to the SNARE
system, linking the transportation of exocytic vesicles in the
cytosol to their docking and fusion with the plasma membrane.
Prior to membrane fusion, SNAREs on opposing membranes are
able to form four-helix bundles that lead to a tight connection
of vesicular and target membranes. SNARE complexes can be
divided into two groups, vesicle SNAREs (vSNAREs), and target
membrane SNAREs (tSNAREs). SNAREs can also be divided into
either Q- (Qa, Qb, Qc, or Qbc, mainly tSNAREs) or R-SNAREs
(mainly vSNAREs) based on their structure. In general, the four

helix-bundle of a functional SNARE complex must consist of
one Qa-SNARE, one Qb-SNARE, one Qc-SNARE, and one R-
SNARE. In some cases, the two helices of the Qb- and the Qc-
SNARE can be provided by one protein (Jahn and Scheller, 2006).
In addition to the core SNARE complex, the calcium sensors
synaptotagmins, and synaptotagmin-like proteins facilitate the
assembly of the SNARE complex and trigger the final membrane
fusion step.

Pattu and colleagues have examined the expression of 28
SNAREs and their co-localization with LGs and TCR-CD3
complex in synapses in primary human CD8+ T cells. They
found that Stx16 Vtib and Stx8 had the highest co-localization
with LGs while TCR-CD3 co-localized with Stx3, Stx4, Stx7,
Stx13, Vtib, Stx6, Stx8, VAMP3, and VAMP4 (Pattu et al., 2012).
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TABLE 1 | Effectors for Rabs involved in the exocytosis of TCR and TCR signaling molecules.

Signaling

molecule

Rabs Effectors Effector expression

in T cell

Proposed functions

TCR Rab3d Regulating synaptic membrane exocytosis

1/2(RIMS1/2)

Low/medium Regulates synaptic vesicle exocytosis,

regulates voltage-gated calcium channels,

scaffolding protein (Millar et al., 2002; Gandini

et al., 2011)

Rabphilin 3A like (without C2 domain;

RPH3AL)

Low A direct regulatory role in calcium

ion-dependent exocytosis (Li et al., 1994; Millar

et al., 2002; Grosshans et al., 2006)

Rab4b Rabaptin, Rab GTPase-binding effector

protein 1 (RabEP1)

High Acts as a linker between adaptin and Rab4 and

Rab5, involved in endocytic membrane fusion

(Vitale et al., 1998)

RUN and FYVE domain containing 1

(RUFY1)

Medium Binds to phospholipid vesicles and participates

in early endosomal trafficking (Cormont et al.,

2001; Fouraux et al., 2004)

RAB11 family-interacting protein 1

(RAB11FIP1)

Medium Regulates Rab GTPases (Lindsay et al., 2002)

CD2-associated protein (CD2AP) Medium Regulates actin cytoskeleton (Kirsch et al.,

1999; Cormont et al., 2003)

GRIP1 associated protein 1 (GRIPSP1) Medium Interacting with endosomal SNARE syntaxin 13

(Hoogenraad et al., 2010)

Rab8b Otoferlin (OTOF) Low Calcium sensor, regulates vesicle membrane

fusion in calcium-dependent manner (Roux

et al., 2006)

Synaptotagmin-like 1

(SYTL1)/SLP1/exophilin-7

Medium Binds to PI3,4,5P3 (Hattula et al., 2006)

Optineurin/RAB11 family-interacting

protein 2 (OPTN/RAB11FIP2)

Medium Interacts with myosin VI (Ying and Yue, 2012)

Mitogen-activated protein kinase kinase

kinase kinase 2 (MAP4K2)

Medium Serine/threonine protein kinase (Katz et al.,

1994; Ren et al., 1996)

MICAL (microtubule associated

monooxygenase, calponin, and LIM

domain containing)-like 1 (MICALL1)

Medium Linking EHD1 and Rab8 on recycling

endosomal membrane tubules (Sharma et al.,

2009)

MICAL (microtubule associated

monooxygenase, calponin, and LIM

domain containing)-like 2

(MICALL2)/junctional Rab13-binding

protein (JRAB)

Low Regulates the endocytic recycling of occludins,

claudins and E-cadherin to the plasma

membrane, may regulate actin cytoskeleton

(Yamamura et al., 2008)

Oculocerebrorenal syndrome of Lowe

(OCRL)

Mixed reports of low

and high expression

Phosphatase enzyme involved in actin

polymerization and may function in lysosomal

membrane trafficking (Hagemann et al., 2012;

Luo et al., 2012)

Myosin 5B (MYO5B) Low Motor protein, travels toward the plus end of

actin filaments (Khandelwal et al., 2013)

Rab35 Oculocerebrorenal syndrome of Lowe

OCRL

Mixed reports of low

and high expression

Phosphatase enzyme involved in actin

polymerization and may function in lysosomal

membrane trafficking (Dambournet et al., 2011)

Fascin actin-bundling protein 1 (FSCN1) Medium Actin crosslinking protein (Zhang et al., 2009)

Run and SH3 domain containing 1

(RUSC1/NESCA)

Low RUN and SH3 domain containing protein

(Fukuda et al., 2011; Chaineau et al., 2013)

Microtubule associated monooxygenase,

Calponin and LIM domain containing 1

(MICAL1)

Medium/High Disassemble actin filament (Chaineau et al.,

2013)

MICAL like protein 1 (MICAL-L1) Medium/High Interacting with EHD1 (Rahajeng et al., 2012)

ArfGAP with coiled-coil, Ankyrin repeat

and PH domains 2 (ACAP2)

Medium Arf GAP (Kobayashi and Fukuda, 2012)

(Continued)
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TABLE 1 | Continued

Signaling

molecule

Rabs Effectors Effector expression in T cell Proposed functions

Lck Rab11b Optineurin/RAB11

family-interacting protein 2

(OPTN/RAB11FIP2)

Medium Interacts with myosin VI (Wandinger-Ness and

Zerial, 2014)

Phosphatidylinositol 4-kinase

beta (PI4KB)

High Regulates the trafficking from Golgi to plasma

membrane (de Graaf et al., 2004)

TBC1 domain family membrane

14 (TBC1D14)

Low Regulates autophagosome formation (Longatti

et al., 2012)

WD repeat domain

44/Rabphilin-11/rab11-binding

protein (WDR44)

High Plays a role in endosome recycling (Wandinger-Ness

and Zerial, 2014; Vetter et al., 2015)

Zinc finger FYVE

domain-containing 27 (ZFYVE27)

Medium Functions as an upstream inhibitor of Rab11

(Shirane and Nakayama, 2006)

Exocyst complex component 6

(EXOC6)/Sec15

Medium Essential for vesicular traffic from Golgi apparatus to

the cell surface (Zhang et al., 2004; Wu et al., 2005)

Myosin 5B (MYO5B) Low Motor protein, travels toward the plus end of actin

filaments (Roland et al., 2011)

LAT Rab27a Synaptotagmin-like 2

(SYTL2)/SLP2-a/exophilin-4

High Calcium sensor, binds to PS, PI(4,5)P2

(Galvez-Santisteban et al., 2012)

Synaptotagmin-like 1

(SYTL1)/SLP1/exophilin-7

Medium Calcium sensor, binds to PI(3,4,5)P3 (Brzezinska

et al., 2008)

Synaptotagmin-like 3

(SYTL3)/SLP3-a/exophilin-6

Low Forms Rab27a/kinesin-1/SYTL3 complex (Gibbs

et al., 2004; Fukuda, 2013)

Unc-13 homolog D

(Unc13d)/Munc13-4

High Controls the priming/fusion step of LG exocytosis

(Feldmann et al., 2003; Brzezinska et al., 2008)

Myosin 5B (MYO5B) Low Travels toward the plus end of actin filaments (Gibbs

et al., 2004; Fukuda, 2013)

Rabphilin 3A like (without C2

domain; RPH3AL)

Low A direct regulatory role in calcium ion-dependent

exocytosis (Izumi, 2007; Fukuda, 2013)

Melanophilin (MLPH) Medium Forms a ternary complex with Rab27a and myosin

Va (Strom et al., 2002)

Coronin, actin-binding protein,

1C (CORO1C)

Low Binds to GDP-bound form of Rab27a, regulates

endocytosis of secretory membrane (Kimura et al.,

2008)

Rab37 Regulating synaptic membrane

exocytosis 1 (RIMS1)

Low Regulates synaptic vesicle exocytosis, regulates

voltage-gated calcium channels, scaffolding protein

(Wandinger-Ness and Zerial, 2014)

In other reports, vSNARE VAMP2, VAMP8, tSNARE Stx7, Stx 11
Vti1b were found to be involved in LG secretion (Dressel et al.,
2010; Pattu et al., 2011; Qu et al., 2011; Halimani et al., 2014;
Marshall et al., 2015). For TCR exocytosis, vSNARE, VAMP2,
VAMP3, VAMP7 as well as tSNARE Vti1B have been shown
to play a role (Das et al., 2004; Pattu et al., 2011; Qu et al.,
2011; Matti et al., 2013; Soares et al., 2013a; Finetti et al.,
2015b). In Jurkat cells, tSNARE SNAP23 and Stx4 accumulated
at the immunological synapse indicating that those SNAREs may
also play a role in regulated exocytosis upon TCR activation
(Das et al., 2004). Exocytosis of Lat vesicles in response to
TCR activation relies on VAMP7 and synaptotagmin 7 (Syt7).
Although vesicle fusion is the classical role of Syt7, no evidence
has emerged to date that VAMP7- and Syt7-positive LAT vesicles
fuse with the plasma membrane but it remains an open question
whether LAT vesicles in activated T cells dock at or fuse with
the plasma membrane (Williamson et al., 2011; Larghi et al.,

2013; Soares et al., 2013a). Further work is required to draw a
more complete picture of how SNARE complexes regulate the
secretion of LG and the exocytosis of receptors and signaling
molecules. The ultimate goal is to understand how such a
great diversity and redundancy in the tethering-fusion apparatus
during T cell activation regulate the fusion of TCR, Lat, or
Lck containing vesicles to specific areas of the immunological
synapse.

ADDITIONAL TRAFFICKING MECHANISMS
FOR TCR SIGNALING MOLECULES

In addition to the classical machinery mediating trafficking—
facilitated by Rab proteins—and fusion to the plasma
membrane—facilitated by SNARES—other proteins have
also been demonstrated to regulate the targeting of TCR, Lck,
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and LAT to the immune synapse. Sorting nexin 17 (SNX17)
and SNX27 are implicated in recycling TCR toward the
immunological synapse (Rincon et al., 2011; Osborne et al.,
2015). Intraflagellar transport (IFT) particles generally mediate
the assembly of cilia, but in T cells, IFT20 was found to co-localize
with the microtubule organizing center (MTOC), and Golgi
and post-Golgi compartments. Knocking down IFT20 resulted
in the TCR-CD3 complex accumulating in Rab5 endosomes
and failure to be properly recycled toward the immunological
synapse (Finetti et al., 2009, 2015a; Finetti and Baldari, 2013).
Recently, Vivar and colleagues demonstrated that IFT20 was
also required for the delivery of the intracellular pool of LAT
to the immunological synapse in primary murine CD4+ T cell
(Vivar et al., 2016). The polarized recycling of TCR signaling
proteins appears to be highly regulated. Indeed, Lck delivery to
the immunological synapse relies on Unc119, which controls
the transportation of Lck-positive endosomal compartments by
regulating Rab11 activation, and orchestrating the recruitment of
the actin-based motor protein, myosin 5B (Gorska et al., 2009).
In addition, the membrane protein MAL, which is redistributed
to the cSMAC upon T cell activation, contributes to target the
delivery of Lck and LAT to the center of the immunological
synapse (Anton et al., 2008, 2011). Microtubule plus end binding
protein EB1 may contribute in directing LAT vesicles to the
TCR-ZAP70 signaling complex. Indeed, in activated cells,
knocking down EB1 impairs TCR clustering at the plasma
membrane and the sustained activation of LAT and PLCγ1. But
more importantly, the absence of EB1 prevents the encounters
between LAT vesicles and CD3 vesicles at the immunological
synapse (Martin-Cofreces et al., 2012).

Together, these studies show that several regulators are
involved in fine-tuning how and when vesicles from the recycling
pathway are redirected to bring components of the TCR
signaling pathway to the immunological synapse. This suggests
that targeted recycling has a critical role in T cell activation,
which probably goes beyond the mere shuttling of membrane
proteins to the plasma membrane, and might contribute to the
spatiotemporal regulation of TCR signaling.

TRAFFICKING VS. SIGNALING—THE
EXAMPLE OF LAT-POSITIVE VESICLES

LAT is an essential adaptor protein that is recruited to
phosphorylated TCR-CD3 complexes at the cell surface. The
kinase ZAP70 is responsible for phosphorylating tyrosine
residues in cytoplasmic tail of LAT. Due to the nine tyrosine
residues, LAT acts as a scaffolding protein for downstream
signaling molecules including SLP-76, PLC-γ1, Grb2, Gads, Sos1,
and so on. Recently the interactome of LAT was mapped out,
which revealed 112 unique interactions in the ZAP70-LAT-SLP-
76 signaling axis (Malissen et al., 2014). Previous imaging and
biochemistry studies identified two pools of LAT, a cytoplasmic
vesicular pool, and a plasma membrane pool that forms nano-
clusters. To date, the functional differences between these two
pools of LAT is not clear but the notion was put forward
that LAT at the plasma membrane is involved in initial TCR
signaling while vesicular LAT is required for signal amplification

(Bonello et al., 2004; Purbhoo et al., 2010; Williamson et al.,
2011; Balagopalan et al., 2013; Larghi et al., 2013; Soares et al.,
2013a).

With respect to LAT vesicles, calcium fluxes in the context
of Lck-mediated TCR signaling have emerged as one of the key
factors in regulating the trafficking of these vesicles. Calcium
influx initiated by the first wave of TCR signaling triggers the
sub-synaptic LAT vesicle exocytosis which further propagates
TCR signaling (Soares et al., 2013a). TCR activation initiates
Lck spatial reorganization that conditions subsequent LAT
vesicle delivery. Interfering with Lck translocation by knocking
down MAL protein impairs LAT vesicle exocytosis. However
it can be rescued by artificially creating calcium influx (Soares
et al., 2013a). Reducing LAT exocytosis, by interfering with Lck
exocytosis, or silencing calcium sensor Syt7 or vesicle SNARE
VAMP7 decreased LAT phosphorylation and IL2 production
in general (Williamson et al., 2011; Larghi et al., 2013; Soares
et al., 2013a). Single molecule localization microscopy (SMLM)
revealed that LAT and pLAT clusters number as well as cluster
size decreased by blocking LAT vesicle exocytosis during TCR
activation (Larghi et al., 2013). Moreover, the presence of
interacting signaling nano-territories between LAT and SLP76
was also impaired by blocking LAT exocytosis (Soares et al.,
2013a). Interestingly, the long, tubular-shaped LAT clusters
almost disappeared when LAT exocytosis was blocked (Soares
et al., 2013a). These long tubular LAT vesicles travel toward
the immunological synapse during TCR activation (Bonello
et al., 2004; Billadeau, 2010), supporting the idea that LAT
vesicles do not fuse with the immunological synapse. Larghi
et al. expressed LAT molecule that presented a HA-TEV-tag
on the extracellular site. By cleaving the HA tag with TEV
protease in plasma membrane LAT population before T cell
activation, despite the enrichment of HA-TEV-LAT vesicles at
the sub-synaptic membrane after TCR stimulation, LAT was not
recognized with antibodies to HA in non-permeabilized cells,
indicating that HA-TEV-LAT vesicles had not fused with the
plasmamembrane (Larghi et al., 2013). Since LAT vesicles appear
to carry phosphorylated LAT in activated T cells (Williamson
et al., 2011), it is possible that vesicular LAT is phosphorylated
in trans by the TCR-ZAP70 complex in the plasma membrane.
Given that LAT vesicles appear to dock at the plasma membrane
for only ∼1 min (Purbhoo et al., 2010; Williamson et al.,
2011), many LAT molecules could be rapidly phosphorylated
in that manner, leading to signal amplification and spreading
throughout the cell.

CONCLUSION

Extensive research has focused on understanding the TCR
signaling network and signal-regulating mechanisms during T
cell activation due to the essential roles of T cells in the
adaptive immune system. Surprisingly, current knowledge of the
trafficking machineries involved in the intracellular movement of
TCR and signalingmolecules remains very limited. In this review,
we attempted to summarize the known trafficking machinery
involved in the exocytosis of TCR, downstream signaling
molecules and effectors during TCR activation. By putting this
information into context, we tried to draw a more complete
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picture of trafficking networks involved in the regulation of TCR
signaling.

It emerges that key signaling molecules involved in early TCR
signaling reside in distinct vesicle subpopulations that contain
non-overlapping SNARE molecules (Das et al., 2004; Pattu et al.,
2012; Larghi et al., 2013; Matti et al., 2013; Finetti et al., 2015b).
Despite their differences, it seems that fusion with the plasma
membranemight not be the final destination of some populations
of vesicles, raising the question of how trafficking per se can
contribute to regulate T cell signaling. Rather than distributing
signaling molecules across the cell, and regulating signaling by
changing the local concentration of available signaling molecules,
vesicles themselves may be signaling entities. This is illustrated in
the emerging concept of LAT vesicles that do not appear to fuse
with the plasma membrane but are nevertheless phosphorylated
upon TCR stimulation (Williamson et al., 2011; Larghi et al.,
2013). Such vesicles resemble signaling endosomes (Benzing
et al., 2013) but contain the trafficking machinery for exocytosis
(Larghi et al., 2013; Soares et al., 2013a). Thus, LAT vesicles
blur the lines between exocytosis, endocytosis, and signaling.
Quantitative imaging may reveal whether LAT vesicles indeed
amplify the initial TCR signals in the coming years. This would
constitute a new perspective, as the trafficking machinery is
not solely used to deliver molecules to and from the plasma
membrane but to directly facilitate the signaling process in a
highly controlled manner.

It is tempting to speculate that the different trafficking
machinery is required to segregate Lck and LAT into different

vesicles from those that contain TCR and the CD3 complex.
Such segregation may be necessary to achieve the distinct
spatial organization of the immunological synapse. Emerging
imaging techniques such as the lattice light-sheet microscope
(Chen et al., 2014) may soon reveal how vesicle trafficking
is functionally linked to synapse organization. Segregation
into different membrane compartments could both prevent
signaling in resting T cells and facilitate sustained signaling
in activated T cells. Already the actin cytoskeleton at the
immunological synapse has been identified as a gatekeeper
for the secretion of LG (Ritter et al., 2015) and new
rapid, super-resolution imaging will undoubtedly bring
further insights into the interconnectedness between the
structural organization of the synapse, signaling activities,
compartmentalization of signaling components, and vesicle
movement.
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