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Synaptic plasticity is activity-dependent modification of the efficacy of synaptic

transmission. Although, detailed mechanisms underlying synaptic plasticity are diverse

and vary at different types of synapses, diacylglycerol (DAG)-associated signaling has

been considered as an important regulator of many forms of synaptic plasticity, including

long-term potentiation (LTP) and long-term depression (LTD). Recent evidences indicate

that DAG kinases (DGKs), which phosphorylate DAG to phosphatidic acid to terminate

DAG signaling, are important regulators of LTP and LTD, as supported by the results

from mice lacking specific DGK isoforms. This review will summarize these studies

and discuss how specific DGK isoforms distinctly regulate different forms of synaptic

plasticity at pre- and postsynaptic sites. In addition, we propose a general role of

DGKs as coordinators of synaptic plasticity that make local synaptic environments more

permissive for synaptic plasticity by regulating DAG concentration and interacting with

other synaptic proteins.

Keywords: diacylglycerol kinase, synaptic plasticity, long-term potentiation, long-term depression, protein

kinase C

INTRODUCTION

Alterations in the efficacy of synaptic transmission are believed to be cellular mechanisms
of learning and memory. Two well-studied forms of such synaptic plasticity are long-term
potentiation (LTP) and long-term depression (LTD), which have been widely observed at different
types of synapses in many brain areas (Citri and Malenka, 2008). The signaling mechanisms
of synaptic plasticity vary to some extent depending on the types of synapses and stimulation.
One of the main differences is the synaptic site of expression: some forms of LTP and LTD rely
on changes in presynaptic neurotransmitter release, but others rely on changes in postsynaptic
receptor numbers or properties (Malenka and Bear, 2004; Castillo, 2012; Huganir andNicoll, 2013).
Nevertheless, there are some properties shared by several forms of LTP and LTD. A common
property of all forms of LTP and LTD is that potentiation and depression are triggered by transient
stimulation, whereas the potentiation and depression last for a long time. For the long-term
maintenance of altered synaptic strength, translational, and transcriptional regulations are often
involved (Citri and Malenka, 2008). The protocol triggering LTP or LTD usually consists of strong
or repeated synaptic stimulation, which likely activates synaptic receptors and triggers increases
in the levels of signaling molecules, such as calcium and diacylglycerol (DAG). In fact, signaling
mechanisms associated with calcium or DAG have been shown to be required for several forms of
LTP and LTD (Sossin and Farah, 2009).

In many types of cells, including neurons, DAG is generally produced after the activation
of G-protein coupled receptors (GPCRs) through the metabolization of phosphatidylinositol
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4,5-bisphosphate by phospholipase C (PLC) (Rhee, 2001). At
synapses, an increase in DAG level by the activation of
GPCRs likely regulates its target molecules required for synaptic
plasticity (Brose et al., 2004). A well-known target molecule of
DAG is protein kinase C (PKC), which has been shown to be
involved in many forms of LTP or LTD. Therefore, the regulation
of DAG concentrations at synapses is crucial for the regulation of
these forms of LTP or LTD.

The conversion of DAG to phosphatidic acid (PA) by
diacylglycerol kinase (DGK) is the major pathway for the
termination of DAG signaling (Sakane et al., 2007). Ten
mammalian DGK isoforms have been identified so far, and at
least 8 of them are readily detected in the mammalian brain,
suggesting the important roles of DGKs in the brain (Tu-
Sekine and Raben, 2011). Interestingly, the expression pattern
of each isoform in the brain is different, and their subcellular
localizations are distinct (Tu-Sekine and Raben, 2011; Ishisaka
and Hara, 2014), suggesting that different isoforms of DGKs
have unique neuronal or synaptic functions. In this review, we
summarize the roles of DGKs in the regulation of synaptic
plasticity (see Table 1 for summary), focusing on specific types
of synaptic plasticity and individual DGK isoforms involved. In
addition, we would like to emphasize the emerging notion that
DGKs may be involved in the generation of local environments
suitable for synaptic plasticity.

TABLE 1 | Involvement of DGK isoforms in several forms of synaptic plasticity.

DGK Synapse Localization Tested forms of Reported effects Known/expected

isoform synaptic plasticity in KO mice functions of DGKs

DGKε Perforant path-dentate

granule cell synapses

N.D. LTP Reduction Regulating amounts of DAG and PKC

activity required for LTP, and regulating the

lipid signaling leading to the production of

retrograde messengers required for LTP

DGKζ Hippocampal SC-CA1

synapses

Postsynaptic density Postsynaptic LTP Enhancement Regulating amounts of DAG produced by

mGluR activation, and balancing PKC

activity, which is a modulator of LTP and LTD

Postsynaptic LTD Reduction

DGKβ Hippocampal SC-CA1

synapses

Membranes including

synaptic areas

Postsynaptic LTP Reduction Regulating basal DAG levels

DGKι Hippocampal SC-CA1

synapses

Presynaptic areas Presynaptic LTD Reduction Reducing DAG levels and consequently

preventing the activation of target molecules

that antagonize LTD

DGKκ Hippocampal SC-CA1

synapses

N.D. Postsynaptic LTP Reduction Regulating basal DAG levels

Postsynaptic LTD Enhancement

DGKζ Cerebellar parallel

fiber-Purkinje cell synapses

Postsynaptic areas Postsynaptic LTP Normal –

Postsynaptic LTD Reduction Targeting PKCα required for LTD at

synapses, maintaining optimal PKCα activity

levels via reducing basal DAG levels, and

receiving inhibition from PKCα

N.D. stands for “not described or undetermined.”

DGKs INVOLVED IN SEVERAL FORMS OF
HIPPOCAMPAL SYNAPTIC PLASTICITY

DGKε for LTP at Perforant Path-Dentate
Granule Cell Synapses
The involvement of DGKs in synaptic plasticity was first
demonstrated for LTP at synapses of hippocampal dentate
granular cells receiving inputs from the perforant path
of the entorhinal cortex. LTP at these synapses requires
the action of postsynaptic NMDA-type glutamate receptors
(NMDARs) and increases in calcium concentrations (Colino
and Malenka, 1993; Kleschevnikov and Routtenberg, 2001).
However, it is controversial whether this LTP is presynaptically
or postsynaptically expressed. Several studies demonstrated that
LTP at these synapses was expressed by an increase in the
probability of presynaptic neurotransmitter release (Christie and
Abraham, 1994; Wang et al., 1996; Min et al., 1998), which is
controlled by the retrograde lipid messenger, platelet-activating
factor (Kato and Zorumski, 1996; Chen et al., 2001). On the other
hand, other studies showed that LTPwas expressed by an increase
in the number of postsynaptic AMPA-type glutamate receptors
(Wang et al., 1996; Reid and Clements, 1999; Moga et al., 2006).

Despite the undefined locus of LTP expression, PKC has
been demonstrated to be involved in this form of LTP. PKC
activation rescues LTP blocked by an NMDAR antagonist
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(Kleschevnikov and Routtenberg, 2001), suggesting involvement
of PKC activation in LTP. In contrast, PKC activation by
metabotropic glutamate receptors (mGluRs) prior to LTP
induction inhibits subsequent LTP induction (Gisabella et al.,
2003), suggesting that maintaining minimum PKC activity at
the basal state is required for LTP. These results indicate
that the regulation of PKC activity is critical for LTP
induction.

In mice lacking DGKε (DGKε−/−), which is the only
DGK that can act on sn-2 arachidonoyl-DAG, LTP at dentate
granular cell synapses was impaired (Rodriguez de Turco
et al., 2001). A possible function of DGKε is to reduce DAG
concentrations and PKC activity at the basal state, considering
the dynamics of PKC activity required for LTP induction.
Another possibility is that DGKε regulates lipid metabolism,
so that the synthesis of platelet-activating factor is suppressed,
leading to impairment of LTP in DGKε−/− mice (Rodriguez de
Turco et al., 2001).

Role of DGKζ in Postsynaptic LTP and LTD
at SC-CA1 Synapses
Synaptic plasticity has been extensively investigated at
hippocampal Schaffer-collateral (SC)-CA1 synapses, in which
LTP and LTD are postsynaptically expressed (Citri and Malenka,
2008). Many studies have demonstrated that PKC is involved
in both LTP and LTD at SC-CA1 synapses (Akers et al., 1986;
Malinow et al., 1989; Klann et al., 1993; Thiels et al., 2000),
suggesting the importance of DAG regulation in the postsynaptic
area. DGKζ is mainly present at postsynaptic sites and directly
interacts with PSD-95 family proteins (Kim et al., 2009). In
DGKζ−/− mice, LTP at SC-CA1 synapses is enhanced, whereas
LTD is reduced (Seo et al., 2012). Importantly, pharmacological
inhibition of PLC and PKC restores abnormal LTP and LTD in
DGKζ−/− mice, suggesting that enhanced PLC-PKC signaling by
DGKζ deficiency may lead to an altered balance of LTP and LTD
(Seo et al., 2012). Therefore, DGKζ appears to limit excessive
increases in DAG level and PKC activity for proper modulation
of bidirectional synaptic plasticity at hippocampal SC-CA1
synapses.

Role of DGKβ in Postsynaptic LTP at
SC-CA1 Synapses
In addition to DGKζ, DGKβ has also been reported to
regulate postsynaptically expressed LTP at hippocampal SC-CA1
synapses. However, its functions appear to be different from those
of DGKζ, because LTP was reduced in DGKβ−/− mice, contrary
to the enhanced LTP in DGKζ−/− mice (Shirai et al., 2010).
DGKβ is expressed at high levels in the hippocampal pyramidal
cell layer (Goto and Kondo, 1999) and shows unique localization
patterns at the plasma membrane (Caricasole et al., 2002) and
postsynaptic compartments (Hozumi et al., 2008). Thus, both
DGKβ and DGKζ are localized around the postsynaptic area,
excluding a possibility that this accounts for the differences in
their functions. Another possibility is that DGKβ and DGKζ

are responsible for metabolizing DAG under different contexts.
DGKβ deficiency resulted in a reduction in PA production

and an increase in DAG level even without stimulation (Shirai
et al., 2010), whereas DGKζ deficiency resulted in a significant
reduction in PA production only when stimulation was applied
without changes under basal conditions (Kim et al., 2009). These
results suggest that whereas DGKζ converts DAG to PA after
synaptic stimulation to maintain DAG at appropriate levels that
are required for synaptic plasticity, DGKβ is mainly responsible
for lowering DAG levels at the basal state.

Role of DGKι in mGluR-Dependent,
Presynaptic LTD at SC-CA1 Synapses
DGKι, which shares a similar domain structure withDGKζ, binds
to PSD-95 (Yang et al., 2011). However, unlike DGKζ, DGKι

is also present in axon terminals in addition to postsynaptic
sites, being detected in the presynaptic plasma membrane
and synaptic vesicles (Yang et al., 2011). In DGKι−/− mice,
postsynaptic LTP and LTD are not altered at hippocampal
SC-CA1 synapses, presumably because DGKβ and DGKζ

even in the absence of DGKι are functionally sufficient to
regulate the postsynaptic DAG metabolism that is required
for synaptic plasticity. In contrast, mGluR-dependent LTD at
these synapses is suppressed in the hippocampus of neonatal
(2-week old) DGKι−/− mice. It has been shown that mGluR-
dependent LTD in SC-CA1 synapses of neonatal mice relies
mainly on the reduction of presynaptic release probability
(Fitzjohn et al., 2001; Zakharenko et al., 2002; Rammes
et al., 2003; Nosyreva and Huber, 2005; Yang et al., 2011).
Consistently with the idea that presynaptic LTD is suppressed
at DGKι−/− SC-CA1 synapses, mGluR stimulation did not
cause an activity-dependent reduction in release probability
in these mice (Yang et al., 2011). Furthermore, inhibition
of the binding of DAG to its target molecules or inhibition
of PKC in DGKι−/− mice rescued mGluR-dependent LTD
as well as activity-dependent reduction of release probability
(Yang et al., 2011). Thus, DGKι may work during normal
mGluR-LTD to remove DAG at presynaptic terminals and
to suppress the activity of DAG targets, such as PKC
and Munc13, as well as enhancement of neurotransmitter
release.

Role of DGKκ in Postsynaptic LTP and LTD
at SC-CA1 Synapses
A recent study demonstrated that the reduction of DGKκ

expression levels using an shRNA resulted in reduced LTP and
increased LTD at hippocampal SC-CA1 synapses (Tabet et al.,
2016). This result is similar to the abovementioned reduced LTP
observed in DGKβ−/− mice, and suggests that DGKκ may also
be required for lowering DAG levels under basal conditions and
inducing normal LTP. In line with this idea, in knockout mice
lacking the fragile X mental retardation protein where DGKκ

translation is impaired, DAG levels are increased under basal
conditions, but not after mGluR stimulation. It is possible that
DGKκ may cooperate with DGKβ to maintain low levels of DAG
under basal conditions for normal induction of LTP at SC-CA1
synapses.
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DGKζ IS REQUIRED FOR CEREBELLAR
LTD

In addition to hippocampal synaptic plasticity, DGKζ regulates
cerebellar LTD that is postsynaptically expressed at the synapses
of cerebellar Purkinje cells receiving inputs from parallel fibers,
as supported by impaired LTD, but not LTP, in DGKζ−/− mice
(Lee et al., 2015). Cerebellar LTD has long been studied, and
the importance of PKC in LTD has also been well established
(Linden and Connor, 1991; De Zeeuw et al., 1998), with the
PKC isoform PKCα being critical (Leitges et al., 2004). Our
results showed that DGKζ bound to not only PSD-93, a PSD-
95 relative abundant in Purkinje cells, but also to PKCα in
Purkinje cells, and such binding functions of DGKζwere required
for LTD (Lee et al., 2015). In addition, we have shown that
LTD induction causes the dissociation of DGKζ and PKCα, and
that the catalytic function of DGKζ is also required for LTD.
These results collectively suggest the following mechanisms.
PSD-93-bound DGKζ interacts with and promotes the synaptic
localization of PKCα, but suppresses PKCα activity under basal
conditions by reducing DAG concentrations. When LTD is
triggered, PKCα dissociates from DGKζ and gets activated to
promote the induction of cerebellar LTD.

GENERAL ROLES OF DGKs IN SYNAPTIC
PLASTICITY

As summarized above, 5 different isoforms of mammalian
DGKs have so far been reported to be involved in some
forms of synaptic plasticity (Table 1). Generally, the 10 known
isoforms of DGKs are categorized into five types based on their
distinct functional domain structures, which display differential
distribution patterns in the brain (Ishisaka and Hara, 2014).
These diversities in the domain structures and distribution
patterns of brain DGKs may influence their distinct subcellular
localization, spectrum of binding proteins, and regulation of
specific aspects of LTP and LTD.

Although, the current results suggest that individual DGK
isoforms distinctly regulate several forms of LTP or LTD, they can
be considered to play a conceptually common role in synaptic
plasticity. In general, molecules involved in synaptic plasticity
fall into two categories based on their functions, namely,
mediators or modulators. Mediators are directly responsible for
triggering synaptic plasticity, whereas modulators are molecules
modulating the ability to trigger synaptic plasticity or playing
a permissive role (Citri and Malenka, 2008). Given that all
isoforms of DGKs described above do not directly mediate the
expression of synaptic plasticity, they should be categorized as
modulators. Furthermore, DGKs may be specifically considered
as coordinators because they function to prepare synapses to
undergo synaptic plasticity. As described above, in some cases,
DGKs reduce DAG signaling under basal conditions so that
DAG signaling can be effectively enhanced after the induction of
synaptic plasticity. In other cases, DGKs control DAG signaling
“after” the initiation of the induction of synaptic plasticity.
Therefore, DGK-dependent modulation of DAG tones before

and after the induction of synaptic plasticity may create synaptic
environments appropriate for triggering synaptic plasticity. Such
a coordinating role would be accomplished by the ability of DGKs
to localize itself at synapses, to bind, recruit, and temporally
suppress the activity of downstream effector molecules of DAG,
such as PKCα, required for synaptic plasticity, and to timely
terminate DAG signaling to suppress excessive induction of
synaptic plasticity (Figure 1).

REMAINING QUESTIONS

Studies using knockout mice of specific isoforms of DGKs
have demonstrated the involvement of DGKs in some forms
of synaptic plasticity, and based on these studies, the general
role of DGKs in synaptic plasticity has been proposed. The next
question that naturally arises is whether other DGK isoforms that
are abundantly expressed in the brain, such as DGKα, DGKγ,
DGKη, and DGKθ, also play roles in some forms of synaptic
plasticity. Future studies to address this question should support
or even strengthen the idea that DGKs function as coordinators
of synaptic plasticity.

FIGURE 1 | Possible distinct functions of DGK isoforms, and their

general role as a coordinator of synaptic plasticity. Distinct functions of

individual DGK isoforms in several forms of synaptic plasticity are summarized.

In addition, DGKs could be considered to play a general role: DGKs act to

create a synaptic environment that is suitable for triggering synaptic plasticity,

through their abilities to (i) localize itself appropriately at presynaptic or

postsynaptic areas, (ii) interact with and facilitate the synaptic targeting of the

molecules required for triggering synaptic plasticity, and (iii) maintain DAG at

levels that can adequately contribute to the induction of synaptic plasticity.

DAG/PA in black and in dark yellow indicates DAG/PA produced under basal

conditions and after stimulation, respectively.
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Although, we have described some molecular mechanisms as
to how DGK isoforms are involved in synaptic plasticity, there
are still several questions regarding the molecular mechanisms,
including the two following straightforward ones. The first is why
there are three isoforms of DGKs–DGKβ, DGKζ, and DGKκ–
that are required for the regulation of synaptic plasticity in
hippocampal CA1 synapses. One possibility is that they play
distinct roles based on their specific subcellular localizations
and catalytic properties: DGKζ localized at synapses via binding
with PSD-95 (Kim et al., 2009) may metabolize only high
concentrations of DAG produced after synaptic stimulation,
while DGKβ and DGKκ may be capable of metabolizing low
concentrations of DAG around synapses (Figure 1). Although,
the subcellular localization of DGKκ in neurons still remains
unclear, the reported specific localization of DGKβ at the plasma
membrane (Caricasole et al., 2002) may render distinct functions
to DGKκ and DGKβ under basal conditions.

The second question is how DGK isoforms are localized
to presynaptic terminals to regulate presynaptically expressed
synaptic plasticity. DGKι is shown to be involved in presynaptic
LTD (Yang et al., 2011). Although, the involvement of DGKθ

in synaptic plasticity is not directly tested, DGKθ was shown to
regulate synaptic vesicle recycling presumably via the production
of PA (Goldschmidt et al., 2016). Except for common structural
domains of DGKs (C1 and catalytic domains) DGKι and DGKθ

do not share domains that may mediate the interaction with
presynaptic molecules. Identification of such mechanisms would
further advance our understanding of the DGK-dependent
regulation of presynaptically expressed synaptic plasticity.

Considering that DGKs create synaptic environments
appropriate for triggering synaptic plasticity, DGKs may be
adequate regulators of metaplasticity. Metaplasticity refers to
activity-dependent synaptic changes that modulate the ability
to induce subsequent synaptic plasticity (Abraham and Bear,
1996). The activities of DGKs likely rely on their localization

or posttranslational modifications (Shulga et al., 2011), and
DGK protein levels may also alter the overall activity of DAG
metabolism. Therefore, it is possible that activity-dependent
regulation of DGK protein levels, localization, or modification
leads to metaplasticity. Intriguingly, it has recently been shown
that the cellular microRNA miR-34a targets DGKζ mRNA, and
DGKζ expression was decreased via the stimulation-dependent
upregulation of miR-34a in immune cells (Shin et al., 2013).
A similar regulation of DGKζ or other DGK isoforms may be
achieved at synapses as mechanisms of metaplasticity.

Finally, it has not yet been intensively investigated as to how
DGK-dependent regulation of synaptic plasticity contributes to
learning and memory, although a study has shown that DGKβ is
necessary for hippocampus-dependent spatial reference memory
formation (Shirai et al., 2010), for which LTP at CA1 synapses
is implicated (Martin et al., 2000). To avoid compensation by
other DGKs or other mechanisms in knockout mice, it would be
needed to employee additional approaches such as conditional
knockout of DGKs, mutations in specific domains, or temporal
control of such modifications. Nevertheless, considering the
role of DGKs in the coordination of synaptic environments for
synaptic plasticity, it would be highly valuable to understand how

DGK-dependent regulations of synaptic plasticity affect learning
and memory at the behavior level.
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