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The endoplasmic reticulum (ER) comprises an interconnectedmembrane network, which

is made up of lipid bilayer and associated proteins. This organelle plays a central role

in the protein synthesis and sorting. In addition, it represents the synthetic machinery

of phospholipids, the major constituents of the biological membrane. In this process,

phosphatidic acid (PA) serves as a precursor of all phospholipids, suggesting that PA

synthetic activity is closely associated with the ER function. One enzyme responsible for

PA synthesis is diacylglycerol kinase (DGK) that phosphorylates diacylglycerol (DG) to PA.

DGK is composed of a family of enzymes with distinct features assigned to each isozyme

in terms of structure, enzymology, and subcellular localization. Of DGKs, DGKε uniquely

exhibits substrate specificity toward arachidonate-containing DG and is shown to reside

in the ER. Arachidonic acid, a precursor of bioactive eicosanoids, is usually acylated at

the sn-2 position of phospholipids, being especially enriched in phosphoinositide. In this

review, we focus on arachidonoyl-specific DGKε with respect to the historical context,

molecular basis of the substrate specificity and ER-targeting, and functional implications

in the ER.

Keywords: diacylglycerol kinase, arachidonate, substrate specificity, endoplasmic reticulum, phosphoinositide,

ER stress

INTRODUCTION

The endoplasmic reticulum (ER), which comprises a tubular and planar network of lipid bilayer
membranes (Croze and Morré, 1984), represents a specialized site of protein synthesis and
subsequent foldingmachinery. In addition, the ER plays a central role in the synthesis and transport
of major membrane phospholipids such as phosphatidylcholine (PC), phosphatidylserine (PS), and
phosphatidylinositol (PI; Gaspar et al., 2007). In response to cellular requirements, this tubular
and planar ER network extends to all regions of cell interfaces at membrane contact sites with the
plasma membrane, mitochondria, and Golgi apparatus for lipid transfer, integration of metabolic
pathways, and calcium homeostasis (Lagace and Ridgway, 2013). In terms of energy homeostasis,
fatty acids supply a major source of energy for organisms, but they can also be toxic. When exposed
to excess fatty acids, cells esterify fatty acids into neutral lipids and package them into lipid droplets
(LDs). Actually, an LD is an ER-derived organelle that is necessary for the storage and mobilization

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
https://doi.org/10.3389/fcell.2016.00132
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2016.00132&domain=pdf&date_stamp=2016-11-18
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:kgoto@med.id.yamagata-u.ac.jp
https://doi.org/10.3389/fcell.2016.00132
http://journal.frontiersin.org/article/10.3389/fcell.2016.00132/abstract
http://loop.frontiersin.org/people/381387/overview
http://loop.frontiersin.org/people/381766/overview
http://loop.frontiersin.org/people/360431/overview


Nakano et al. DGKε and the ER

of neutral lipids in a specialized cell type: adipocyte (Martin and
Parton, 2006; Brasaemle and Wolins, 2012). Under pathological
conditions including nutrient and oxygen starvation, calcium
depletion and altered redox status, protein folding, and
lipid biosynthesis are impaired, thereby producing ER stress.
Therefore, the ER integrates cellular activities of protein and
lipid synthesis as well as pathological responses such as unfolding
protein response (UPR; Berridge, 2002; Ron and Walter, 2007;
Sano and Reed, 2013).

During the process of lipid synthesis, phosphatidic acid
(PA) serves as an intermediate molecule for all phospholipids.
It is therefore conceivable that PA synthetic activity is
intimately involved in the ER function, and that one enzyme
responsible for this activity is diacylglycerol kinase (DGK;
Kanoh et al., 1990). Actually, DGK comprises a family of
enzymes. Each of the isozymes exhibits a characteristic feature
in terms of structural, enzymological, and morphological aspects
(Goto et al., 2007; Sakane et al., 2007; Mérida et al., 2008;
Topham and Epand, 2009; Table 1). Each member of the
DGK family presents a unique subcellular localization in
transfected cells and presumably plays a specific role at each
site (Kobayashi et al., 2007). Of the DGKs, DGKε is unique
in its substrate specificity toward arachidonate-containing DG
and resides in the ER (Matsui et al., 2014). In this review,
we specifically examine the functional role of DGKε in this
organelle.

IDENTIFICATION OF ARACHIDONOYL DGK

Since the first discovery of DGK activity in a brain microsome
fraction (Hokin and Hokin, 1959), it has been reported as
distributed widely in animal tissues (Hokin and Hokin, 1963;
Sastry and Hokin, 1966; Prottey and Hawthorne, 1967; Lapetina
and Hawthorne, 1971; Farese et al., 1981). The DGK activity
was associated with various fractions of cells, including soluble,
membranous, and cytoskeletal fractions (Call and Rubert, 1973;
Daleo et al., 1974). These features suggest the heterogeneity
of DGK in animal tissues and cells. In this respect, Glomset
group reported that cytosolic and membrane-bound DGKs in
Swiss 3T3 cells show different substrate selectivity (MacDonald
et al., 1988). Intriguingly, the membrane-bound DGK is unique
in that it selectively catalyzes DG containing arachidonate
at the sn-2 position (Lemaitre et al., 1990). Moreover, it is
rapidly inactivated by preincubation with its preferred substrate.
Generally, DGK activity is determined using several assay
systems with different detergents, including octylglucoside mixed
micelle assay, deoxycholate assay, and Triton X-100 assay
(Walsh et al., 1994). It is particularly noteworthy that the
detection of arachidonoyl-specificity depends on the assay system
that is used. The substrate selectivity toward arachidonate-
containing DG is most sensitive in the octylglucoside assay,
but is not detected in the deoxycholate assay. The sensitive
assay system together with presumed thermal lability made it
difficult to purify the enzyme. Biochemical purification of this
“arachidonoyl DGK” from bovine testis estimated the molecular
mass as 58,000 (Walsh et al., 1994), although PCR cloning

using degenerate primers succeeded in isolating the cDNA clone
encoding arachidonoyl DGK, designated as DGKε (Tang et al.,
1996).

MOLECULAR BASIS FOR ARACHIDONOYL
SPECIFICITY OF DGKε

DGKε is the only isozyme that shows substrate specificity toward
arachidonate (20:4)-containing DG. As a substrate for DGKε,
sn-1-stearoyl-2-arachidonoyl-DG (18:0/20:4-DG) is preferred
over saturated DG (sn-1,2-didecanoyl-DG, 10:0/10:0-DG) or
monounsaturared DG (sn-1,2-dioleoyl-DG, 18:1/18:1-DG). It
should be mentioned that DGKε prefers 18:0/20:4-DG to sn-
1-stearoyl-2-linoleoyl-DG (18:0/18:2-DG) and sn-1-stearoyl-2-
docosahexaenoyl-DG (18:0/22:6-DG) (Lemaitre et al., 1990;
Tang et al., 1996; Shulga et al., 2011a). Therefore, it is
concluded that DGKε prefers arachidonate at the sn-2 position.
Arachidonic acid, an essential polyunsaturated fatty acid,
contains four double bonds. Arachidonate is not only a major
component of membrane phospholipid; it is also the precursor
of bioactive molecules designated as eicosanoids, such as
prostaglandins and leukotrienes that are catalyzed, respectively,
by cyclooxygenase (COX) and lipoxygenase (LOX; Funk, 2001;
Buczynski et al., 2009). Because these arachidonate-derivatives
serve as key mediators of several pathophysiological events,
free arachidonate itself should be maintained within a restricted
concentration (Peters-Golden and Henderson, 2007). Under
physiological conditions, arachidonate is incorporated into the
sn-2 position of phospholipids by the enzymes arachidonoyl-
CoA synthetase and lysophospholipid acyltransferases (Pérez-
Chacón et al., 2009). These enzymes, together with DGKε,
specifically recognize arachidonate moiety. However, how is the
arachidonoyl specificity achieved?

To investigate the molecular basis of the substrate specificity
of DGKε toward arachidonate, the Epand group compared
amino acid sequences of the enzymes that specifically recognize
this fatty acid (Shulga et al., 2011b). They identified in the
catalytic domain of DGKε (aa. 421–453 in human sequence)
the motif L-X(3-4)-R-X(2)-L-X(4)-G, in which -X(n)- is n
residues of any amino acid. This domain, which is contained
in DGKε of various species as well as phosphatidylinositol-4-
phosphate-5-kinase type Iα, resembles a polyunsaturated fatty
acid-recognizing domain identified in lipoxygenases (Neau et al.,
2009). Mutations of the essential residues in this motif, L431I and
L438I, significantly reduce arachidonoyl specificity. Furthermore,
the group found a sequence similar to this LOX-like motif in
non-specific isozyme DGKα, with a V656 residue instead of Leu
in DGKε. They confirm that V656L mutation introduces some
specificity for arachidonate-containing DG to DGKα.

TARGETING OF DGKε TO THE ER

The DGK family is localized to distinct subcellular compartments
in cDNA-transfected cells, including the cytoplasm, ER, Golgi
complex, actin-cytoskeleton, and nucleus (Kobayashi et al.,
2007). In an early fractionation study using Swiss 3T3 cells,
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TABLE 1 | Characteristic features of mammalian DGK isozymes.

Molecular

weight (kDa)

Substrate specificity and

Ca2+-dependency

Main tissue and cell

expression

Subcellular localization

in native cells

References

TYPE I

DGKα 82 Non-specific, Ca2+-dependent T cells, brain (oligodendrocytes) Cytoplasm, nucleus Sakane et al., 1990; Schaap et al., 1990;

Goto et al., 1992

DGKβ 90 Non-specific, Ca2+-dependent Brain (striatal neurons) Perisynaptic membrane Goto and Kondo, 1993; Hozumi et al.,

2008

DGKγ 88 Non-specific, Ca2+-dependent Brain (cerebellar Purkinje

neurons)

Golgi apparatus Goto et al., 1994; Kai et al., 1994; Nakano

et al., 2012

TYPE II

DGKδ 130 Non-specific Reproductive organs,

leukocytes, ubiquitous

Cytoplasm Sakane et al., 1996, 2002

DGKη 127 Non-specific Reproductive organs, ubiquitous Cytoplasm Klauck et al., 1996; Murakami et al., 2003

DGKκ 142 Non-specific Reproductive organs Plasma membrane Imai et al., 2005

TYPE III

DGKε 64 sn-2-arachidonoyl (20:4)

-DG-specific

Brain (neurons), ubiquitous Endoplasmic reticulum Lemaitre et al., 1990; Tang et al., 1996;

Shulga et al., 2011a; Matsui et al., 2014

TYPE IV

DGKζ 104 Non-specific Brain (neurons), ubiquitous Nucleus Bunting et al., 1996; Goto and Kondo,

1996; Hozumi et al., 2003

DGKι 117 Non-specific Brain (neurons), retina Postsynaptic region of rod

bipolar dendrites

Ding et al., 1998; Ito et al., 2004; Hozumi

et al., 2013

TYPE V

DGKθ 110 Non-specific Brain (neurons), smooth muscle,

and endothelial cells

Excitatory presynapses,

nuclear speckles

Houssa et al., 1997; Walker et al., 2001;

Tabellini et al., 2003; Goldschmidt et al.,

2016

“arachidonoyl DGK activity” comigrated with that of the ER
marker enzymes, together with other PI-metabolizing enzyme
PI synthase (Glomset, 1996). In agreement with the biochemical
data, DGKε is targeted to the ER. Because DGKε is highly
insoluble, the hydrophobic region was presumed to play a
key role in the ER targeting. We investigated the sequence
responsible for ER targeting of DGKε (Matsui et al., 2014).
Various deletion and substitution mutations of rat DGKε tagged
with GFP were transfected in cells and were compared with
ER markers. Results show clearly that a stretch of hydrophobic
amino acid sequence 20–40 (DGKε 20–40) in the N-terminus is a
determinant sequence in controlling the ER targeting of DGKε.
This hydrophobic region adopts an α-helical structure of the
transmembrane segment (Glukhov et al., 2007).

In this regard, a detailed modeling study suggests
the possibility that this sequence structure can take two
representative models of low-energy conformations, such as a
long straight helix and a U-bend helix (Decaffmeyer et al., 2008).
Two interchangeable structures of monotopic and bitopic nature
might confer on DGKε a unique feature in relation to the ER.
Changing conditions such as a redox state and pH can regulate
the conformation of DGKε between these two structures, thereby
affecting the relation of DGKε and the ER membrane.

The α-helical structure of the hydrophobic sequence 20–
40 creates a “hydrophobic patch” composed of L22, L25, and
L29 (according to the rat sequence; Figure 1). To test whether
the hydrophobicity is critical in the ER targeting, we produced

two substitution mutants: one containing less hydrophobic Ala
(hydrophobic score 1.8) and the other with hydrophilic Gln
(hydrophobic score -3.5), instead of wild-type Leu (hydrophobic
score 3.8; (Matsui et al., 2014)). Ala substitution fragment DGKε

(20–40/L22A, L25A, L29A) is targeted to the ER membrane.
It is recovered in the membrane fraction, along with wild-
type fragment. However, Gln substitution fragment DGKε (20–
40/L22G, L25G, L29G) containing a “hydrophilic patch” is
distributed diffusely in the cytoplasm and is recovered in the
soluble fraction. Furthermore, full-length Ala mutant DGKε

(L22A, L25A, L29A) is shown to reside in the ER whereas Gln
mutant DGKε (L22G, L25G, L29G) abolishes it. These findings
suggest that the hydrophobic patch composed of L22, L25, and
L29 is crucially important for ER targeting of DGKε.

No general consensus sequence for ER localization, such as
the ER retention signal, is found in this hydrophobic or in other
regions of DGKε (Matsui et al., 2014). Therefore, details of the
ER targeting mechanism of DGKε remain unclear. How does
this hydrophobic patch specifically lead DGKε to the ER, instead
of the other membranes such as mitochondrial membrane? The
ER consists of phospholipid bilayer containing a plethora of
proteins. Is the membrane or the protein of the ER recognized
by the hydrophobic patch? Does the hydrophobic patch bind
to some microdomain of the membrane? Because DGKε-kinase
dead mutant also resides in the ER, the substrate DG and the
product PA are not involved in subcellular localization of DGKε.
Therefore, the current data can be summarized as follows: ER
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FIGURE 1 | Features of wild-type DGKε and Ala and Gln substitution mutants. Hydropathy plot analysis and helical wheel projections of the hydrophobic

region of DGKε are shown. Wild-type DGKε contains highly hydrophobic residues L22, L25, L29 (thick circles), which represent a prominent hydrophobic patch.

Alanine substitution mutant DGKε (L22A, L25A, L29A) have a reduced hydrophobic patch (thin circles), whereas glutamine substitution mutant DGKε (L22Q, L25Q,

L29Q) includes a hydrophilic patch (squares). Immunofluorescence images of GFP for full-length wild-type and substitution mutants of DGKε together with ER marker

staining in transfected HeLa cells (lower panels). Wild-type DGKε and alanine mutant DGKε (L22A, L25A, L29A) clearly colocalize with ER marker, whereas glutamine

mutant DGKε (L22Q, L25Q, L29Q) shows diffuse cytoplasmic pattern. Modified from Matsui et al. (2014) with permission from Elsevier.

targeting is mediated through the N-terminal hydrophobic patch
composed of L22, L25, and L29. Subsequent recognition of the
arachidonoyl acyl chain of DG is achieved by a LOX-like motif in
the catalytic domain of DGKε (aa. 421–453). Additional studies
must be conducted to elucidate the ER targeting mechanism of
DGKε.

ER STRESS

ER homeostasis is crucially important for cellular activity
and survival (Ellgaard and Helenius, 2003). Stress in the
ER induces the UPR, which represents a complex signaling
system that controls translation and transcription in response
to increased demands on the protein folding capacity of the
ER for cell survival (Rutkowski and Kaufman, 2004; Koumenis
and Wouters, 2006; Malhotra and Kaufman, 2007; Hetz, 2012).
To meet this demand, the UPR coordinates membrane growth
and phospholipid metabolism, thereby leading to ER membrane
expansion and enhanced protein folding capacity (Sriburi et al.,
2004). In addition to misfolding or incomplete assembly of
proteins, alteration of the ER lipid composition also is shown
to initiate ER stress (Devries-Seimon et al., 2005), indicating
that disruption of membrane lipid homeostasis triggers directly

or indirectly a mechanism to reestablish ER lipid composition
(Fagone and Jackowski, 2009).

Under ER stress conditions, the glucose-regulated protein
GRP78 plays a key role in UPR (Bertolotti et al., 2000). GRP78,
a member of the heat shock protein 70 superfamily, serves
as a major ER chaperone protein with ATPase activity. It
is a key regulator of the transmembrane ER stress sensors
comprised of inositol requiring enzyme 1 (IRE1), protein
kinase RNA-activated (PKR)-like ER kinase (PERK), and
activating transcription factor-6 (ATF6) (Lee, 2014). IRE1 is a
transmembrane ribonuclease that splices and activates X-box-
binding protein (XBP-1) mRNA. Spliced form of XBP-1 [XBP-
1(S)], together with cleaved ATF6 and ATF4, translocates to the
nucleus where they induce the expression of ER stress-responsive
genes (Hetz, 2012). In this regard, XBP-1(S) serves as a regulator
of PC synthesis and ER membrane development (Fagone and
Jackowski, 2009). PERK mediates activation of the pro-apoptotic
factor C/EBP homologous protein (CHOP), thereby leading to
apoptosis if the response is insufficient to reestablish homeostasis
(Xu et al., 2005; Shore et al., 2011).

Therefore, the ER membrane expansion is supported by
phospholipid synthesis, in which PA serves as an intermediate
product. The initial step in the PA synthesis is catalyzed using a
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family of glycerol 3-phosphate acyltransferases located in the ER
and the outer mitochondrial membrane, followed by acyl-CoA-
dependent acylation of lyso-PA to form PA (Lagace and Ridgway,
2013).

Another intermediate product DG is a precursor for PA, which
is catalyzed by DGK. Therefore, DGK is intimately involved in
phospholipid synthesis in the ER and presumably in the UPR.
Earlier, we examined whether ER-resident DGKε participates
in this process and assessed the ER stress pathways in DGKε

knockdown cells under experimental ER stress conditions using
tunicamycin and thapsigargin (Matsui et al., 2014). From DGKε

deletion experiments conducted under ER stress conditions, we
found the following: (1) The major protein chaperone GRP78
is induced to the same extent in both wild-type and DGKε-
deficient cells. (2) Eukaryotic initiation factor 2α (eIF2α) is
slightly, although not significantly, downregulated at the total
and phosphorylated protein levels. (3) CHOP is significantly
suppressed at the protein level. Analysis of cellular vulnerability,
however, clearly shows that DGKε deletion reduces cell viability
under ER stress conditions to some degree. Therefore, DGKε

deletion seems to exert conflicting effects on apoptosis in terms
of CHOP expression. In this regard, recent studies suggest
that although CHOP is identified originally as a repressive
member of the C/EBP family of transcription factors (Ron and
Habener, 1992), it is capable of either transcriptional repression
or activation, depending on the context (Oyadomari and Mori,
2004). Further studies need to be done to elucidate this point.

CONCLUDING REMARKS

Gene duplication contributes to the evolution of living creatures
by expanding DNA information. Escherichia coli is equipped with
two forms of DGK (Van Horn and Sanders, 2012; Jennings et al.,
2015) whereas mammalian cells contain at least 10 isozymes. In
the course of evolution, one branch of the diversifiedDGKsmight
have gained substrate specificity toward arachidonate-containing
DG. Of DGs, arachidonoyl DG is phosphorylated selectively
by arachidonoyl DGK to produce corresponding PA, which
is further incorporated into inositol phospholipids. Multiple
steps of this process are expected to enrich arachidonate in PI

(Glomset, 1996). Because PIP2 is a major substrate for PLC, its
enzymatic action results in the production of arachidonoyl DG.
Functional implication of arachidonoyl DGK is suggested by an
experimental seizure model at the organismal level. It reveals
that DGKε-KO mice show lower degradation of brain PIP2 and
lower accumulation of arachidonoyl-DG and free arachidonate
although resting levels of PIP and PIP2 are similar between wild-
type and DGKε-KO mice brains (Rodriguez de Turco et al.,
2001). These findings suggest that DGKε is clearly involved in
recycling PI metabolism presumably through the enrichment
of arachidonate moiety. Therefore, DGKε downregulation may
lead to a slowdown of PI turnover, thereby downregulating
various membrane functions. In addition, it is particularly
noteworthy that arachidonoyl DG also represents a substrate
for another enzyme DG lipase, which cleaves sn-1-acyl chain
to produce 2-arachidonoyl glycerol (Maejima et al., 2005).
Because 2-arachidonoyl glycerol serves as an endocannabinoid
for retrograde synaptic transmission, arachidonoyl DG is located
at the crossroad of the two signaling cascades: DG-PA and DG-
2AG pathways directed respectively by DGK and DG lipase. The
mechanisms for how these signaling pathways are coordinated in
parallel are just beginning to be explored.
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