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The growing resistance of leishmaniasis to first-line drugs like antimonials in some

regions limits the control of this parasitic disease. The precise mechanisms involved in

Leishmania antimony resistance are still subject to debate. The reduction of intracellular

SbIII accumulation is a common change observed in both laboratory-selected and

field isolated resistant Leishmania strains, but the exact transport pathways involved in

antimony resistance have not yet been elucidated. In order to functionally characterize the

antimony transport routes responsible for resistance, we performed systematic transport

studies of SbIII in wild-type and resistant strains of L. (Viannia) guyanensis and L. (V.)

braziliensis. Those include influx and efflux assays and the influence of ABC transporters

and metabolism inhibitors: prochlorperazine, probenecid, verapamil, BSO, and sodium

azide. The mRNA levels of genes associated with antimony resistance (MRPA, GSH1,

ODC, AQP1, ABCI4, and ARM58) were also investigated in addition to intracellular

thiol levels. A strong reduction of Sb influx was observed in L. guyanensis resistant

mutant (LgSbR), but not in L. braziliensis (LbSbR). Both mutants showed increased

energy-dependent efflux of SbIII, when compared to their respective parental strains.

In LgSbR, BSO and prochlorperazine inhibited antimony efflux and resistance was

associated with increasedMRPA andGSH1mRNA levels, while in LbSbR antimony efflux

was inhibited by probenicid and prochlorperazine in absence of resistance-associated

gene modulation. Intracellular thiol levels were increased in both Sb-resistant mutants.

An energy-dependent SbIII efflux pathway sensitive to prochlorperazine was clearly

evidenced in both Sb-resistant mutants. In conclusion, the present study allowed

the biophysical and pharmacological characterization of energy-dependent Sb efflux
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pathway apparently independent of MRPA, ABCI4, and ARM58 upregulation, in

Leishmania (Vianna) mutant selected in vitro for resistance to SbIII. Prochlorperazine has

also been identified as an effective chemosensitizer in both Sb resistant mutants, which

acts through inhibition of the active efflux of Sb.
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INTRODUCTION

Protozoan parasites belonging to Leishmania genus are the
causative agents of leishmaniasis that produces a wide spectrum
of clinical disease in humans ranging from self-healing cutaneous
(CL) and mucocutaneous (MCL) lesions to fatal visceral (VL)
infection, if not treated (Murray et al., 2005). The disease is a
public health concern, endemic in 98 countries reaching up to
1.2 million new cases annually and affecting mainly poor and
marginalized populations (Alvar et al., 2012). In the NewWorld,
Leishmania (Viannia) braziliensis and Leishmania (Viannia)
guyanensis cause cutaneous and mucocutaneous leishmaniasis
(MCL) form of the disease (Marzochi and Marzochi, 1994;
Murray et al., 2005).

The pentavalent antimony (SbV) derivatives, sodium
stibogluconate (Pentostam R© and meglumine antimoniate
(Glucantime R©), have been used in the treatment of the majority
of cases of leishmaniasis for almost 70 years worldwide. Those
are considered as prodrugs that are activated through reduction
of SbV to SbIII (Frézard et al., 2009). Currently, these drugs have
two main limitations. First, side effects are frequent and can be
fatal. Second, parasite resistance is emerging in some endemic
areas, causing an increase in treatment failure (Lira et al., 1999;
Hadighi et al., 2006) with major incidence in India, where 65% of
patients are refractories to treatment (Perry et al., 2011).

Studies concerning experimental resistance to antimony in
Leishmania indicate that several mechanisms may occur, even
concomitantly in the same parasite (Ouellette et al., 2004;
Decuypere et al., 2005, 2012; Croft et al., 2006; Mukherjee et al.,
2007; Do Monte-Neto et al., 2011; Kumar et al., 2012; Berg
et al., 2013; Kazemi-Rad et al., 2013; Cheng and Sun, 2014).
The resistance to Sb in Leishmania usually involves a reduction
in the intracellular drug accumulation (Callahan et al., 1994;
Dey et al., 1994; Brochu et al., 2003). The upregulation of
the ABC transporter multidrug resistance-associated protein A
(MRPA), identified in intracellular vesicular membranes, is a
common change observed in both field isolates and laboratory-
selected Leishmania resistant strains (Papadopoulou et al., 1994;
Legaré et al., 2001; Decuypere et al., 2005; Mukherjee et al.,
2007; Moreira et al., 2013). In some resistant mutants, including
the L. guyanensis strain studied here, SbIII entry was found
to be reduced through either down regulation (Marquis et al.,
2005), deletion or a point mutation (Monte-Neto et al., 2015)
of the aquaglyceroporin 1 (AQP1) gene. In a recent review,
Frézard et al. (2014) pointed out that attempts to characterize the
transport pathways of SbIII in resistant strains overexpressing the
MRPA transporter showed apparently conflicting results, with
either increased efflux (Dey et al., 1994) or decreased influx
(Callahan et al., 1994) and that other means of transport, besides

the sequestration of Sb in intracellular vesicles, may contribute
to the resistance of Leishmania to Sb, such as the efflux of SbIII

by a transporter yet to be identified. Recently, three different
membrane proteins were proposed for their putative involvement
in SbIII efflux in resistant Leishmania parasites. Manzano et al.
(2013) and Perea et al. (2016) identified two distinct ABC
transporters in L. major capable of promoting SbIII and thiol
efflux, thereby conferring resistance to antimonials. One of these
transporters is a member of ABCI subfamily (LABCI4) and the
other one is the ABC protein LABCG2. Both transporters were
found to be partially located in the plasma membrane and it was
hypothesized that they may confer Sb resistance by sequestering
metal-thiol conjugates within vesicles and through further
exocytosis by means of the parasite’s flagellar pocket. Another
membrane protein called ARM58 (antimony resistancemarker of
58 kDa), when overexpressed in L. braziliensis (Nühs et al., 2013)
and L. infantum (Schäfer et al., 2014), also promoted resistance
to Sb through reduced drug accumulation and presumably
increased efflux of thiol-Sb conjugate. Interestingly, ARM58
was found to be localized near the flagellar pocket hints but,
contrary to LABCG2 and LABCl4, it did not seem to mediate
energy-dependent transport activity. Indeed, ARM58 is part of a
subtelomeric cluster comprising the neighboring genes ARM56
and HSP23, which confers antimony resistance by inducing
exosome-mediated secretion (Tejera Nevado et al., 2016). Using a
new approach called Cos-Seq—that combines functional cloning
and massive next-generation sequencing, Gazanion et al. (2016)
have confirmed the up-regulation of ARM58 in laboratory-
selected antimony-resistant L. infantum (Gazanion et al., 2016).

Although the mechanisms of Leishmania resistance to Sb
has been extensively studied from the molecular point of
view, systematic functional studies involving biophysical and
pharmacological approaches to characterize the precise transport
pathways of Sb are scarce. In this context, the present work aimed
to characterize the transport routes of Sb in L. braziliensis and
L. guyanensis strains selected for their resistance to SbIII (LbSbR
and LgSbR), by using systematic transport kinetic analysis and
investigating the effect of ABC transporter inhibitors on the
cytotoxicity, uptake and efflux of Sb.

MATERIALS AND METHODS

Chemicals
Probenecid, prochlorperazine, verapamil, potassium antimonyl
tartrate hydrate, kanamycin, L-buthionine-(SR)-sulfoximine
(BSO), sodium azide (NaN3), HEPES, biopterin, ampicillin, L-
glutamine and hemin were obtained from Sigma-Aldrich (St
Louis, USA). Nitric acid (65%) was obtained from Merck Brasil
(Rio de Janeiro, RJ, Brazil).
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Leishmania Strains and SbIII Sensitivity
Assay
Promastigote forms of two different New World
Leishmania species: Leishmania (Viannia) guyanensis
(MHOM/BR/1975/M4147) and Leishmania (Viannia)
braziliensis (MHOM/BR/1975/M2904) were used. Parasites
of both strains were selected in vitro for resistance to SbIII

as previously described (Roberts and Rainey, 1993; Moreira
et al., 2013). Promastigotes were exposed to increasing SbIII

concentrations up to 650µM (L. guyanensis) and 330µM
(L. braziliensis) in 25 cm2 flasks containing 5 mL of minimum
essential culture medium (α-MEM) (Gibco, Invitrogen, NY,
USA). The selected parasite strains (L. braziliensis SbIII330.2
and L. guyanensis SbIII650.4) were maintained in α-MEM,
supplemented with 10% (v/v) heat-inactivated fetal calf serum
(Cultilab, Brasil), 100µg/mL kanamycin, 50µg/mL ampicillin,
2 mM L-glutamine, 5µg/mL hemin, 5µM biopterin, pH 7.0
and incubated at 25◦C in a B.O.D. incubator. As previously
described, the resistant mutant L. guyanensis SbIII650.4 harbors
a single nucleotide polymorphism at AQP1 coding gene that
leads to the point mutation G133D at protein level. Functional
analysis revealed that this mutation was directly associated with
the reduced antimony uptake (Monte-Neto et al., 2015). On
the other hand, L. braziliensis resistant mutant presented intact
copies of AQP1 as revealed by gene sequencing (Supplementary
Figure 1).

To compare the SbIII sensitivity of different strains, mid-log
phase wild-type and resistant Leishmania promastigotes were
inoculated at 106 cells/mL in α-MEM medium in the presence
of SbIII (as potassium antimonyl tartrate). Biological replicates
in the absence of drug were established as control. The cultures
were incubated under shaking at 25 ± 1◦C for 72 h and the
growth inhibition was determined by measuring the absorbance
at 600 nm using a microplate reader (Organon Teknica
Microwell), as previously described (Fumarola et al., 2004). Three
independent experiments were carried out. The half-maximal
inhibitory concentration (IC50) values were calculated based
on concentration-response curves applying a sigmoidal dose-
response equation with variable slope carried out using the
software GraphPad Prism version 6.0 (GraphPadSoftware Inc.,
San Diego, CA, USA).

Real Time qRT-PCR
Total RNA was extracted from 108 mid-log phase Leishmania
spp. promastigotes using RNeasy Plus mini kit (Qiagen
Sciences, Maryland, USA) as described by the manufacturer.
First-strand cDNA was synthesized from 2.5µg of total RNA
using Oligo dT12–18 and SuperScript II RNase H-Reverse
Transcriptase (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer protocol. Equal amounts of cDNA were
run in triplicate and amplified in 25µL reactions containing
1 x iQ SYBR R© Green Supermix (Bio-Rad, Hercules, CA,
USA), 100 nM forward and reverse primers and 100 ng of
cDNA target. Reactions were carried out using a rotator
thermocycler Rotor Gene (RG 3000, Corbett Research, San
Francisco, USA). Mixtures were initially incubated at 95◦C

for 5 min and then cycled 30 times at 95◦, 60◦, and 72◦C
for 15 s. No-template controls were used as recommended.
Three technical and biological replicates were established for
each reaction. The relative amount of PCR products generated
from each primer set was determined based on the cycle
threshold (Ct) value and the amplification efficiencies. Data
were analyzed using the comparative 2−11Ct method. Gene
expression levels were normalized to constitutively expressed
mRNA encoding glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, LbrM.30.2950). The primers for targeted genes:
MRPA (LbrM.23.0280), GSH1—that encodes to gamma-
glutamylcysteine synthetase (γGCS-LbrM.14.0880), ODC
(LbrM.12.0300), AQP1 (LbrM.31.0020), ABCI4 (LbrM.33.3540),
ARM58 (LbrM.20.0210), and internal gene expression control
GAPDH were designed using PrimerQuest R© (https://www.
idtdna.com/Primerquest/Home/Index). Primer sequences are
listed in Table 1.

Total Intracellular Thiol Measurement
Total intracellular thiols were derivatized from deproteinized
cell extracts and separated by high-performance liquid
chromatography (HPLC) as previously described (Fairlamb
et al., 1987; Mukhopadhyay et al., 1996). Briefly, 10 mL of
Sb-free logarithmic phase Leishmania promastigote cultures
were haversted at 0.3–0.4 absorbance (600 nm); washed twice
in HEPES/NaCl (21 mM HEPES; 137 mM NaCl; 5 mM KCl;
0.7 mM Na2 HPO4; 6 mM Glucose; pH 7) and resuspended in
HEPES/EDTA (50 mMHEPES; 5 mM EDTA; 1 mMDTT pH 8).
At this step, 10µL were separated for protein dosage by bradford
method (Bradford, 1976). Protected from light, 100µL of 2 mM
monobromobimane (mBBr) (Invitrogen, Carlsbad, CA, USA)
were added to the samples, mixed and incubated at 70◦C for 3

TABLE 1 | Chosen target genes and their primer pairs used for RT-qPCR.

Gene product (ID) Sequence of forward and reverse primers Product

size (bp)

MRPA

LbrM.23.0280 5′TGTCCACCTGGCCAATGTAGTCTT3′ 125

5′TCGGAAAGACAACCTCCGGCTTTA3′

GSH1

LbrM.14.0880 5′GAACACGGCTGATCAGTACAA3′ 118

5′AAGGTTAGCGTGCTCAAGTC3′

ODC

LbrM.12.0300 5′GTACATCGAGAAGGGTGTGAAG3′ 127

5′GCCGAGGTCAATGATGTAGAA3′

AQP1

LbrM.31.0020 5′TCTCGCCATCAACGATAACC3′ 126

5′CGTGTAGGGTTGAGAGCATATC3′

ABCI4

LbrM.33.3540 5′CTGTAGACGAAGCGGGTATTT3′ 135

5′CTAGGCGATGAGACACCATAAC3′

ARM58

LbrM.20.0210 5′CCCAAGGGCTTTCACCTAAA3′ 103

5′AGCGGTAGATCTTGTCGTATTG3′
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min. Trichloroacetic acid (Fischer Chemical, Atlanta, GA, USA)
(200µL at 25%) were added to the mixture, and the extract
was kept at 80◦C for at least, 1 h followed by low temperature
(4◦C) centrifugation at top speed (microcentrifuge) for 20 min.
Supernatants were filtered in 0.45-µm filters (Acrodisc Pall,
Life Sciences, East Hills, NY, USA) and thiols separated using
the liquid chromatograph Shimadzu SCL 10A. Samples were
analyzed using a reverse phase column Vydac C18 eluted in
methanol 0–100%/acetic acid (25%) gradient pH 3.5. Standard
solutions of mBBr-derivatized cysteine (Cys), glutathione
(GSH) and trypanothione (TSH) were previously established
as calibration curve. Thiols were indirectly measured by mBBR
fluorescence at 360 and 450 nm of excitation and emission,
respectively, using a coupled fluorescence detector (Shimadzu
RF-10Axl).

Sb Uptake
Before performing the assays, SbIII-resistant Leishmania spp.
lines were maintained for at least two passages in α-MEM
medium in the absence of SbIII, in order to eliminate the residual
drug.

The Sb uptake kinetic and influx assays were based on
previously described protocols (Roberts and Rainey, 1993;
Moreira et al., 2013). Briefly, mid-log phase wild-type and
resistant Leishmania promastigotes were washed twice in
Hepes/Glucose (HG) buffer (20 mM HEPES, 0.15 M NaCl, 10
mM glucose, pH 7.2) and suspended in this buffer at a density
of 108 cells/mL.

In the uptake kinetic assay, cells were incubated in the
presence of SbIII at 540µM. In different time points, 1 mL of
the cell suspension was harvested and immediately centrifuged
at 3,000 × g for 5 min at 4◦C and the pellet was washed
twice with HG buffer under the same conditions. The pellet
was then resuspended in 100µL HG buffer. A 10-µL aliquot of
each sample was used for parasite quantification and viability
evaluation and the remaining volume (90µL) was submitted
to digestion in nitric acid (65%). Cell viability was confirmed
from the promastigote motility and trypan blue exclusion assay
(Freshney, 1994). More than 90% of promastigotes showed
motility, except those exposed to sodium azide and more
than 95% of cells were considered viable according to trypan
blue exclusion. The Sb concentration was determined by
graphite furnace atomic absorption spectroscopy (Perkin Elmer,
AAnalyst 600). The signal from a blank (cells without Sb) was
used for background subtraction. The analytical method for
determination of Sb was validated and showed suitable levels
of precision, accuracy and linearity. The quantification limit of
the analytical method was 0.021 nmol Sb/108 promastigotes.
The amount of cellular Sb at the zero time point was equal to
0.044 ± 0.002 nmol Sb/108 promastigotes and, thus, close to the
quantification limit, indicating that the binding of Sb to the cell
surface is negligible, in agreement with the high hydrophilicity of
potassium antimonyl tartrate.

For influx assay, parasites were exposed to SbIII for 1 h
at 25◦C, at increasing concentrations (0; 100; 250; 500; 1,000;
1,500; 2,000µM of SbIII), in quadruplicates/point. Samples
were submitted to the washing procedure mentioned above for

removing extracellular Sb traces. Each influx assay was performed
three times. The influx rate was calculated as follows: Vi =

amount of intracellular antimony/(number of cells x time of
uptake). A shorter incubation time could not be used, because
of the method quantification limit and loss of accuracy in the
determination of the initial rate. Thus, the values determined for
initial rate were approximation of the influx rates, especially in
the case of WT cells in which Sb uptake was not linear over 1-
h time. The Vi-vs-Ce curves were analyzed using the GraphPad
Prism 6.0 software to assess whether they best fit with a linear
model or the Michaelis-Menten equation as follows:

Vi = Vimax × Ce/(Ce+ Km)

where Vmax is the maximum influx rate, Km is the Michaelis-
Menten constant and Ce is the extracellular concentration of Sb.

The influx rate constant (kinflux) was calculated as:

kinflux = Vimax/Km

When no saturation was observed, kinflux was determined by
linear regression, assuming that Vi= kinflux × Ce.

This influx assay was also used to identify the values of Ce
at which the mutant and its parental line exhibited the same
intracellular concentration of Sb, to be explored in the efflux
protocol.

To evaluate the effect of ABC transporter inhibitors on
SbIII uptake, mid-log phase Leishmania spp. promastigotes were
first exposed for 24 h to each of these compounds at non-
toxic concentrations (8µM verapamil, 4 mM probenecid, 10µM
prochlorperazine, 100µM BSO for resistant strains and 8µM
verapamil, 4 mM probenecid, 3.5µM prochlorperazine, 100µM
BSO for parental strains). The cells were then resuspended in HG
buffer at 108 cells/mL and further exposed to these compounds
for 1 h at 25◦C, in the presence of 1 mM of SbIII. Samples were
washed twice with cold HG buffer to remove external Sb and
allow the measurement of intracellular Sb. We observed that
more than 90% of promastigotes showed motility at the end of
the experiment, suggesting that the inhibitors did not act through
depletion of intracellular ATP.

When investigating the impact of energy depletion on the
uptake of SbIII, cells were resuspended in the HG buffer without
glucose, but in the presence of 10 mM sodium azide. Those were
then incubated for 1 h at 25◦C in the presence of 1 mM of SbIII

and were subsequently processed as described above.

Sb Efflux
Before performing this assay, SbIII-resistant Leishmania lines
were maintained for at least two passages in α-MEM medium in
the absence of SbIII, in order to remove the residual drug. Mid-
log phase wild-type and resistant Leishmania promastigotes were
washed twice with HG buffer and resuspended in it at a density
of 108 cells/mL. A 1-mL aliquot containing only parasites (blank)
was separated and the remaining cells were incubated at 25◦C
with the concentration of SbIII pre-established in influx assay so
as to obtain the same loading of drug in the resistant strain and
its parental cells (L. guyanensis, 100µM for WT and 2,000µM
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for the mutant; L. braziliensis, 500µM for WT and 2,000µM for
the mutant). After 1 h incubation, the cells were centrifuged at
3,000× g for 5 min at 4◦C, washed twice and resuspended in HG
buffer at the original cell density followed by incubation at 25◦C.
Aliquots of 1mLwere taken from the parasite suspension at 0, 15,
30, 60, and 120 min. Subsequently, these aliquots and the blanks
were treated as described above for the quantification of parasite
and intracellular Sb. The signal from blanks was considered as
background.

Each efflux assay was performed three times in triplicate. Data
were plotted as the percentage of initial intracellular Sb content
as a function of time and the half-time of Sb efflux was calculated
using mono-exponential decay model. The efflux rate constant
kefflux was also obtained from the equation:

Ve = kefflux × Ci

where Ve is the initial rate of efflux determined from the tangent
of the curve and Ci is the intracellular concentration of Sb
estimated at time zero using a cell volume of 1.2 × 10−14 L
(Zilberstein and Dwyer, 1984).

To evaluate the interference of ABC transporter inhibitors
on Sb efflux, the cells were initially loaded for 1 h at 25◦C
with 1 mM of SbIII in α-MEM medium. The cells were washed
and resuspended in HG buffer at 108 cells/mL. A 1-mL aliquot
was immediately removed and processed to determine the initial
intracellular amount of SbIII. The remaining cells were exposed
to the inhibitors at non-toxic concentrations (8µM verapamil,
4 mM probenecid, 10µM prochlorperazine, 100µM BSO, 10
mM sodium azide in resistant strains and 8µM verapamil, 4
mM probenecid, 3.5µM prochlorperazine, 100µMBSO, 10 mM
sodium azide in parental strains) for 2 h at 25◦C under agitation.
Only when evaluating the effect of azide, that the buffer did
not contain glucose. The cells were subsequently processed as
described above to determine the amount of Sb per cell. We
observed thatmore than 90% of promastigotes showedmotility at
the end of the experiments when applying verapamil, probenecid,
prochlorperazine or BSO, suggesting that these inhibitors did not
act through depletion of intracellular ATP.

Antileishmanial Activity of ABC Transporter
Inhibitors and Their Role as
Chemosensitizer in SbR Leishmania
First, ABC transporter inhibitors (probenecid, prochlorperazine,
verapamil and BSO) were evaluated for their antileishmanial
activity against SbR and WT Leishmania spp.. Mid-log phase
promastigotes were inoculated at 106 cells/mL in α-MEM
medium in the presence of different concentrations of the
inhibitors. Biological replicates in the absence of drug were
established as control. The cultures were incubated under
shaking at 25 ± 1◦C for 72 h and the IC50s were determined as
described above (section Leishmania Strains and SbIII Sensitivity
Assay). The ability of each inhibitor to sensitize the cells to SbIII

was evaluated by performing growth inhibition assay as described
above, in the presence of a fixed non-toxic concentration
of the inhibitor (8µM verapamil, 4 mM probenecid, 10µM
prochlorperazine, 100µM BSO in resistant strains and 8µM

verapamil, 4 mM probenecid, 3.5µM prochlorperazine, 100µM
BSO in parental strains). The IC50 values of SbIII in presence
and absence of inhibitor were compared. All experiments were
done at least three times as independent experiments performed
in triplicate.

Statistical Analyses
The IC50 values were calculated by non-linear regression. Data
were analyzed by Student’s t-test or One-way analysis of variance
(ANOVA) followed by Bonferroni’s multiple comparison test.
A p ≤ 0.05 was considered statistically significant. All analyses
were carried out using the software GraphPad Prism version 6.0
(GraphPad Software Inc., La Jolla, CA, USA).

RESULTS

SbIII Sensitivity, mRNA Levels of
Resistance Markers and Thiol Levels
While L. braziliensis and L. guyanensis parental strains presented
IC50 of SbIII lower than 100µM, the resistant mutants suffered
little influence of SbIII at concentration as high as 600µM
(Table 2 See also growth inhibition curves in Supplementary
Figure 2).

The mRNA levels of MRPA, GSH1, ODC, AQP1, ABCI4,
and ARM58—genes associated with Sb resistance in Leishmania
parasites—were investigated. As shown in Figure 1B, increased
mRNA levels of MRPA (2-fold) and to a lower extent of GSH1
(1.5-fold) were found in LgSbR mutant, when compared to the
parental strain. No differences were observed for ODC or AQP1
mRNA for this mutant (Figure 1). On the other hand, LbSbR
mutant did not exhibit any relevant change in mRNA levels
of either MRPA, GSH1, AQP1, ABCI4, or ARM58 (Figure 1A).
Despite the fact that no significant difference on mRNA levels
of thiol biosynthetic enzymes was observed, increased levels of
cysteine and glutathione for LgSbR and a higher amount of
trypanothione in LbSbR were detected when compared to WT
lines (Figure 2).

Kinetics of Sb Uptake and Influx Studies
Figure 3 shows the kinetics of Sb uptake in L. braziliensis and
L. guyanensis SbR mutants in comparison to their parental
strains. The results indicate that both mutants exhibited a
lower initial rate of Sb influx (3 × 10−12 and 0.4 × 10−12

nmol.s−1.cell−1 for L. braziliensis and L. guyanensis, respectively)
when compared to their respective susceptible counterparts
(7 × 10−12 and 5×10−12 nmol.s−1.cell−1, for L. braziliensis

TABLE 2 | Half-maximal growth inhibition concentrations (IC50) of Sb
III in

Sb-resistant L. braziliensis and L. guyanensis promastigotes and their

respective parental lines and corresponding resistance index.

Species IC50 (µM) Resistance index

Wild type Resistant

L. (V.) braziliensis 86.1 ± 1.1 623.7 ± 44.7 7.2

L. (V.) guyanensis 47.4 ± 7.8 1167 ± 1.1 24.6
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FIGURE 1 | mRNA levels of classical markers of resistance in Sb-resistant (A) L. braziliensis SbIII330.2 and (B) L. guyanensis SbIII650.4 mutants relative to the

respective WT parental strains. The mRNA levels were determined by real time PCR. (A) mRNA of, AQP1, GSH1, MRPA, ABCI4, and ARM58. (B) mRNA of AQP1,

GSH1, MRPA, and ODC. Results are shown as means of three independent experiments performed from three different RNA preparations.

FIGURE 2 | Intracellular levels of thiols in Sb-resistant L. braziliensis SbIII330.2 (A) and L. guyanensis SbIII650.4 (B) mutants relative to the respective WT

parental strains. Thiols were derivatized with monobromobimane from deproteinized cell extract and separated by HPLC coupled with fluorescent detector. The values

represent two experiments performed in triplicate. Data were analyzed by one-way ANOVA followed by Dunnet’s multiple comparison test. ***p < 0.01.

and L. guyanensis, respectively). As illustrated in Figure 4, the
determination of the initial rate of Sb influx as a function of the
extracellular Sb concentration showed a saturation at high drug
concentration in the case of all strains, except for LgSbR. The
kinetics constants of Sb influx were then calculated according
to the Michaelis-Menten model (Table 3). We can infer that the
decrease of drug influx contributed to the reduction of drug
uptake, mainly in the case of LgSbR.

Kinetics of Sb Efflux
After loading the mutant and WT promastigotes with a similar
amount of Sb (the initial amounts of Sb were respectively: 0.50
± 0.018 nmol/108 cells and 0.53 ± 0.021 nmol/108 cells for
L. guyanensis WT and mutant; and 2.37 ± 0.53 nmol/108 cells
and 2.28 ± 0.61 nmol/108 cells for L. braziliensis WT and
mutant), the cells were washed and resuspended in a drug-
free buffer to assess the kinetic of drug release. As shown
in Figure 5, the Sb efflux was faster from the SbR mutants
when compared with their WT counterparts. Assuming a

monoexponential drug release model, the half-time of drug
release was estimated and compared between the different
cell lines (Table 4). The efflux of Sb was found 45-fold and
21-fold faster in LgSbR and LbSbR, respectively. These data
support the model in which the increase of drug efflux strongly
contributes to the reduction of drug uptake in both Leishmania
mutants.

Effects of the ABC Transporter Inhibitors
on Sb Uptake and Efflux in Leishmania spp.
To further characterize the SbIII transport routes involved in the
resistance of both L. braziliensis and L. guyanensis Sb- resistant
mutants, a pharmacological approach was adopted based on
the use of the following classical ABC transporter inhibitors:
verapamil as MDR1-transporter inhibitor (Neal et al., 1989;
Valiathan et al., 2006); probenicid as MRP-transporter inhibitor
(Courtois et al., 1999; Payen et al., 2000; Mandal et al., 2009);
prochlorperazine as MDR1- and MRP-transporter modulator
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FIGURE 3 | Kinetics of incorporation of SbIII uptake in WT and SbIII-resistant and L. braziliensis SbIII330.2 (A) and L. guyanensis SbIII650.4 (B)

promastigotes. Cells were incubated with 540µM SbIII at 25 ± 1◦C under agitation shaking in Hepes/NaCl/Glucose buffer. Cells were harvested and washed at

different time points for intracellular Sb determination by graphite furnace atomic absorption spectrometry. The values of Sb content are shown as means ± SEM

(n = 8).

FIGURE 4 | Rate of Sb influx as a function of extracellular Sb concentration in WT and SbIII-resistant L. braziliensis SbIII330.2 (A) and L. guyanensis

SbIII650.4 (B). The parasites were exposed to different concentrations of SbIII for 1 h at 25◦C in Hepes/NaCl/Glucose buffer and the intracellular Sb content was

determined by graphite furnace atomic absorption spectroscopy. The influx rate of Sb was calculated as: Vi = amount of intracellular antimony/(number of cells x time

of uptake). All experiments were performed at least three times as independent experiments in quadruplicate. The values are shown as means ± SEM. Statistically

different values are highlighted as *p < 0.05, **p < 0.01, ***p < 0.001.

(Essodaigui et al., 1999; Wesołowska, 2011; Rai et al., 2013) and
BSO as intracellular thiol-depleting agent (Arana et al., 1998).

Table 5 displays the sensitivity (IC50) of the L. braziliensis and
L. guyanensis strains to the different ABC transporter inhibitors
(See also growth inhibition curves in Supplementary Figure
3). Although most of the inhibitors exhibited IC50 values in
the same range when comparing the WT and SbR strains,
prochlorperazine showed a distinct profile, as it was about 20-fold
more active against the WT than LgSbR. This apparent cross-
resistance suggests that prochlorperazine and SbIII may share the
same transport pathway in this mutant. Verapamil was also 2-
fold more active against the WT than LgSbR, however, it showed
an opposite profile in the L. braziliensis strains.

The antileishmanial activities of SbIII in the absence and
presence of ABC transporter inhibitors were compared, for each
tested Leishmania strain (Table 6 See also growth inhibition

curves in Supplementary Figures 4,5). Among the different
inhibitors, prochlorperazine was the only agent to resensitize
both SbR strains, the most pronounced effect being observed in
L. guyanensis. Interestingly, no such sensitization was observed
in the WT parental strains. However, the lower concentration
of prochlorperazine used in the WT lines (because of their
greater susceptibility) may explain the lack of sensitization.
Probenecid specifically sensitized the L. braziliensis strains to
SbIII, but this effect occurred in both the mutant and wild-type
strains. Surprisingly, verapamil promoted sensitization to SbIII

specifically in the WT strains.
Figure 6 shows the impact of cell pre-exposure to

ABC transporter inhibitors on the subsequent Sb uptake.
Prochlorperazine was the only inhibitor to enhance Sb uptake
specifically in SbR strains, in agreement with its sensitizing
effect. On the other hand, probenecid enhanced the uptake of Sb
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only in LgSbR. It is noteworthy that BSO resulted in increased
Sb uptake in LgSbR mutant and in both WT and LbSbR. In
contrast, exposition to the metabolic inhibitor sodium azide did
not promote significant change in Sb uptake in any of the tested
cell lines. Also, corroborating the results of the sensitization
assay, verapamil increased the Sb uptake in the WT strains of
both species.

To evaluate the effect of the inhibitors on the efflux of Sb, cells
were first exposed for 1 h to 1 mM SbIII, washed, resuspended in
drug-free Hepes/NaCl buffer and incubated for 2 h in the absence
or presence of the inhibitor. Figure 7 displays the percentages
of Sb released from the different strains after 2 h of efflux.
Prochlorperazine was the only agent to significantly inhibit Sb
efflux specifically in the resistant strains, in agreement with its
ability to increase the cellular drug uptake. Probenecid reduced

TABLE 3 | Kinetic constants for Sb influx at 25◦C in WT and SbIII-resistant

L. braziliensis and L. guyanensis promastigotes.

Leishmania

lines

INFLUX

aKm

(nM)

aVmax

(nmol. s−1.cell−1)

bkinflux
(L.s−1.cell−1)

kinflux WT/

kinfluxR

L. braziliensis

Wild-type 1.7 ± 1.0 ×106 2.6 ± 0.2 × 10−11 1.6 × 10−17 1.8

Resistant 1.1 ± 0.6 × 106 1.1 ± 0.1 × 10−11 0.9 × 10−17

L. guyanensis

Wild-type 1.3 ± 0.3 × 106 2.0 ± 0.1 × 10−11 1.6 × 10−17 166

Resistant − − 0.1 × 10−18

aThe values were obtained by nonlinear regression analysis according to the Michaelis-

Menten model.
bThe values were calculated through kinflux = Vmax/Km (Michaelis-Menten model) or

through kinflux = Vi/Ce when no saturation was observed.

the efflux of Sb in bothmutants, but the effect was only significant
in LbSbR. Sodium azide markedly inhibited the efflux of Sb
mainly in SbR mutants, evidencing that Sb efflux in the resistant
strains is essentially energy-dependent. The thiol-depleting agent
BSO showed a significant effect only in LgSbR. On the other
hand, verapamil exerted no significant effect on the drug
efflux.

DISCUSSION

The main objective of the present work was to functionally
characterize the transport routes of Sb in L. braziliensis and
L. guyanensis strains selected for Sb resistance, by using
systematic transport kinetic analysis and investigating the effect
of ABC transporter inhibitors on uptake and efflux of Sb.
This work can be seen as a continuation of a previous study
performed on resistant laboratory mutants from the same
Leishmania (Viannia) species, that also exhibited decreased
influx and increased efflux of Sb (Moreira et al., 2013). New
insights here include data on additional resistance markers
such as mRNA levels of GSH1, LABCI4 and ARM58 and
thiol levels, the demonstration of the energy-dependence of
the efflux and the identification of a new chemosensitizer.
In addition, the mutants studied here are different strains
that were obtained independently in another laboratory.
Indeed, our L. braziliensis mutant does not overexpress
MRPA gene, contrary to the strain studied previously
(Moreira et al., 2013).

The L. guyanensis mutant investigated previously showed
down-regulation of AQP1 protein (Moreira et al., 2013),
whereas the present mutant exhibits a single point mutation
G133D in AQP1 (Monte-Neto et al., 2015). Functional
validation confirmed that G133D mutation by itself is the
main alteration related to reduced antimony uptake comparable

FIGURE 5 | Time course of Sb efflux at 25◦C from WT and SbIII-resistant L. braziliensis SbIII330.2 (A) and L. guyanensis SbIII650.4 (B) promastigotes. Cells

were first loaded for 1 h with SbIII and then washed, resuspended and incubated in drug-free Hepes/NaCl/Glucose buffer. After different time intervals (from 0 to 2 h),

cells were retrieved and the amount of intracellular Sb was determined by graphite furnace atomic absorption spectroscopy. Data are expressed as percentage of

initial Sb and shown as means ± SEM. All experiments were carried out at least three times as independent experiments performed in quadruplicate. Statistically

different values are highlighted as *p < 0.05, **p < 0.01, ***p < 0.001.
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TABLE 4 | Kinetic constants for SbIII efflux at 25◦C in WT and

SbIII-resistant L. braziliensis and L. guyanensis promastigotes.

Leishmania lines EFFLUX

akefflux (L.s−1.cell−1) bT1/2 (s) T1/2Wt/ T1/2R

L. braziliensis

Wild-type 1.4 × 10−17 593.5 21.0

Resistant 8.6 × 10−17 28.3

L. guyanensis

Wild-type 1.0 × 10−17 379.8 45.0

Resistant 13.7 × 10−17 8.4

aThe efflux rate constant kefflux was obtained from the equation: Ve = kefflux × Ci, where

Ve is the initial rate of efflux determined from the tangent of the kinetic curve and Ci is

the intracellular concentration of Sb estimated at time zero using a cell volume of 1.2 ×

10−14 L.
bThe half-time of Sb efflux (T1/2 ) was calculated using mono-exponential decay model.

with levels observed in L. guyanensis lacking AQP1 (Monte-
Neto et al., 2015). Since AQP1 also plays an important role
in osmoregulation (Figarella et al., 2007), when submitted to
a hypoosmotic challenge, L. guyanensis SbR mutants increased
volume and presented a delayed recovery time compared to their
WT counterpart, a profile that was also comparable with AQP1
lacking L. guyanensis, confirming the highly destabilizing nature
of G133D mutation for AQP1 (R. Monte-Neto and D. Pires,
unpublished results). The increased mRNA levels of MRPA and
themarked reduction of Sb influx, as reported here, are consistent
the previously reported amplification of the MRPA gene and the
mutated and inactivated form of AQP1 (Monte-Neto et al., 2015).

Interestingly, the L. braziliensis SbR mutant did not show
significant change in the mRNA levels of eitherMRPA, LABCI4,
or ARM58 (Figure 1), suggesting that these transport proteins
are not involved in the resistance mechanism of this strain.
The lack of important change in antimony uptake in LbSbR
mutant is in agreement with the unchanged AQP1 mRNA
levels (Figure 1) together with the fact that gene sequence is
intact (Supplementary Figure 1). Examining clinical isolates
of L. braziliensis from brazilian patients presenting different
antimonial treatment outcomes, Torres et al. (2010) did not find
any difference in the expression levels of antimony metabolism
associated genes such as MRPA, AQP1, GSH1, GSH2, TRYR, and
TDR1 (Torres et al., 2010). It is noteworthy to mention that the
resistance index (RI) of 7-fold presented by LbSbR (Table 2) is
comparable with clinical isolates (Pérez et al., 2016) in which
mechanisms of resistance would differ from those obtained from
other laboratory-selected mutants presenting higher resistance
indexes, like LgSbR that is approximately 25 times more resistant
to Sb than its WT counterpart (Table 2). Indeed, laboratory-
selected L. braziliensis presenting antimony RI of 20-fold had
increased MRPA-encoding mRNA levels (Moreira et al., 2013),
confirming the multifactorial nature of Sb resistance, being the
mechanisms dependent on the RI.

Although no significant change was observed in mRNA
levels of GSH1 and ODC, increased levels of the intracellular
thiols cysteine and glutathione were found in LgSbR, while
LbSbR presented higher contents of trypanothione, when

TABLE 5 | Sensitivity (IC50 ± SEM) of L. braziliensis and L. guyanensis

strains to different ABC transporter inhibitors (verapamil, probenicid,

prochlorperazine, BSO).

Transporter IC50 ± SEM

inhibitors L. braziliensis L. guyanensis

Wild-type Resistant Wild-type Resistant

Verapamil (µM) 63.8 ± 1.8 27.0 ± 0.1 45.6 ± 3.4 82.7 ± 0.1

Prochlorperazine (µM) 7.5 ± 2.3 11.6 ± 0.1 3.5 ± 0.6 68.4 ± 0.1

Probenecid (mM) 204.5 ± 1.2 101.0 ± 0.2 503.5 ± 3.3 385.3 ± 31.5

BSO (mM) >100 >100 >100 53.4 ± 0.8

TABLE 6 | Effect of different ABC transporter inhibitorsa on the

half-maximal growth inhibition concentration (IC50) of Sb
III in Sb-resistant

L. braziliensis and L. guyanensis promastigotes and their respective

parental lines.

Transporter

inhibitors

IC50 of SbIII ± SEM (µM)

L. braziliensis L. guyanensis

Wild-type Resistant Wild-type Resistant

SbIII 86.1 ± 1.1 623.7 ± 44.7 47.4 ± 7.8 1167 ± 1.1

Verapamil 23.5 ± 3.5** 402.7 ± 18.2 9.5 ± 0.3** 877.7 ± 1.2

Prochlorperazine 78.0 ± 3.7 332.2 ± 17.4* 68.6 ± 1.4 146.4 ± 1.3***

Probenecid 45.7 ± 2.3* 330.0 ± 45.5* 51.9 ± 1.2 1163.4 ± 1.2

BSO 75.5 ± 3.0 567.8 ± 4.6 43.0 ± 4.5 945.3 ± 5.7

aNon-toxic concentrations were used: 8µM verapamil, 4 mM probenecid, 10µM

prochlorperazine, 100µMBSO in resistant strains and 8µM verapamil, 4 mM probenecid,

3.5µM prochlorperazine, 100µM BSO in parental strains.

*p< 0.05, **p< 0.01, ***p< 0.001 for statistical comparison to treatment with SbIII alone.

The data comes from at least three independent experiments.

compared with their WT counterparts (Figure 2). A similar
LgSbR thiol profile including increased levels of cysteine and
glutathione without trypanothione change was also observed
in SbR L. donovani field isolates (Mukherjee et al., 2007) and
could be explained by a positive feedback where alterations
in two thiol biosynthetic steps enhanced the amount of
reduced trypanothione that can be depleted by a Sb-dependent
mechanisms like Sb-TSH conjugate efflux (Wyllie et al., 2004).
However, LbSbR presented an opposite profile, having higher
trypanothione level and equivalent amounts of cysteine and
glutathione, when compared with WT (Figure 2). Romero et al.
(2015) reported an increase in total intracellular thiol content
of L. braziliensis upon overexpression of cysteine synthase and
cystathionine-β-synthase in presence of oxidative and nitrosative
stresses (Romero et al., 2015). Thus, overexpression of other
thiol biosynthetic enzyme(s) probably contributes to antimony
resistance phenotype in our mutant. The increased amount of
total intracellular thiols in absence of GSH1 mRNA alterations
as reported here was previously reported in clinical isolates of
SbR L. donovani (Rai et al., 2013), also supporting the fact
that the involvement of thiol metabolism in laboratory-selected
SbR Leishmania (Viannia) species is a feature shared with field
isolates.
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FIGURE 6 | Effect of pre-exposure to different ABC transporter inhibitors on Sb uptake in WT (A) and SbIII-resistant (B) L. braziliensis and WT (C) and

SbIII-resistant (D) L. guyanensis promastigotes. The cells were pre-incubated for 24 h in α-MEM in the absence or presence of the inhibitor (8µM verapamil, 4 mM

probenecid, 10µM prochlorperazine, 100µM BSO in resistant strains and 8µM verapamil, 4 mM probenecid, 3.5µM prochlorperazine, 100µM BSO in parental

strains), then exposed to 1 mM SbIII for 1 h in HG buffer, washed and processed to determine the intracellular Sb content. When evaluating sodium azide, the cells

were resuspended in glucose-free HG buffer containing 10 mM azide and 1 mM SbIII and incubated for 1 h. The data comes from at least three independent

experiments and are shown as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 for statistical comparison to Control, using One-way ANOVA followed by

Bonferroni multiple comparison test.

From the transport kinetic studies, it is clear that both
influx and efflux pathways contributed to the reduced cellular
accumulation of Sb and the drug resistance phenotype. However,
the change in drug influx had a much greater contribution
in the L. guyanensis than in the L. braziliensis mutant. The
fact that influx was not saturable in LgSbR, in contrast to
the other strains, suggests that SbIII enters into this cell
through an AQP1-independent non-saturable transport route.
A strongly energy-dependent efflux was clearly evidenced in
both mutants. In LgSbR, the marked effect of BSO on Sb
efflux (Figure 7) and the influence of probenecid on Sb uptake
(Figure 6) further support the involvement of a MRP-type
transporter capable of extruding metal-thiol conjugates. This

transporter may be functionally related to MRPA found to be
overexpressed in this mutant. Interestingly, the increased levels
of thiols and MRPA mRNA in LgSbR also correlates with its
higher sensitivity to BSO compared to its WT counterpart, in
agreement with the observation of Moreira et al. (2013) for
L. braziliensis. Whether the efflux transport also involves an
exocytosis or a secretion pathway, as previously hypothesized
(Legaré et al., 2001; Manzano et al., 2013; Perea et al., 2016;
Tejera Nevado et al., 2016), still need to be investigated. In
LbSbR, the effect of probenecid on the Sb efflux is also consistent
with a MRP-type transporter, however, no increase in gene
expression of the potential transporters MRPA, LABCI4 and
ARM58 was observed (Figure 1). The lack of effect of BSO
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FIGURE 7 | Effect of different ABC transporter inhibitors on the percentage of Sb released from WT (A) and SbIII-resistant (B) L. braziliensis and WT (C) and

SbIII-resistant (D) L. guyanensis promastigotes, after 2 h of efflux. Cells were first exposed for 1 h at 25◦C to 1 mM SbIII, were washed and resuspended in HG buffer

at 108 cells/mL and were incubated for 2 h at 25◦C in the absence or presence of the inhibitor (8µM verapamil, 4 mM probenecid, 10µM prochlorperazine, 100µM

BSO, 10 mM sodium azide in resistant strains and 8µM verapamil, 4 mM probenecid, 3.5µM prochlorperazine, 100µM BSO, 10 mM sodium azide in parental

strains). Only when evaluating the effect of azide, that the buffer did not contain glucose. The cells were finally washed and processed to determine the cellular content

of Sb. The data are shown as the percentage of Sb released for 2 h in relation to the initial cellulart Sb content. The data comes from at least three independent

experiments and are shown as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 for statistical comparison to Control (without inhibitor), using One-way ANOVA

followed by Bonferroni multiple comparison test.

(Figure 7) also suggests no apparent dependence of the efflux
on thiol, even though trypanothione showed higher levels in this
mutant.

Verapamil significantly enhanced the sensitivity to SbIII in
the WT cell lines, but not in the mutants. In the parental
cells, it also increased the uptake of Sb. On the other hand,
no effect on Sb efflux was observed. Since verapamil was
reported to inhibit the ABC transporter PRP1 in L. major,
which was also found to confer low level of resistance to
SbIII (Coelho et al., 2003), a possible participation of PRP1

in the transport of SbIII in the wild-type cells can be
suggested.

The ability of prochlorperazine to specifically sensitize the
resistant strains to SbIII and inhibit the active efflux of Sb is
an important finding of the present work. Due to its higher
cytotoxicity toward WT than SbR strains, prochlorperazine was
tested at lower concentration in the sensitization and transport
assays of theWT strains. Thismay also explain the lack of effect of
this drug in theWT strains. Our data strongly supports themodel
that this compound sensitizes the mutants to Sb by inhibiting
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the efflux route of Sb. However, one cannot completely discard
the possibility that the sensitizing effect of prochlorperazine may
come from the combined toxic effects of prochlorperazine and
SbIII. Nevertheless, the efflux data in the resistant mutants which
were co-exposed to prochlorperazine and SbIII for only 2 h,
strongly support a direct effect of prochlorperazine on efflux
pathway. The lack of combined toxic effects is also reinforced
by the fact that the WT strains which were more sensitive to
both SbIII and prochlorperazine did not exhibit any sensitizing
effects. Prochlorperazine belongs to the class of phenothiazine
drugs which have been found to be effective inhibitors of MDR1-
transporters in cancer cells (Wesołowska, 2011; Takács et al.,
2015). In Leishmania, these compounds were also reported
to inhibit the efflux pumps of fluorescent substrates of ABC
transporters (Essodaigui et al., 1999; Rai et al., 2013). However,
it is the first report of a phenothiazine derivative capable of
overcoming the antimony resistance in Leishmania parasites by
interfering in the drug efflux. Regarding the mechanism of action
of this compound, it may act either by competing with SbIII for
efflux transport or by reducing the intracellular concentration of
reduced thiol through inhibition of the trypanothione reductase
(Chan et al., 1998). The fact that prochlorperazine and SbIII

showed cross-resistance in the L. guyanensis mutant (Table 5)
supports the idea that these drugs may share the same transport
pathway and is consistent with the competition transport model.

In conclusion, the present study allowed the biophysical and
pharmacological characterization of energy-dependent Sb efflux
pathway apparently independent of MRPA, ABCI4, and ARM58
upregulation, in a Leishmania (Vianna) mutant selected in vitro
for resistance to SbIII. Prochlorperazine has also been identified
as an effective chemosensitizer in both Sb resistant mutants,
which acts through inhibition of the active efflux of Sb.
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