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Organ tissue engineering, including cardiovascular tissues, has been an area of intense

investigation. The major challenge to these approaches has been the inability to

vascularize and perfuse the in vitro engineered tissue constructs. Attempts to provide

oxygen and nutrients to the cells contained in the biomaterial constructs have had varying

degrees of success. The aim of this current study is to develop a three-dimensional

(3-D) model of vascularized cardiac tissue to examine the concurrent temporal and

spatial regulation of cardiomyogenesis in the context of postnatal de novo vasculogenesis

during stem cell cardiac regeneration. In order to achieve the above aim, we have

developed an in vitro 3-D functional vascularized cardiac muscle construct using human

induced pluripotent stem cell-derived embryonic cardiac myocytes (hiPSC-ECMs) and

human mesenchymal stem cells (hMSCs). First, to generate the prevascularized scaffold,

human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were co-

cultured onto a 3-D collagen cell carrier (CCC) for 7 days under vasculogenic culture

conditions. In this milieu, hCMVECs/hMSCs underwent maturation, differentiation,

and morphogenesis characteristic of microvessels, and formed extensive plexuses

of vascular networks. Next, the hiPSC-ECMs and hMSCs were co-cultured onto

this generated prevascularized CCCs for further 7 or 14 days in myogenic culture

conditions. Finally, the vascular and cardiac phenotypic inductions were analyzed

at the morphological, immunological, biochemical, molecular, and functional levels.

Expression and functional analyses of the differentiated cells revealed neo-angiogenesis

and neo-cardiomyogenesis. Thus, our unique 3-D co-culture system provided us the

apt in vitro functional vascularized 3-D cardiac patch that can be utilized for cellular

cardiomyoplasty.

Keywords: induced pluripotent stem cells, mesenchymal stem cells, embryonic cardiac myocytes, excitation-

contraction coupling, dedifferentiation, myocardial regeneration, cardiovascular tissue engineering

INTRODUCTION

Restricted myocardial regeneration after tissue injury and shortage of organs for transplantation
are the principal constraints of conventional therapies (Soonpaa and Field, 1998). Organ tissue
engineering, including cardiovascular tissues, has been an area of intense investigation. The
major challenge to these approaches has been the inability to vascularize and perfuse the in vitro
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engineered tissue constructs (Bursac et al., 1999; Zimmermann
et al., 2000; Papadaki et al., 2001). Engineering a tissue of
clinically relevant magnitude requires the formation of an
extensive and stable microvascular networks within the tissue.
Since most in vitro engineered tissue constructs do not contain
the intricate microvascular structures resembling those of native
tissue, the cells contained in scaffolds heavily rely on simple
diffusion for oxygenation and nutritional delivery (Zimmermann
et al., 2000). Attempts to provide oxygen and nutrients to the cells
contained in the biomaterial constructs have had varying degrees
of success. Moreover, the interaction of the cells of the host and
construct has not been well characterized. Therefore, strategies
aiming at the improvement of neovascularization of engineered
tissues are of critical importance.

The rate of diffusive transport is crucial for tissue viability,
since nutrient delivery must keep up with cellular demand.
Fortunately, diffusive transport is very fast over short distances,
and impossibly slow over distances greater than a millimeter
or so (>100 µm). Thus, there exists a distance limitation
of diffusion as transport process (Yamada et al., 1985). As
a result, for distances > 100 µm, a faster transport system
is clearly needed. The cardiovascular system provides this, at
physiological level, the coronary circulation must deliver oxygen
at a high rate to match the basal myocardial demand, which is
normally 20 times that of resting skeletal muscle. The myocardial
capillary density is very high, with the ratio of capillaries
to muscle cells approximately 1:1 (3000–5000/mm2 section).
This structural adaptation of myocardium creates a large
endothelial surface area and reduces the maximum diffusion
distance to approximately 10 µm (myocytes being 18 to 20
µm), thereby facilitating oxygen and nutrient transfer to the
myocytes (Rakusan and Korecky, 1982). This suggests that, on
the average, adjacent capillaries are separated by a single muscle
cell, consequently, this ensures that myocardial capillary density
is greater and diffusion distance becomes correspondingly
shorter.

In general, one of the major obstacles for successful
cardiovascular tissue engineering is obviously a quantitative
one (Ennett and Mooney, 2002; Jain, 2003; Levenberg et al.,
2005). The failure of several in vitro assembled avascular
myocardial tissue constructs to survive implantation into tissue
defects is not only due to the inevitable necrosis of the cells
in the interior region of the large tissue construct, but also
due to an inability to perfuse the tissue construct promptly
with vascular sprouts emanating from the host vasculature.
Therefore, based on practical experience with “free grafting
of tissues” is that cells that are more than 100 to 200 µm
from the surface of the graft will experience certain degree
of hypoxia or anoxia, and are probably not likely to survive
for more than a couple of hours after implantation into
the host. In the case of free tissue transplants, the ischemic
central region of the graft often becomes revascularized, and
the necrotic center of the graft will eventually be repopulated
with parenchymal cells that move in with the ingrowing blood
vessels (Hölzle et al., 2006; Carlson, 2007). The advent of
microvascular surgery resolved many issues that were routinely
encountered for tissue grafting, since the modus operandi

of connecting the nutrient vessel of the graft to vessels of
the host provides instantaneous revitalizing functional blood
supply, i.e., the rapid perfusion. Thus, with vascularized tissue
grafts, majority of cells of the graft survive, and the tissue
regeneration is inevitable due to the avoidance of necrotic events
(Hölzle et al., 2006; Carlson, 2007). As a result, this necessitates
the formation of appropriate in vitro three-dimensional (3-
D) plexuses of new blood vessels within the pre-implanted
biomaterial constructs through the process of in situ de
novo vasculogenesis/angiogenesis for organ tissue engineering
(Valarmathi et al., 2009).

In this study, we have exploited the developmental biology
phenomena, the cell-cell interaction and cell-matrix interaction,
and tested the hypothesis that whether functional vascularized
cardiac tissue can be generated by the interaction of adult-tissue-
derived stem cells., viz., the human induced pluripotent stem
cell-derived embryonic cardiac myocytes (hiPSC-ECMs) and
the human adipose-derived multipotent mesenchymal stem cells
(hMSCs) on a 3-D prevascularized collagen cell carrier (CCC)
scaffold.

MATERIALS AND METHODS

Priming of CCCs for Attachment and Cell
Seeding
CCCs were procured from Viscofan BioEngineering (Weinheim,
Germany) (Schmidt et al., 2011). In brief, first, each well of a cell
culture treated 24 well plate was preloaded with 250 µl of pre-
warmed (37◦C) Dulbecco’s phosphate-buffered saline (DPBS).
Next, a sterile CCC was placed onto the liquid containing wells
using a sterile forceps, avoiding entrapment of air bubbles.
Each one of those CCCs was submerged with a blunt forceps,
and incubated for 5 min at 37◦C. The DPBS was removed
and CCCs were washed twice, and were dried overnight in
an operating laminar flow hood with the lid removed or ajar.
After drying, the CCCs were attached firmly to the bottom of
the well, and was ready for cell seeding. Prior to cell seeding,
the CCCs were equilibrated by incubation with appropriate
volume of the desired pre-warmed culture medium for at least
10 min at 37◦C. Finally, the medium was removed, and the
CCCswere subjected to physical crosslinking using Stratalinker R©

UV Crosslinker 1800 (Stratagene), prior to seeding cells onto
the CCCs.

hCMVECs Culture: Plating, Maintenance,
and Subculture
Human cardiacmicrovascular endothelial cells (hCMVECs) were
purchased from Lonza (Walkersville, MD), and subcultured
according to manufacturer’s recommendations. Briefly, cells
were thawed and seeded on a fibronectin precoated T75
flasks (1 µg/cm2 or 0.5 µg/mL) and expanded using complete
microvascular endothelial cell growth medium, supplemented
with 5% fetal bovine serum (FBS), human epidermal growth
factor (hEGF), vascular endothelial growth factor (VEGF),
R3-insuling-like growth factor-1 (R3-IGF-1), human fibroblast
growth factor-beta (hFGF-β), ascorbic acid, hydrocortisone,
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gentamicin, and amphotericin-B (CloneticsTM EGMTM-2MV
BulletKitTM; Lonza).

hiPSC-ECMs Culture: Plating and
Maintenance
hiPSC-ECMs were procured from Cellular Dynamics
International (iCells; CDI, Madison, WI), and were cultured
as per the manufacturer’s recommendations. Initially, the cells
were thawed in specially prepared iCell cardiomyocyte plating
medium, and were seeded onto 0.1% (w/v) gelatin-coated
six-well tissue-culture plates at a density of 7.5 × 105 to 1.0
× 106 cells/well. Two days after plating, the plating medium
was replaced with iCell cardiomyocyte maintenance medium.
Next, the culture medium was changed with fresh medium every
other day. The cells were cultured for 2 to 7 days after the initial
thawing at 37◦C with 5% CO2 prior to re-plating.

hMSCs Culture: Plating, Maintenance, and
Subculture
hMSCs were obtained from ScienCell Research Laboratories
(Carlsbad, CA), and were expanded and maintained as per the
manufacturer’s instruction. After three passages, the attached
hMSCs were trypsinized and subjected to further purification and
characterization.

Immunophenotyping of hMSCs by
Multi-Color Flow Cytometry and
Immunofluorescence Microscopy
Qualitative analysis for a number of cell surface markers (BD
StemflowTM human MSC analysis kit) was performed on cells
that were grown in the Lab-tekTM chamber slide systemTM

(Nunc) using a Olympus BX53 fluorescence microscope system
(Olympus Corporation), and quantitative analysis of the same set
of surface markers was performed by multi-color flow cytometry
using a BDTM LSR II Flow Cytometer (Beckman, Dickinson and
Company) as described bymanufacture’s instruction (Reyes et al.,
2002; Dominici et al., 2006; Valarmathi et al., 2009).

Briefly, hMSCs were harvested by trypsinization, centrifuged
at 200 g for 5 min. The pelleted cells were washed two times
with DPBS solution, pH 7.4, and were re-suspended in
1.5% BSA (bovine serum albumin in DPBS, pH 7.4), at a
concentration of 1 × 107 cells. The re-suspended single cells
were incubated at 4◦C for 25 min with appropriate dilutions of
fluorochrome-conjugated mouse anti-human (hMSC positive
cocktail: FITC CD90/PerCP-CyTM5.5 CD105/APC CD73)
(Table 1) monoclonal antibodies for direct immunostaining.
Likewise, the cells were incubated with fluorochrome-conjugated
mouse anti-human (hMSC negative cocktail: PE CD11B/PE
CD19/PE CD34/PE CD45/PE HLA-DR) (Table 1). Appropriate

TABLE 1 | Primary antibodies used in this study.

Primary antibodies Dilutions Source Cell target

hMSCs CHARACTERIZATION MARKERS

CD11B 1:50 Beckman Dickinson Leukocytes

CD19 1:50 Beckman Dickinson Leukocytes

CD34 1:50 Beckman Dickinson Hematopoietic

CD45 1:50 Beckman Dickinson Leukocytes

CD73 1:50 Beckman Dickinson MSCs

CD90 1:50 Beckman Dickinson MSCs

CD105 1:50 Beckman Dickinson MSCs

HLA-DR 1:50 Beckman Dickinson Leukocytes

ENDOTHELIAL CELL DIFFERENTIATION MARKERS

PECAM1 1:100 Santa Cruz Biotechnology Endothelial

VWF 1:100 Santa Cruz Biotechnology Endothelial

VE-CADHERIN 1:100 Santa Cruz Biotechnology Endothelial

LECTIN 1:50 Vector Laboratories Endothelial

LAMININ 1:200 Abcam Endothelial

SMOOTH MUSCLE CELL DIFFERENTIATION MARKERS

α-SMA 1:100 Sigma-Aldrich Smooth Muscle

CARDIAC MYOCYTE DIFFERENTIATION MARKERS

CARDIAC MYOSIN HEAVY CHAIN (α/β MHC) 1:200 Abcam Cardiomyocyte

CARDIAC TROPONIN I (cTnI) 1:200 Santa Cruz Biotechnology Cardiomyocyte

N-CADHERIN 1:200 Santa Cruz Biotechnology Cardiomyocyte

CONNEXIN 45 (Cx45) 1:200 Santa Cruz Biotechnology Cardiomyocyte

CONNEXIN 43 (Cx43) 1:200 Santa Cruz Biotechnology Cardiomyocyte

DESMIN 1:200 Abcam Cardiomyocyte

GATA4 1:200 Santa Cruz Biotechnology Cardiomyocyte

BNP 1:200 Santa Cruz Biotechnology Cardiomyocyte
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fluorochrome-labeled mouse IgGs antibodies served as the
isotype controls for hMSC positive and negative cocktails.
The stained cells were washed two times with DPBS solution,
and the cells were fixed in ice-cold 0.5% paraformaldehyde
(PFA) and stored in the dark at 4◦C until acquired in flow
cytometry. Finally, the acquired raw data were analyzed using
BD FACSDiva, version 8 software.

Enrichment of hMSCs by
Magnetic-Activated Cell Sorting (MACS)
Additional purification and enrichment of the cultured
hMSCs were performed as per our previously published
method (Valarmathi et al., 2010), using an autoMACSTM

Pro Separator (Miltenyi Biotech). The resulting enriched
CD45−/CD34−/CD90+ fractions were subcultured and
expanded further (Valarmathi et al., 2010).

Labeling of hMSCs with Red or Green
Fluorescent Protein (RFP or GFP) for Cell
Lineage Tracing
Lentiviral Vectors Construction and Lentivirus

Assembly
Lentiviral vectors construction and lentivirus production were
carried out as per our previously published protocol (Valarmathi
et al., 2011), using pWPI-RFP or pWPT-GFP, together with
pCMVR8.74 (packaging plasmid) and pMD2.G (envelope
plasmid). And finally, the viral titre was ascertained by standard
HeLa titre procedure using either RFP or GFP as a marker.

hMSCs Lentiviral Transduction
Lentiviral transduction of hMSCs (0.2× 106 cells/well) using the
desired number of viral particles (MOI = 5) were performed
precisely using the previously published protocol (Valarmathi
et al., 2011), and the transduction efficiency was estimated using
single color FACS, and was greater than 95%.

Generation of Vascularized CCCs
Seeding of hCMVECs onto CCCs
Next, subcultured and expanded hCMVECs were plated onto the
prepared and fibronectin (1 µg/cm2 or 0.5 µg/mL) precoated
CCCs at a density of 0.5 × 106 cells/30 mm CCC and cultured
in complete microvascular endothelial cell growth medium
(CloneticsTM EGMTM-2MV BulletKitTM; Lonza) for either 7 or 14
days.

Seeding of hCMVECs/hMSCs onto CCCs
In addition, hCMVECs were co-cultured with hMSCs (0.5× 106

of hCMVECs and 0.3× 106 of hMSCs/30mmCCC) and cultured
in complete microvascular endothelial cell growth medium
(CloneticsTM EGMTM-2MV BulletKitTM; Lonza) for either 7 or 14
days.

The cultures (hCMVECs or hCMVECs/hMSCs) were
terminated at these regular intervals (day 7 or day 14),
and the collected samples were subjected to RT-qPCR,
immunofluorescence, ultrastructural, and biochemical analyses.

Functional Characterization of
Vascularized CCCs by Dil-Ac-LDL Uptake
Assay
Functional characterization of endothelial cells (i.e., CCCs
seeded with either hCMVECs or hCMVECs/hMSCs and cultured
under vasculogenic differentiation conditions for 7 or 14 days)
were carried out using Dil-conjugated acetylated low-density
lipoproteins (Dil-Ac-LDL staining kit, Biomedical Technologies,
Inc.), as described previously (Voyta et al., 1984). Subsequently,
immunostaining of the CCCs with VE-cadherin antibody (1:200
in staining buffer) was also performed to demarcate the
endothelial cells (as described in immunofluorescence staining
section below). DAPI (100 ng/ml) was used to counterstain the
nuclei. The images of Dil- and VE-cadherin-labeled endothelial
cells were captured using an Olympus BX53 fluorescence
microscope system.

Scanning Electron Microscopic (SEM)
Analysis of Vascularized CCCs
To depict the nature and structural organization of the
vascular component, the Day 14 CCC samples (i.e., the CCCs
that were cultured in vasculogenic culture conditions, viz.,
hCMVECs/hMSCs) were processed for SEM by means of the
O-GTA-O-GTA-O method (Hanaichi et al., 1986).

Generation of Vascularized Cardiac Patch
Seeding hiPSC-ECMs onto CCCs
hiPSC-ECMs were quantified using a hemocytometer and plated
at a density of 1 × 106 cells/well of a 24 well-bottom culture
dish that was pre-attached with individual CCCs, incubated in a
humidified atmosphere of 5%CO2 at 37

◦C for 48 h, and observed
under inverted phase contrast microscope (Olympus IX 73) for
spontaneous beating and rhythmic contractions. These hiPSC-
ECMs were cultured in complete myocyte medium (DMEMwith
8% horse serum, HS, and 5% newborn calf serum, NCS) for
further 7 or 14 days.

Seeding hiPSC-ECMs and hMSCs onto CCCs
The purified and enriched population of hMSCs (CD90+) (GFP
unlabeled or GFP labeled) were plated onto the surface of the
previously produced hiPSC-ECMs CCC’s wells (after 48 h) at a
density of 0.4 × 105 cells/well, and were cultured in complete
myogenic medium for 7 or 14 days.

The cultures (hiPSC-ECMs only or hiPSC-ECMs/hMSCs-
GFP unlabeled or hiPSC-ECMs/hMSCs-GFP labeled) were
terminated at these regular intervals (day 7 or day 14).
And the collected samples were subjected to RT-qPCR,
immunofluorescence, ultrastructural, calcium transit, as well as
pharmacological analyses.

Seeding hiPSC-ECMs and hMSCs onto

Prevascularized CCCs
The hiPSC-ECMs (1 × 106 cells/well) and hMSCs (0.4 × 105

cells/well) were simultaneously added on top of prevascularized
CCCs that were cultured in vasculogenic medium for 7 days,
i.e., CCCs that were created by the combination co-culture
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of hCMVECs/hMSCs only. And cultured further in complete
myogenic medium for 7 or 14 days.

Finally, the vascularized cardiac CCCs (cardiac patch), now
containing all three categories of cells, viz., hCMVECs, hiPSC-
ECMs, and hMSCs were terminated at these regular intervals
(day 7 or day 14), and the collected samples were subjected to
immunofluorescence staining and confocal microscopic analysis
to validate the simultaneous presence of both vascular and
muscular components in these CCC cardiac patches.

hiPSC-ECMs and hMSCs CCCs
Contractility and Calcium Flux Assays
Loading of Cells with Calcium Orange or Fluo-4

Calcium-indicators
Loading of co-differentiating cells (CCC cultures—hiPSC-ECMs
only or hMSCs-GFP only or hiPSC-ECMs/hMSCs-GFP labeled)
with Fluo-4 or Calcium Orange calcium-indicator was carried
out as described previously (Valarmathi et al., 2011). The live
cell imaging using the spinning disk confocal microscopy was
employed to record the changes in the intracellular Ca2+ flux of
these labeled cells.

Live Cell Imaging Using Spinning Disk Confocal

Microscope
Ultimately, changes in intracellular calcium flux (all types of
cells in the CCCs) were examined as elaborated previously
(Valarmathi et al., 2011), and by using the AQM Advance-6
software.

Transmission Electron Microscopic (TEM)
Analysis of CCCs
To elucidate the ultrastructural characteristics of co-
differentiating cells, day 14 CCC samples (i.e., CCCs that
were seeded with cells, hMSCs only or hiPSC-ECMs only or
hMSCs/hiPSC-ECMs or hCMVECs/hMSCs, and cultured using
appropriate media) were processed for TEM analysis as described
elsewhere (Valarmathi et al., 2010).

Reverse Transcription-Quantitative
Real-Time Polymerase Chain Reaction
(RT-qPCR)
Total cellular RNA isolation from three independent CCC
cultures of various combinations (vasculogenic: hCMVECs
culture, hCMVECs/hMSCs co-culture; cardiomyogenic: hiPSC-
ECMs culture, hiPSC-ECMs/hMSCs co-culture) that were
maintained either in vasculogenic medium or myogenic medium
were done using TRIzol R© Plus RNA purification kit (Invitrogen)
as per manufacturer’s instructions.

The RNA integrity (RIN) of the extracted samples was
analyzed on the Agilent 2100 Bioanalyzer system using the
Agilent RNA 6000 nano kit (Agilent Technologies, Inc.) following
the manufacturer’s recommendations. The reverse transcriptase
(RT) reaction was executed using 250 ng of total RNA in
a final reaction volume of 20 µl using an iScriptTM Reverse
Transcription Supermix for RT-qPCR kit (Bio-Rad Laboratories,
Inc.) according to the manufacturer’s protocols.

The cardiomyogenic gene-specific primers for MYH6
(myosin heavy chain 6), MYH7 (myosin heavy chain 7),
ACTC1 (actin, alpha, cardiac muscle 1), TNNI3 (troponin
I3, cardiac type), GATA4 (GATA binding protein 4), NPPA
(natriuretic peptide A), NPPB (natriuretic peptide B), and
GJA1 (gap junction protein, alpha 1); and the vasculogenic
gene-associated primers for PECAM1 (platelet and endothelial
cell adhesion molecule 1), KDR (kinase insert domain receptor,
a type III receptor tyrosine kinase), TIE1 (tyrosine kinase
with immunoglobulin-like and EGF-like domains 1), TEK
(TEK tyrosine kinase, endothelial), and VWF (von Willebrand
factor); as well as the endogenous normalizer reference genes,
GAPDH (glyceraldehyde-3-phosphate dehydrogenase), β-
ACTIN (cytoplasmic beta-actin), G6PD (glucose-6-phosphate
dehydrogenase, and RPLP0 (ribosomal protein lateral stalk
subunit P0) were designed using web based software Primer3
(Rosen and Skaletsky, 2000), synthesized commercially
(Integrated DNA Technologies, Inc.), and evaluated for an
uniform annealing temperature of 58◦C, for all the primer pairs,
as shown in Table 2.

Real-time PCR conditions were optimized as described
previously (Valarmathi et al., 2008a,b; Willems et al., 2008;
Bustin et al., 2009). All RT-qPCRs were performed with
SsoAdvancedTM SYBR R© Green Supermix in a CFX96 TouchTM

Real-Time PCR Detection System (Bio-Rad Laboratories,
Inc.), and CT (threshold cycle) values were calculated
using the CFX ManagerTM software, Security Edition. The
calibrator control included hCMVECs day 0 sample for
vasculogenic cultures and hiPSC-ECMs day 0 sample for
cardiomyogenic cultures, and the target gene expression was
normalized by three non-regulated reference gene expressions,
viz., GAPDH, β-ACTIN, and either G6PD or RPLP0. The
expression ratio of genes was determined by applying the
mathematical model previously described by Pfaffl et al.
(2002).

Immunofluorescence Staining and
Confocal Microscopy
CCC culture (vasculogenic: hCMVECs culture,
hCMVECs/hMSCs co-culture; cardiomyogenic: hiPSC-ECMs
culture; vascularized cardiac patch: hCMVECs/hiPSC-
ECMs/hMSCs co-culture) samples were collected at day 7
or day14, and processed according to previously described
protocols (Valarmathi et al., 2011), for immunostaining
and phalloidin staining. The primary antibodies that
were used in this study, shown in Table 1. Rhodamine
labeled Ulex Europaeus Agglutinin I (1:50 in 10 mM N-
2-hydroxyethylpiperazine-n’-2-ethanesulfonic acid, pH
7.5; 0.15 M NaCl; lectin, Vector Labs) was used to detect
endothelial cells. DAPI (4, 6-diamidino-2-phenylindole,
100 ng/ml; Sigma-Aldrich) was used to counterstain the
nuclei. Images of the stained CCCs were visualized using
a confocal (Zeiss LSM 510 Meta CSLM) or a fluorescence
(Olympus BX53) microscopic system. Negative controls
for staining included only secondary antibodies (data not
shown).
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TABLE 2 | RT-qPCR primer sequences used in this study.

Genes Forward primer Reverse primer Product

length (bp)

Annealing

temperature (◦C)

GenBank

accession No.

CARDIOMYOGENIC SPECIFIC GENES

MYH6 5′–AAGACTGTGAACACCAAGCG–3′ 5′–TGTTCGCATTGGCATTGTCC–3′ 91 58 NM_002471.3

MYH7 5′-ACATGCTGCTGATCACCAAC-3′ 5′-AAGCGTTATCAGTGGCCATG-3′ 111 58 NM_000257.2

ACTC1 5′–ATGTCGCCCTGGATTTTGAG–3′ 5′–AGCGCTCATTGCCAATAGTG–3′ 111 58 NM_005159.4

TNNI3 5′-CGACATAGAGGCAAAAGTCACC-3′ 5′-GCTTAAACTTGCCTCGAAGGTC-3′ 86 58 NM_000363.4

GATA4 5′-TGTCAACTGTGGGGCTATGTC-3′ 5′-TGCCGTTCATCTTGTGGTAGAG-3′ 98 58 NM_002052.3

NPPA 5′-GTGAGCTTCCTCCTTTTACTGG-3′ 5′-AATCCATCAGGTCTGCGTTG-3′ 94 58 NM_006172.3

NPPB 5′-ACCGCAAAATGGTCCTCTACAC-3′ 5′-TCCATCTTCCTCCCAAAGCAG-3′ 85 58 NM_002521.2

GJA1 5′-TGTGGACATGCACTTGAAGC-3′ 5′-TGATGTAGGTTCGCAGCAAC-3′ 104 58 NM_000165.3

VASCULOGENIC SPECIFIC GENES

PECAM1 5′-TGGCAACTACACGTGCAAAG-3′ 5′-AAGATTCCAGTTCGGGCTTG-3′ 101 58 NM_000442.4

KDR 5′-TGGCCAAGTGATTGAAGCAG-3′ 5′-ATGCTCACTGTGTGTTGCTC-3′ 103 58 NM_002253.2

TIE1 5′-ACGCAGCCATCAAAATGCTG-3′ 5′-TGCCCCAATTTGCACAGAAC-3′ 91 58 NM_005424.4

TEK 5′-AGAATGCATTTGCCCTCCTG-3′ 5′-AAGTTCTGCCAAACGTGTGC-3′ 77 58 NM_000459.3

VWF 5′-AGAAAGCCCATTTGCTGAGC-3′ 5′-AAGTATCGCACAGCAAAGCC-3′ 94 58 NM_000552.3

REFERENCE GENES

GAPDH 5′-AATTCCATGGCACCGTCAAG-3′ 5′-ATCGCCCCACTTGATTTTGG-3′ 104 58 NM_002046.4

β-ACTIN 5′-TCGTGCGTGACATTAAGGAG-3′ 5′-TTGCCAATGGTGATGACCTG-3′ 133 58 M10277.1

G6PD 5′-TCATCATCATGGGTGCATCG-3′ 5′-AAGGTGTTTTCGGGCAGAAG-3′ 97 58 NM_000402.4

RPLP0 5′–AGAACACCATGATGCGCAAG–3′ 5′–AACACAAAGCCCACATTCCC–3′ 100 58 NM_001002.3

Pharmacological Assay of Vascularized
Cardiac Patch: Live Cell Imaging with
Spinning Disk Confocal Microscopy
To assess the in vitro functional competence of the generated
vascularized cardiac patch, CCC constructs were exposed to
various cardioactive pharmacological agents (0.1 to 1 µM), such
as isoprenaline, clenbuterol, and diltiazem, either individually
or in sequential combination. Calcium transients were recorded
by live cell imaging using spinning disk confocal microscopy
as described above, and the cell’s chronotropic and inotropic
responses were analyzed.

Statistical Analysis
The RT-qPCR experimental data were represented as mean ±

standard error of the mean (mean ± SEM). The differences in
expression profile (cardiomyogenic and vasculogenic markers)
between control (day 0) and treated samples (day 7 or 14)
were determined in-group means for statistical significance by
applying ‘Pair Wise Fixed Reallocation Randomization Test’ using

Relative Expression Software Tool—384 (REST-384©- version
2) (Pfaffl et al., 2002). In all cases, p < 0.05 were considered
statistically significant.

RESULTS

Expression of Vasculogenic Markers in
Prevascularized CCCs
hCMVECs seeded onto fibronectin coated CCCs, and cultured
under vasculogenic culture conditions for 14 days generated

limited capillary networks. Immunostaining demonstrated these
structural organizations consisted of cells that were naturally
positive for a set of endothelium-associated markers, such as
PECAM1, VE-Cadherin, VWF, and lectin (Figures 1A–J). This
indicated that CCCs were able to provide appropriate substratum
for the hCMVECs’ adhesion, proliferation, and differentiation.
These cells formed extensive sheets of cohesive polyhedral
type of cells composed of mature endothelial cells, and were
arranged in cobble-stone fashion (Figures 1A–E). Amidst these
monolayered endothelium were seen nascent capillary structures
with central lumens (arrow, Figures 1A–E). In addition, these
hCMVECs were structured into a cohesive array of endothelial
cells, and were appeared to be retracted from the substratum
and reorganized into a broad flat ribbon-like configuration
reminiscent of attempting vessel formation (Figures 1F–J). These
aligned hCMVECs, transforming into column-like structure
were evocative of earliest stages of vasculogenesis.

On the contrary, a passage 3 pooled and almost pure
population of enriched hMSCs, which were devoid of any
hematopoietic stem and/or progenitor cells as well as mature
endothelial cells (by FACS and MACS) when co-seeded with
hCMVECs (i.e., hCMVECs/hMSCs) onto fibronectin precoated
CCCs, and cultured under vasculogenic culture conditions for 14
days generated extensive plexuses of capillaries. Immunostaining
and fluorescence microscopic analysis demonstrated that these
micro-vascular structures were positive for a variety of markers
that were not only associated with endothelial cells but also with
the smooth muscle cells, such as PECAM1, VWF, α-SMA, and
laminin (Figures 2A–J). By cellular adhesion and condensation
these cells formed sheet of mono- and multi-layered cells.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 January 2017 | Volume 5 | Article 2

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Valarmathi et al. Functional Vascularized Cardiac Muscle Construct

FIGURE 1 | Expression pattern of various endothelial cell markers in CCCs (hCMVECs culture) by immunofluorescence microscopy. Localization of key

endothelial cell phenotypic markers of day 14 vasculogenic hCMVECs CCC cultures demonstrated the expression of PECAM1 (A,C,E), VE-cadherin (F,H,J), Lectin

(B,C,G,H), and VWF (D,E,I,J). Dual immunostainings of vasculogenic CCC cultures revealed areas of adherent sheets of polyhedral type of cells composed of mature

endothelial cells, and were arranged in cobble-stone fashion (A–J). These cells formed occasional nascent capillary structures with its associated lumens (arrow

heads, A–E). In addition, these cells were organized into a cohesive array of endothelial cells, and were appeared to be retracted from the substratum and reorganized

into a broad flat ribbon-like configuration (F–J). These aligned and reoriented column of vascular cells were reminiscent of an in vivo microvessel morphogenesis

(F–J). Cells were also stained for nuclei (blue, DAPI). Merged images (A–J). (A–J, scale bar 100 µm).
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FIGURE 2 | Expression pattern of various endothelial and smooth muscle cell markers in CCCs (hCMVECs/hMSCs co-culture) by

immunofluorescence microscopy. Localization of key vascular cell phenotypic markers of day 14 vasculogenic hCMVECs/hMSCs CCC co-cultures demonstrated

the expression of PECAM1 (A,C,E), Laminin (F,H,J), α-SMA (B,C,G,H), and VWF (D,E,I,J). Dual immunostainings of vasculogenic CCC co-cultures revealed alternate

layers of elongated (top layer) and flattened cells (bottom layer) composed of varying degrees of mature endothelial and smooth muscle cells (A–J). These cells were

self-organized into remarkable plexuses of nascent microvascular structures composed of mature endothelial and/or smooth muscle cells. In addition, the linear and

branching vessels were composed of laminin positive sheath-like structure covering these mixed population of vascular cells, evoking the emergence of outer thick

intact basement membrane (F,H,J). These capillary structures also revealed narrow and translucent central lumen. Cells were also stained for nuclei (blue, DAPI).

Merged images (A–J). (A–J, scale bar 100 µm).
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Extensive network of intertwined microvessels were seen on top
of the monolayered endothelium. Beneath those transformed
plexuses of the linear and arborizing vascular structures were
the monolayer of cohesive endothelium, and it was apparent
that there exist a continuum of transition between these two
morphological layers (Figures 2A–J). The linear and branching
endothelium lined vessels were surrounded by hMSC-derived α-
SMA positive cells, reminiscent of the process of in situ de novo
vasculogenesis (Figures 2B,C,G,H). And these vessels were also
positive for the protein, laminin, indicating the presence of intact
basement membrane material (Figures 2F,H,J).

Furthermore, the hCMVECs/hMSCs co-cultures
demonstrated thin and delicately intertwined microvascular
structures expressing both endothelial and smooth muscle cell
markers, VWF and α-SMA, respectively, and revealed apparent
areas of co-localizations (Figures 3A–C). Apart from this day
14 culture also displayed larger caliber vascular structures,
such as medium sized muscular arteries (Figures 3D–O). The
morphogenesis of these medium-sized muscular arteries were
evident, initially, the α-SMA positive cells were able to migrate
toward the linear array of endothelium lined tubular structures,
and were able to align in a perpendicular fashion to the long
axis of these parallelly arranged tubular structure or solid
cords of coalesced cells (Figures 3D–F). Further progressive
morphogenesis revealed that these α-SMA positive cells were
able to wrap around these tubular structure in a concentric
fashion (Figures 3G–I), and formed an outer continuous sleeve-
like structure (Figures 3J–O). These vessels revealed strong
expression of mature and terminally differentiated endothelial
and smooth muscle cell markers, viz., VWF and α-SMA,
respectively. Hence, suggestive of mature vascular phenotype.
These snapshots may be reminiscent of many aspects of in vivo
morphogenesis of medium- and/or large-sized muscular arteries.

Evaluation of CCC Vascular Structures for
LDL Uptake
A functional approach was undertaken to characterize
the phenotypic nature of these preformed vessels, by
measuring the uptake of the fluorescent compound, Dil-
Ac-LDL. Immunofluorescence analysis of Dil-Ac-LDL stained
prevascularized CCCs showed strong uptake of LDL from the
culture medium. The sheets and clusters of endothelial cells
(Figures 4A–F) as well as endothelium lined tubular structures
of various calibers (Figures 4G–L), were intensely positive for
the staining, indicating the high metabolism of the protein,
Ac-LDL, in these prevascularized CCCs. Fluorescence signals
were largely punctate and were perinuclear in arrangement. In
hCMVECs/hMSCs CCCs, the hMSC-derived smooth muscle
cells were discriminated from hCMVECs by their lack of
detectable Dil fluorescence signal, and their presence can
be easily detected as DAPI-stained surrounding bare nuclei
(Figures 4G–L). The Ac-LDL update and its metabolism
were apparent in day 7 (hCMVECs culture, Figures 4A–C;
hCMVECs/hMSCs co-culture, Figures 4G–I) and day 14
(hCMVECs culture, Figures 4D–F; hCMVECs/hMSCs co-
culture, Figures 4J–L), with an enhanced level of uptake seen

at day 14, visually. Figures 4J–L were showing typical medium-
sized muscular tube-like vessels that contain obvious bright-red
stained solid cord of endothelial cells covering presumably the
interior surface.

SEM Analysis of Prevascularized CCCs
SEM analysis of the day 14 hCMVECs/hMSCs based
prevascularized CCCs revealed typical transverse capillary
structures lined by two to three differentiated endothelial
cells and its associated lumens (white asterisk, Figure 5A). In
addition, these differentiating cells showed foci of flattened cells
arranged in cobble-stone fashion and were in juxtaposition
with foci of cellular retraction and transformation (Figure 5B).
Furthermore, areas of elongated and convoluted multilayered
tube-like structures with attached hMSC-derived smooth
muscle cell were seen (black asterisks, Figures 5C,D). It was
clearly evident that these smooth muscle cells were attempting
to wrap around these tubular structures (black asterisks,
Figure 5D). These endothelium and smooth muscle layered
tubular structures revealed emerging interconnected conduits.

Transmission Electron Microscopic (TEM)
Analysis of Prevascularized CCCs
hCMVEC-derived continuous capillary with the complete
endothelium was seen in Figure 6A. The juxtaposed endothelial
cell were overlapping. They were in contact and tethered
to each other by both tight and adhering junctions as
seen in (inserts, Figures 6C,D). A barrier that may impedes
intercellular transport. Numerous caveolae were visible close
to the cell surfaces and immediately beneath it, and small
transport vesicles were also seen in abundant in the cytoplasm
of these endothelial cells, as shown in (Figure 6B). The
complete endothelial part of the capillary was surrounded by a
continuous basal lamina, embracing the endothelium with its
associated cells. In addition, numerous endothelial cell-specific
storage vesicles and the electron-dense bodies were seen in
Figure 6A.

Expression of Cardiomyogenic Markers in
hiPSC-ECMs and hiPSC-ECMs/hMSCs
Cultures
Characterization of hiPSC-ECMs CCCs
Immunostaining and confocal microscopic analysis of
differentiating cells using a set of cardiac myocyte differentiation
markers, especially, the cardiac-related structural and functional
proteins were carried out. The hiPSC-ECMs containing
CCCs revealed that these cells were positive for a battery of
myocyte specific markers, such as desmin, cardiac troponin I
(cTnI), cardiac myosin heavy chain (α/β-MHC), connexin 45
(Cx45), GATA-binding protein 4 (Gata4), and brain natriuretic
peptide (BNP). Typical staining patterns expressed by cell
in hiPSC-ECMs only cultures were shown in Figures 7A–F).
Analysis of day 14 hiPSC-ECMs CCCs displayed multiple
foci of elongated strap-like cells with periodic cross-striations
and/or polyhedral type of cells, and by means of cellular
condensation these myocytes were organized into multilayered
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FIGURE 3 | Characterization of hCMVECs/hMSCs co-culture derived in situ de novo vascular structures by immunofluorescence microscopy. Day 14

vasculogenic hCMVECs/hMSCs CCC co-cultures generated not only extensive plexuses of capillary structures lined simply by endothelial cells but also vascular

structures resembling that of small to medium sized muscular arteries (A–O). These thin and delicately intertwined microvascular structures expressed both

endothelial and smooth muscle cell markers, VWF and α-SMA, respectively, and revealed apparent areas of co-localizations (A–C). The PECAM1 positive endothelial

cells formed a linear solid cord-like structure, and were uniformly surrounded by the α-SMA positive smooth muscle cells, and these α- SMA positive cells were

oriented in a direction that was perpendicular to the direction of linearly assembled endothelial cells (D–F). Further morphogenesis of these endothelium lined tubular

structures illustrated the dynamic process of evolving tunica media, the hMSC-derived α-SMA positive cells were wrapping around the entire circumference of these

endothelial outgrowth (G–I). Subsequent stages of morphogenesis revealed emergence of greater caliber vessels, having sleeve-like outer smooth muscle cells

encasing the endothelium lined tubular structure (J–O). Merged images (A–O). (A–O, scale bar 100 µm).
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FIGURE 4 | Functional characterization of prevascularized CCCs by Dil-Ac-LDL uptake assay. hCMVECs cultured or hCMVECs/hMSCs co-cultured onto

CCCs in vasculogenic culture conditions were incubated with 10 µg/ml of Dil-Ac-LDL for 4 to 6 h. Fluorescence microscopic analysis of hCMVECs only CCCs revealed

abundant punctate perinuclear bright red fluorescence of differentiated and matured endothelial cells (day 7, B,C; day 14, E,F). These labeled vascular cells were

organized into a delicate network of capillaries (A–C) or into a discrete cluster (D–F). Similarly, fluorescence microscopic analysis of hCMVECs/hMSCs co-cultured

CCCs demonstrated typical abundant punctate perinuclear bright red fluorescence of the differentiated and matured endothelial cells (day 7, H,I; day 14, K,L). These

Dil-labeled endothelial cells were structured into solid cohesive columns of VE-cadherin positive cells, mimicking functionally competent larger caliber vessels (J–L).

Cells were also stained for nuclei (blue, DAPI) and endothelial cells (green, VE-cadherin, A,C,D,F,G,I, J,L). Merged Images (A–L). (A–L, scale bar 100 µm).

functional syncytium. Majority of the cells exhibited uniform
alignment, and were in registry. The myocytes demonstrated
the presence of evolving sarcomeric units that were positive for
various cytoskeletal filamental proteins, myosin and desmin
(Figures 7A,C), as well as positive for the gap junction protein,
connexon 45 (Figure 7D), suggestive of embryonic cardiac
myocyte phenotype.

Cellular Morphology and Contractility

(hiPSC-ECMs/GFP-hMSCs CCCs)
Within 24 h, the GFP-hMSCs, which were in co-culture with
hiPSC-ECMs showed cellular morphological changes, and were
able to couple with neighboring hiPSC-ECMs. The mechanically
coupled cells, viz., GFP-hMSCs and hiPSC-ECMs were able
to undergo synchronized cellular contractions. Observation of
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FIGURE 5 | Scanning electron microscopic (SEM) analysis of prevascularized CCCs. SEM analysis of day 14 vasculogenic hCMVECs/hMSCs CCC cultures

showed the typical transverse capillary-like structure with its central lumen (white, asterisks, A), composed of flattened layer of differentiated endothelial cells. In

addition, these differentiated cells revealed foci of flattened cells (cobble-stone appearance) in juxtaposition with foci of evolving cellular retraction and transformation

(B). Besides, presence of smooth-walled tube-like structures with its attached smooth muscle cells were evident (black arrows, C,D). Multiple smooth muscle-like

cells were obviously in the process of wrapping around these tube-like structures (black asterisks, D). Some of those cylindrical structures revealed the presence of

evolving patent lumens or cavernous spaces (white asterisks, A). (A,C,D, scale bar 10 µm; B, scale bar 100 µm).

day 14 culture demonstrated that GFP-hMSCs were not only
mechanically coupled to the neighboring hiPSC-ECMs but also
revealed morphological deformation, in essence exerted by the
spontaneously contracting juxtaposed and coupled hiPSC-ECMs
(Figures 8A–F). In this process of cyclical stretching and/or
deformation GFP-hMSCs expressed phenotypic changes, and
resembling that of a prolate ellipsoid (Figure 8A). Whereas, the
control CCCs cultures that consisted solely hMSCs in the same
culture medium conditions expressed the cellular phenotype of
an oblate spheroid. hMSCs that were in non-co-culture situations
(negative controls) and/or not in association with hiPSC-ECMs
(in co-culture) displayed random non-recurring changes that
were related in general with common cellular migration and
movements.

Cellular Calcium Flux (hiPSC-ECMs/GFP-hMSCs

CCCs)
To study the cellular calcium flux, GFP-hMSCs were co-cultured
with spontaneously and rhythmically beating hiPSC-ECMs. GFP-
hMSCs, which were mechanically associated with hiPSC-ECMs
demonstrated intracellular calcium spikes typified by repeated
increase of the cytosolic Ca2+ concentration and a subsequent
removal of Ca2+ as depicted (Figures 9A,B). When imaged
over a period of 5 min or greater, the GFP-hMSC, which was

mechanically linked to an electrically paced juxtaposed hiPSC-
ECM (Figures 9C,D) revealed calcium oscillations/spikes, which
were essentially similar in pattern and frequency to that of the
hiPSC-ECM (Figures 4E,F). When two individual hMSCs, which
were not directly in contact with each other, but were coupled
with the same individual electrically paced hiPSC-ECM, the
pattern and frequency of those two hMSCs’ intracellular calcium
spikes were virtually comparable (Figures 9A,B). The temporal
and spatial pattern of the intracellular calcium oscillations in
these two discrete hMSCs were in essence similar to that observed
in the case of hiPSC-ECM (Figures 9E,F). In addition, the control
hMSCs, which were in non-co-cultured conditions revealed
negligible intracellular calcium oscillations (Figures 9B,D,F, the
bottom red line).

Ultrastructural Morphology of CCCs
(hMSCs, hiPSC-ECMs, and
hiPSC-ECMs/hMSCs)
TEM analysis of an hMSCs cultured on CCCs in myocyte
medium appeared to be characteristic of an immature and
active cells (Figure 10A). These cells revealed relatively large
centrally positioned nucleus with extensively opened out
chromatin and varied number of nucleoli. In addition, there
were numerous randomly positioned mitochondria as well as
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FIGURE 6 | Transmission electron microscopic (TEM) analysis of prevascularized CCCs. TEM analysis of day 14 vasculogenic hCMVECs/hMSCs CCC

cultures revealed an elongated vessel-like structure composed of endothelial cells, which were arranged on either side of a linear slit-like space (black arrows, A).

Randomly oriented bundles of collagen fibrils were evident on either side of this elongated capillary. Note the most characteristic feature of endothelial cell, small

membrane-bound vesicles, resembled a little flask, or caveola, and occupied up to a quarter of the endothelial cells (B, insert). The interdigitating endothelial cells

showed the junctional complex (C, lower magnification). The typical adherent junction could be visualized between two overlapping endothelial cell processes (D,

higher magnification, insert). (A, scale bar 2 µm; B–D, scale bar 500 nm).

network of endoplasmic reticulum. The marginal cytoplasm
contained discrete bundles of actin stress fibers (Figure 10A).
When hiPSC-ECMs cultured on CCCs under similar culture
conditions demonstrated active euchromatic nucleus. The
cytoplasm revealed myofibrils, perinuclear early sarcomeric
units, Z-discs, and few mitochondria interposed between the
myofibrils along with glycogen particles (Figure 10B).

On the other hand, the hiPSCs/hMSCs containing CCCs
showed characteristic ultrastructural morphology of co-
differentiating cardiac myocytes. Majority of cells showed
centrally positioned oval to elongated nucleus and perinuclear
cytoplasm consisting of evolving myofibrillar organization
with prominent sarcomeres. In some cases, the myofibrils
were stretched through the entire length of the cells, with
scattered pleomorphic mitochondria and tubules of sarcoplasmic
reticulum. These mitochondria exhibited densely packed cristae,
and few of them showed inter myofibrillar predisposition.
Glycogen particles were also noticeable and were widespread
throughout the remainder of the cell. The energy storing, energy

releasing, and energy recapturing structures and organelles,
such as mitochondria and glycogen granules, were obviously
visible and abutting the myofibrillar organization, where
the energy was utilized for contraction. In addition, cross-
banded pattern apparently seen in the cytoplasm reflected
the arrangement, in register, of the myofibrils. And the
banded pattern of the myofibrils reflected the arrangement of
myofilaments. The intensely stained A-bands (A—anisotropic),
due to myosin filaments, and the less intensely stained I-bands
(I—isotropic), composed of actin filaments, were visualized.
These myocytes were appeared to be fused with their adjacent
hMSCs, with imperceptible demarcation of their cellular margins
(Figures 10C,E,F).

Occasional developing myocytes illustrated typical
imperfections of the myofibrillar organization, characterized by
discontinuous and/or widened Z discs, indistinct H zones, free
floating myosin filaments, as well as large number of glycogen
granules; apparently mimicking like a specialized sino-atrial type
of cells (Figure 10D).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 January 2017 | Volume 5 | Article 2

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Valarmathi et al. Functional Vascularized Cardiac Muscle Construct

FIGURE 7 | Expression pattern of various cardiomyogenic markers in CCCs (hiPSC-ECMs culture) by confocal scanning laser microscopy. Localization

of key cardiac myocyte phenotypic markers of day 14 hiPSC-ECMs CCC cultures in myocyte maintenance medium (maintenance medium, iCell) demonstrated the

expression of cardiac specific structural, contractile, and functional proteins: muscle-specific intermediate filament, desmin (A), cardiac troponin, cTnI (B), cardiac

myosin heavy chains, α/β-MHC (C), gap junction proteins, connexon, Cx45 (D), transcription factor, GATA4 (E), and peptide hormone, BNP (F). Immunostaining of

hiPSC-ECMs CCC cultures in myocyte medium showed foci of typical elongated strap-like cells with periodic cross-striations, and by means of cellular condensation

these myocytes were organized into multilayered functional syncytium (A–F). In some foci, these myocytes were aligned and overlapping with each other in an orderly

manner (A–F). Nuclei of these cells were large and either oval or round in appearance, and were centrally positioned. Cells were also stained for nuclei (blue, DAPI).

Merged images (A–F). (A–F, scale bar 100 µm).

mRNA Analysis of CCCs for Vasculogenic
and Cardiomyogenic Markers
hCMVECs cultured on CCCs in vasculogenic medium
constitutively expressed mRNA transcripts coding for significant
vasculogenic markers (Figures 11A,B). The PECAM1, KDR,
TIE1, TEK, and VWF showed initial upregulation around
day 7 followed by sustained down regulation around day 14
(Figure 11A). On the other hand, when hCMVECs/hMSCs
co-cultured on CCCs in vasculogenic medium, the transcription
level of PECAM1, KDR, TIE1, TEK, and VWF depicted an initial
slight down regulation around day 7 followed by progressive
down regulation around day 14 (Figure 11B). The KDR and
TIE1 showed a remarkable level of down regulation during
day 14.

hiPSC-ECMs cultured in myogenic culture conditions
revealed constitutive expression of cardiomyogenic markers
(Figures 11C,D). The structural and contractile filamental
associated genes, MYH6 and MYH7, showed initial down
regulation around day 7 with concurrent progressive gradual
downregulation of these transcripts over the observed time
period, around 14 days (Figure 11C). Whereas, the other
filamental genes, ACTC1 and TNNI3 showed initial upregulation
followed by sustained down regulation of their transcripts
(Figure 11C). Besides, in hiPSC-ECMs cultures, the transcript
levels of non-filamental associated genes, GATA4, NPPA, NPPB,
and GJA1 demonstrated an initial upregulation around day 7,

with a noticeable kinetics of gradual downregulation of these
transcripts over the successive experimental time point, i.e.,
around day 14 (Figure 11D).

In contrast, the hiPSC-ECMs/hMSCs that were co-cultured in
myogenic culture conditions revealed subtle differences in their
pattern of expression, especially the structural and contractile
filamental genes. hiPSC-ECMs/hMSCs co-cultured in myogenic
medium expressed the cardiomyocyte differentiation related
marker transcripts consistently. The structural and contractile
filamental associated genes, MYH6, MYH7, and ACTC1 showed
initial downregulation around day 7, and expression level
of these marker transcripts were either sustained at the
same level (MYH6, ACTC1) or upregulated (MYH7) during
successive time point, the day 14. And on the other hand, the
TNNI3 showed a gradual upregulation from day 7 to day 14
(Figure 11E).

In addition, in hiPSCs/hMSCs co-cultures, the transcript
levels of GATA4, NPPA, NPPB, and GJA1 showed initial notable
upregulation of these marker transcripts around day 7 and there
exist a continual gradual downregulation of these transcript
over the observed consecutive time point, i.e., around day 14
(Figure 11F). On the contrary, the connexon gap junction gene,
GJA1 showed sustained elevated levels of expression on both day
7 and day 14.

Finally, the observed patterns of differential gene expressions,

in these disparate vasculogenic and myogenic culture conditions,
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FIGURE 8 | Contractility assay of CCCs (hiPSC-ECMs/GFP-hMSCs co-culture) by live cell imaging with spinning disk confocal microscopy. In

hiPSC-ECMs/GFP-hMSCs co-culture, the green fluorescent protein tagged hMSCs (GFP-hMSCs) were tethered to hiPSC-ECMs and were mechanically coupled to

each other. The pattern and frequency of contractions of the coupled GFP-hMSCs were principally similar to the pattern and frequency of hiPSC-ECMs contractions.

The frequency of cellular movement of hMSC was in principle determined by hiPSC-ECMs contractile frequency. Typical fluorescence image of GFP-hMSCs attached

to hiPSC-ECMs, shown in (A). The mechanically coupled hMSCs were stretched and assumed prolate ellipsoid type of morphology. The pattern and frequency of

GFP-hMSC cellular movement and contraction, shown in (B). Typical phase contrast image of GFP-hMSCs tethered to hiPSC-ECMs, shown in (C). The pattern and

frequency of hiPSC-ECM’s spontaneous and rhythmic contractions, shown in (D). Superimposition of fluorescent and phase contract images, illustrating relative

locations of GFP-hMSCs and hiPSC-ECMs in this CCC co-culture, shown in (E). Comparison of GFP-hMSC pattern of cellular movement with respect to hiPSC-ECM

cellular contractility revealed that the frequency of movement of hMSC was principally in synchrony and determined by the frequency of hiPSC-ECM contractions,

shown in (F). (A,C,E, scale bar 50 µm).

were not only indicative of cell-cell interactions but also

suggestive of cell-matrix interactions, which ultimately led

to the modulation of vasculogenic and cardiomyogenic gene

expressions in this milieu, and consequently, the differentiation

potentials of these cells on the CCC scaffold.

Characterization of Vascularized Cardiac
Patch (hCMVECs/hiPSC-ECMs/hMSCs
Co-culture)
To identify and validate the phenotypic characteristics of
co-differentiating hiPSC-ECMs/hMSCs in the environment
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FIGURE 9 | Calcium flux assay of CCCs (hiPSC-ECMs/GFP-hMSCs co-culture) by live cell imaging with spinning disk confocal microscopy. Green

fluorescent protein tagged hMSCs (GFP-hMSCs) were mechanically coupled with spontaneously contracting hiPSC-ECMs and revealed intracellular calcium flux with

similar frequency but relatively lesser amplitude. GFP-hMSCs were labeled with Calcium Orange, the calcium indicator, and imaged in the green channel using live cell

confocal microscope, shown in (A). The pattern of GFP-hMSCs intracellular calcium flux measured in the red channel for Calcium Orange, shown in (B). hiPSC-ECMs

and GFP-hMSCs were labeled with Calcium Orange and imaged in the red channel, shown in (C). The pattern of spontaneously and rhythmically contracting

hiPSC-ECM intracellular calcium flux measured in the red channel for Calcium Orange, shown in (D). Superimposition of green channel image of GFP-hMSCs labeled

with the calcium indicator, Calcium Orange, and the red channel image of hiPSC-ECMs and GFP-hMSCs labeled with Calcium Orange in this CCC co-culture, shown

in (E). Assessment of the pattern of GFP-hMSCs calcium flux with the pattern of contractile hiPSC-ECM displayed that the intracellular oscillation of calcium of hMSCs

were fundamentally the same as that of hiPSC-ECM but with relatively lesser spikes, shown in (F). (A,C,E, scale bar 50 µm).

of the microvascular structures, hiPSC-ECMs/hMSCs were
co-cultured simultaneously on top of the prevascularized
CCCs. Day 14 co-cultures harboring the three categories
of cells, hCMVECs/hiPSC-ECMs/hMSCs were subjected to
immunofluorescent staining and confocal microscopic analysis,
by utilizing the same set of vasculogenic and cardiomyogenic
differentiation markers as stated above. Comparable to what was
discerned within hiPSC-ECMs CCC cultures, the differentiating
cells were in turn positive for a set of cardiomyocyte

lineage-specific markers, such as cardiac α/β-MHC, cardiac cTnI,
desmin, Cx45, and Cx43 (Figures 12A–O). Illustrative staining
pattern captured for the myocyte-specific proteins within the
vascularized cardiac patches were shown in Figures 12A–O.

By cellular cohesion and alignment, the differentiating
myocytes appeared to be very much elongated and were
structurally arranged into interweaving bundles of myocytes,
in this co-culture condition (Figures 12A–O). The structurally
oriented and multilayered cells revealed cardiac specific
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FIGURE 10 | Transmission electron microscopic (TEM) analysis of CCCs (hMSCs culture, hiPSC-ECMs culture, and hiPSC-ECMs/hMSCs co-cultures).

hMSCs cultured on CCCs in myocyte medium showed euchromatic nuclei (N) with single to multiple nucleoli (n), and the cytoplasm was characterized by numerous

random mitochondria and widespread endoplasmic reticulum, the ultrastructural characteristics of an active and immature cells (A). Besides, the hMSCs cytoskeleton

exhibited bundles of actin stress fibers (sf) predominantly confined toward the peripheral cytoplasm. When hiPSC-ECMs cultured on CCCs under the same culture

conditions revealed active euchromatic nucleus (N). The cytoplasm revealed myofibrils (mf), perinuclear early sarcomeric units, Z-discs (Z), and few mitochondria (mi)

interspersed between the myofibrils along with glycogen particles (B). Whereas, the hiPSC-ECMs/hMSCs CCC co-cultures revealed that the differentiating hMSCs

were in juxtaposition and tethered by numerous focal adhesions localized along the cellular margins of adjacent hiPSC-ECMs. The myofibrils of the coupled myocytes

frequently exhibited a number of discontinuous and thickened Z discs as well as indistinct or absent M bands. Disorganized actin and myosin filaments not assembled

into myofibrils were also seen in the cytoplasm (C). Some disorganized thin filaments were continuous with myofibrils, and were often attached to the sarcolemma by

focal adhesions (C). Occasional developing myocytes illustrated typical imperfections of the myofibrillar organization, characterized by discontinuous and/or widened

Z discs, indistinct H zones, free floating myosin filaments, as well as large number of glycogen granules; apparently mimicking like a specialized sino-atrial type of cells;

besides, there were evidently numerous ovoid or circular electron-dense bodies, the Z-bodies (Zbs), composed of short sarcomeric units of α-actinin, the Z-bands

were created by the fusion of these precursor Z-bodies (D). In addition, some differentiating myocytes showed branching and strand-like myofibrils with regular Z

disks and distinct A and I bands. The myofibrils were stretched through the entire length of the cells, with scattered pleomorphic mitochondria and tubules of

sarcoplasmic reticulum. Glycogen granules were also widespread throughout the remainder of the cell. These myocytes were appeared to be fused with their adjacent

hMSCs, with imperceptible demarcation of their cellular boundaries (E,F). (A,C,D,F, scale bar 2 µm; B, scale bar 500 nm; E, scale bar 10 µm).
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FIGURE 11 | Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) analysis of various key vasculogenic and

cardiomyogenic markers. PECAM1 (platelet and endothelial cell adhesion molecule 1), KDR (kinase insert domain receptor, a type III receptor tyrosine kinase), TIE1

(tyrosine kinase with immunoglobulin-like and EGF-like domains 1), TEK (TEK tyrosine kinase, endothelial), and VWF (von Willebrand factor) expression (abscissa) as a

function of time (ordinate). hCMVECs cultured onto CCCs in complete microvascular endothelial cell growth medium (A). hCMVECs/hMSCs co-cultured onto CCCs in

complete microvascular growth medium (B). Similarly, MYH6 (myosin, heavy chain 6, cardiac muscle, alpha), MYH7 (myosin, heavy chain 7, cardiac muscle, beta),

ACTC1 (actin, alpha, cardiac muscle 1), TNNI3 (troponin I3, cardiac type), GATA4 (GATA binding protein 4), NPPA (natriuretic peptide A), NPPB (natriuretic peptide B),

and GJA1 (gap junction protein, alpha 1) expression (abscissa) as a function of time (ordinate). hiPSC-ECMs cultured onto CCCs in complete myocyte medium (C,D).

hiPSC-ECMs/hMSCs co-cultured onto CCCs in complete myocyte medium (E,F). The calibrator control included hCMVECs day 0 sample for vasculogenic cultures

and hiPSC-ECMs day 0 sample for cardiomyogenic cultures, and the target gene expression was normalized by three non-regulated reference gene expressions, viz.,

GAPDH, β-ACTIN, and either G6PD or RPLP0. The expression ratio (abscissa) was calculated using the Relative Expression Software Tool–384 (REST-384© - version

2). The values were means ± standard errors for three independent cultures (n = 3), *p < 0.05; **p < 0.001.

sarcomeric organization, which was positive for both desmin and
cardiac myosin heavy chain, MHC (Figures 12E,H). In addition,
the intercalated discs were identified as prominently N-cadherin
or desmin stained lines crossing fibers either transversely or in
a staggered and zigzag manner (Figures 12B,C,E,F). Nuclei of

these cells were large, oval in shape and were centrally situated
in the cytoplasm (Figures 12A–O). In addition, the cells were
positive for the gap junction proteins, connexin 45 and 43
(data not shown). The Gap junctions were a key component
of the intercalated discs, and were believed to provide a low
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FIGURE 12 | Characterization of vascularized cardiac patch by confocal scanning laser microscopy. Localization of key cardiac myocyte phenotypic

markers of the vascularized cardiac patches (hCMVECs/hiPSC-ECMs/hMSCs co-culture) demonstrated the expression of structural and contractile proteins,

N-Cadherin (B,C), desmin (E,F), cardiac MHC (H,I), and actin (A,C,D,F,G,I,J,L,M,O). Dual immunostaining of CCCs showed linear arrays of strap-like myocytes with

cross-striations and uniform registry of sarcomeres. The sarcomeres were positive for cardiac MHC and desmin. N-cadherin revealed regions of intercalated disks,

evoking a functional syncytium. Nuclei of these cells were large and oval in appearance, and were centrally situated. Furthermore, localization of key vascular

phenotypic markers of the same vascularized cardiac patches depicted the expression of mature endothelium-associated proteins, VWF (K,L) and lectin (N,O). Dual

immunostaining of CCCs revealed myriad network of linear and/or branching microvascular structure interposed between the latticework of cardiac myocytes. Nuclei

of these vascular cells were smaller and either elongated or fusiform in nature. Cells were also stained for nuclei (blue, DAPI), and fibrillary actin (green, Alexa 488

phalloidin). Merged images (A–O). (A–O, scale bar 100 µm).
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resistance pathway coupling adjacent cells, hence culminating
into a functional syncytium.

Amidst these aligned cardiac myocytes, extensive network of
linear and/or branching microvascular structures were localized.
Comparable to what was noticed within hCMVECs/hMSCs co-
cultures, the differentiating cells were positive for a battery of
endothelial and smooth muscle cell markers, such as VWF, lectin,
and α-SMA. Characteristic staining pattern captured endothelial-
associated proteins within the vascularized cardiac patches were
shown in Figures 12J–O.

Pharmacological Assay of Vascularized
Cardiac Patch
Analysis of the hCMVECs/hiPSC-ECMs/hMSCs derived
vascularized cardiac patches in response to various cardioactive
pharmacological agents displayed typical calcium flux, and
hence the contractile response. Application of isoprenaline
alone, a non-selective β adrenoceptor agonist, showed an
increase in the frequency and amplitude of calcium flux,
indicating an increase in the cardiac myocyte beating rate as
well as its increased contractile force. Thus, the elevation of
chronotropic and inotropic effects (Figures 13A,B). Whereas,
application of diltiazem alone, a calcium channel blocker, led
to an opposite effect. It progressively attenuated the frequency
and amplitude of calcium flux, indicating a weakened cardiac
myocyte beating rate and its decreased contractile force. Hence,
the decreased chronotropic and inotropic effects (Figure 13G).
Calcium transient in response to isoprenaline followed by
diltiazem, the initial application of isoprenaline to beating
cardiac patch displayed the typical elevated chronotropic
and ionotropic responses (blue arrow). Then, followed by
an immediate application of diltiazem showed sustained
negative chronotropic and ionotropic responses (Figure 13C).
Application of clenbuterol, a sympathomimetic amine (a β2
agonist) led to a raise in the frequency of calcium flux, thus,
increase in the cardiac myocytes beating, thus an elevated
inotropic effect (Figures 13D, E). Calcium transient in response
to clenbuterol followed by diltiazem, the initial application
of clenbuterol to beating cardiac patch displayed elevated
inotropic effect. Then, followed by an application of diltiazem
showed continued negative chronotropic and inotropic effects
(Figure 13F).

DISCUSSION

Use of adult-tissue-derived stem cells in the stimulation of
mammalian cardiac muscle regeneration is still in its early stages,
and so far, it has been difficult to determine the efficacy of the
procedures that have been employed (Jackson et al., 2001; Toma
et al., 2002; Mangi et al., 2003; Balsam et al., 2004; Chen et al.,
2004; Couzin and Vogel, 2004; Murry et al., 2004; Orlic, 2004;
Laflamme and Murry, 2005). Collective evidence suggests that
stem cells could play a vital role in cardiac regeneration, but this
concept required further validation, since several critical issues
remain unresolved until now. The outstanding question remains
whether stem cells derived from the bone marrow or some other

location within or outside the heart can populate a region of
myocardial damage and transform into cardiac tissue-specific
cells and also exhibit functional synchronization (Carlson,
2007). As a result, this necessitates the prompt development
of appropriate in vitro 3-D model of cardiomyogenesis, and
prompts us the development of a 3-D vascularized cardiacmuscle
construct for tissue engineering purposes, especially using the
putative postnatal-/adult-tissue-derived stem cells, hiPSCs and
hMSCs for personalized medicine.

Cumulative evidence suggests, using stem cells, it has been
possible to stimulate mammalian cardiac muscle regeneration,
and researchers have investigated the potential of various multi-
and/or pluri-potential stem cells, such as MSCs, ESCs, iPSCs, and
CPCs. Preliminary studies using small and larger animal models
have indicated that bone marrow stromal cells/mesenchymal
stem cells (BMSCs/MSCs), when transplanted into a cardiac
lesion, can have certain degree of beneficial effects (Makino
et al., 1999; Boyle et al., 2006). MSCs are multipotent, capable
of differentiating into the prototypic cardiovascular cells, such
as striated muscle cells, endothelial cells, and smooth muscle
cells in vitro (Valarmathi et al., 2010, 2011), and contribute
to myocardial regeneration in vivo when transplanted into the
failing heart following myocardial infarction or non-infarction
in mammalian model system, including human beings (Boyle
et al., 2006; Makino et al., 1999). Nevertheless, for example, the
central issue that remains to be addressed is the extent to which
introduced stem cells and/or endogenous cardiac progenitor cells
actually contribute directly to the formation neo-cardiomyocytes
vs. their contribution to and/or stimulation of an enhanced
local vascular response, which in turn may act as a supportive
microenvironment for regenerative process (Orlic, 2004; Carlson,
2007), or whether the injected cells in fact accomplish myocardial
repair by means of paracrine signaling, i.e., by secreting a cocktail
of growth factors rather than essentially incorporating into the
damaged myocardium, or by some other mechanism is actively
under investigation (Carlson, 2007).

Angiogenesis and vascular invasion are a prerequisite to
the process of tissue morphogenesis both in development and
repair. Apart from their vital role in oxygen and nutrient
delivery, it has recently been recognized that endothelial cells
play an essential role in regulating and maintaining tissue-
specific cells, and reported to influence both early cardiac
development and in adult heart (Brutsaert, 2003; Cleaver and
Melton, 2003; Hsieh et al., 2006). Previous studies indicate that
microvascular endothelial cells promote cardiacmyocyte survival
and spatial reorganization (Brutsaert et al., 1998; Brutsaert, 2003;
Narmoneva et al., 2004). In addition, in vitro heterotypic primary
culture (co-culture) of microvascular endothelial cells and
ventricular cardiac myocytes have demonstrated that reciprocal
intercellular signaling regulates cardiac growth and function,
and operates by means of autocrine and paracrine mechanisms
(Nishida et al., 1993). Such intercellular signaling has also been
shown to regulate cardiac myocyte contractility and apoptosis
(Ramaciotti et al., 1992; Kuramochi et al., 2004). On the other
hand, cardiac myocytes are presumed to influence endothelial
cell survival and assembly. Taken together, these facts suggest
that one of the successful strategies for myocardial regeneration
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FIGURE 13 | Pharmacological assay of vascularized cardiac patch by live cell imaging with spinning disk confocal microscopy. Analyses of the

hCMVECs/hiPSC-ECMs/hMSCs co-culture derived vascularized cardiac patches in response to various cardioactive pharmacological agents (0.1 to 1 µM) displayed:

Typical calcium oscillations of spontaneously and rhythmically beating cells, before the application of isoprenaline (a non-selective β adrenoceptor agonist), shown in

(A). Calcium oscillations in response to isoprenaline application revealed the typical elevation of chronotropic and ionotropic responses, shown in (B). Calcium

transient in response to isoprenaline followed by diltiazem, the initial application of isoprenaline to a beating cardiac patch displayed the typical elevated chronotropic

and ionotropic responses (blue arrow). The subsequent application of diltiazem (a calcium channel blocker) led to the sustained negative chronotropic and ionotropic

responses, shown in (C). Typical calcium oscillations of spontaneously and rhythmically beating cells, before the application of clenbuterol (a sympathomimetic amine,

β2 agonist), shown in (D). Calcium flux in response to clenbuterol application demonstrated elevated ionotropic effect, shown in (E). Calcium transient in response to

clenbuterol followed by diltiazem, the initial application of clenbuterol to a spontaneously contracting cardiac patch exhibited enhanced ionotropic response. Whereas,

an immediate application of diltiazem progressively abolished the beating of cardiac patch, shown in (F). Calcium flux in response to application of diltiazem to a

spontaneously and rhythmically beating cardiac patch resulted in negative chronotropic and inotropic responses, which ultimately led to the cessation of myocytes

contractility, shown in (G).
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may therefore depend on establishing functional myocyte-
endothelium interactions.

Previously, our group has demonstrated the use of a
novel 3-D aligned collagen-gel tubular scaffold in which rat
embryonic cardiac myocytes could grow andmaintain an in vivo-
like phenotype, and recapitulates many aspects of developing
myocytes (Evans et al., 2003). In our recent studies, we have
characterized and demonstrated the osteogenic and vasculogenic
differentiation potential of adult BMSCs when seeded onto a 3-
D tubular scaffold and cultured in osteogenic growth medium
(Valarmathi et al., 2008a,b). Similarly, we have shown that a pure
population of adult BMSCs (CD90+) can be a potential cellular
source for vascular tissue engineering using the same 3-D tubular
scaffold. Our construct supported the development of in situ de
novomicrovascular structures under both vasculogenic and non-
vasculogenic culture conditions (Valarmathi et al., 2009).We also
explored the potential of the 3-D model system to recapitulate
postnatal de novo vasculogenesis (Valarmathi et al., 2009).

Here we report first-time a reproducible and quintessential
in vitro 3-D model of vascularized cardiac tissue composed of
embryonic cardiac myocytes and cardiac-derived microvascular
endothelial cells for exploring stem cell based cardiomyogenesis.
This mosaic of cardiac tissue generated in this co-culture
conditions recapitulated several aspects of in vivo neo-
cardiomyogenesis, as well as allowed us to study the concurrent
temporal and spatial regulation of cardiomyogenesis in the
context of postnatal neo-vasculogenesis during stem cell cardiac
regeneration. Thus, we have examined the temporal and
spatial regulation of co-differentiating hiPSC-ECMs (myocytes)
and hCMVECs (microvascular endothelial cells) in our CCC
constructs in the presence of adult stem cell, hMSCs, and
ultimately, their cell fate determined.

Our results have provided compelling evidence that presence
of preexisting microvessels can able to accelerate and maintain
the in vivo phenotype of ventricular cardiac myocytes. In
addition, we have shown the progressive maturation and
differentiation of these ventricular embryonic cardiac myocytes,
from embryonic to neonatal type of phenotype. These myocytes
expressed not only sarcomeric α/β-myosin heavy chain, a marker
for mature myocytes but also revealed more uniform registry,
and the presence of multiple intercalated discs. Finally, we have
shown the presence of the gap junction protein, connexin 43
that is localized at the intercalated discs. Given the interplay
of these two types of cells, viz., microvascular endothelial cells
and embryonic cardiac myocytes in cardiac development, we
have observed larger caliber vessels created in the CCC scaffold.
Moreover, we have demonstrated unequivocally that hMSC-
derived smooth muscle cells contributed to the development of
tunica media of the larger caliber vessels, besides the presence of
hMSC-derived neo-cardiomyocytes in this co-culture condition.

In general, any successful tissue engineering approach to
regeneration depends not only on the right choice of substrate
and/or engineered scaffold but most crucially on the right source
of initial cells, which will ultimately dictate and fill the defects
and/or repair the lesions. The cell carrier, CCC, is a novel, thin,
and planar collagen scaffold. It is based on fibrillary bovine
collagen type I and exhibits a low material thickness (40 µm)
coupled with a high mechanical stability as measured by tensile

tests (Schmidt et al., 2011). Both the mechanical properties and
the in vitro biocompatibility of this CCC facilitate the engineering
of thin transferable tissue constructs that offer new unlimited
possibilities in the field of tissue engineering and regenerative
medicine (Schmidt et al., 2011).

Considering the fact that hiPSC-ECMs and hMSCs may
represent the cells of greatest potential for adult autologous
and/or allogenic stem based cardiac regeneration, we have
evaluated their integrative competence using developmental
biology and tissue engineering principles. hiPSC-ECMs were
seeded onto a 3-D biomimetic and biocompatible CCC scaffold
together with hCMVECs in the presence or absence of
hMSCs. The engineered vascularized cardiac tissue construct
exhibited spontaneous beating and rhythmic contractions,
and was observed using phase contrast time-lapse video
microscopy as well as using spinning disk confocal microscopy
during calcium spark imaging. Ultrastructural analysis and
Immunohistochemical analysis using a battery of cardiac specific
proteins confirmed the continuum of myogenic maturation and
differentiation, i.e., progression from embryonic to neonatal
phenotype. Furthermore, the spontaneously active cardiac patch
briskly responded to various cardioselective drugs, both positive
and negative chronotropic and ionotropic agents.

The advantages of the CCC model vs. other model systems
are, the CCC’s geometry and fiber topography allow for the
production of vasculogenic structures in addition to various
differentiated cells from a pure population of hMSCs not seen
previously with any other scaffold. The CCC allows for flexibility
and versatility when it comes to mechanical forces because the
CCCs can be made to interface well with flow bioreactors and
with the device tensile tester, and is more amenable to various
mechanical stimuli. Thus, it is an ideal model system to examine
further the effects of cell/cell and cell/mechanotransduction on
the maturation of a vascularized cardiac construct, as it mimics
developing embryonic vertebrate primitive heart tissue.

Since, in our previous studies, we have demonstrated that
MSCs are not only capable of differentiating into endothelial
and smooth muscle cells (Valarmathi et al., 2009) but also
are capable of differentiating into myocytes under appropriate
physicochemical and biological cues (Valarmathi et al., 2010,
2011). Therefore, further co-culture experiments with fluorescent
protein labeled cells (for example, a combination of RFP-
hiPSC-ECMs, GFP-hMSCs, and YFP-hCMVECs) are in progress,
specifically to assess and delineate the exact fate and contribution
of each of those three categories of cells in the cardiac patch.
Efforts are also underway to innervate the cardiac patch with
stem cell-derived autonomic neurons, i.e., the sympathetic and
parasympathetic neuronal cells.

CONCLUSIONS

Here we report the development of a reproducible in vitro 3-D
model of cardiomyogenesis, as well as the generation of an
archetypical 3-D vascularized cardiac patch for cardiovascular
tissue engineering purposes. This study is innovative on
several fronts, firstly, it uses co-culture of endothelial cells
and cardiac myocytes to allow for cell-cell interactions that
would exist in the heart during physiological (maintenance)
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and/or in pathological (reparative) regenerative processes.
Second, a 3-D culture system to provide an in vivo-like
cellular morphology and cell-matrix interactions. Next, the
vascularization of the 3-D construct may allow for enhanced
graft host integration on implantation, and eliminates the
commonly encountered immunological barrier, since all sets
of cells originate from the same species. Finally, a reproducible
in vitro 3-D model of vascularized cardiac muscle construct
for exploring adult stem cell based myocardial regeneration
that can be monitored for all aspects of cardiac regeneration,
e.g., neo-cardiomyocyte maturation and differentiation,
excitation-contraction coupling, as well as cellular incorporation.
Ultimately, the outcome from this study may translate to human
medicine by providing a targeted approach to regulate the
regenerative properties of myocardium and improved cardiac
function post-MI.
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