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PTK7 (protein tyrosine kinase 7) is an evolutionarily conserved transmembrane receptor

regulating various processes in embryonic development and tissue homeostasis. On

a cellular level PTK7 affects the establishment of cell polarity, the regulation of cell

movement and migration as well as cell invasion. The PTK7 receptor has been shown

to interact with ligands, co-receptors, and intracellular transducers of Wnt signaling

pathways, pointing to a function in the fine-tuning of the Wnt signaling network. Here we

will review recent findings implicating PTK7 at the crossroads of Wnt signaling pathways

in development and disease.
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INTRODUCTION

PTK7 (protein tyrosine kinase 7) is an evolutionarily conserved transmembrane receptor with a
broad range of functions in tissue development and homeostasis. Originally identified as a gene
upregulated in colon carcinoma cells and accordingly named colon carcinoma kinase 4 (CCK-4)
(Mossie et al., 1995) it was later shown to affect various aspects of cell-cell communication and
movement. PTK7 controls tissuemorphogenesis and patterning by affecting cell polarity, migration
as well as tissue regeneration and wound healing (Lu et al., 2004; Shnitsar and Borchers, 2008;
Caddy et al., 2010; Lee et al., 2011; Lander and Petersen, 2016). Additionally its function in adult
tissue homeostasis is demonstrated by the fact that misregulation of PTK7 expression correlates
with development of cancer and its progression to metastasis in various cellular contexts (reviewed
in Dunn and Tolwinski, 2016). Furthermore, mutations in PTK7 have been implicated in scoliosis
and human neural tube closure defects, demonstrating its clinical relevance (Hayes et al., 2014;
Wang et al., 2015; Grimes et al., 2016). Since the first publication on PTK7/CCK-4 (Mossie et al.,
1995) more than 20 years ago over 120 publications have followed. Although its signaling function
is still far from being understood, recent findings provide compelling evidence that PTK7 is a
regulator of Wnt signaling pathways. In this review we will summarize recent findings and take
a look at PTK7’s function in distinct Wnt signaling pathways.

Secreted glycoproteins of the Wnt family are key regulators of development and disease.
Wnt ligands regulate a wide range of processes including primary embryonic axis specification,
organogenesis and stem cell proliferation. Further, deregulated Wnt signaling has been implicated
in various diseases like colon and breast cancer, melanoma, and neurodegenerative disorders
(MacDonald et al., 2009; Clevers and Nusse, 2012; Anastas and Moon, 2013; Inestrosa and
Varela-Nallar, 2014). Wnt ligands activate distinct downstream signaling pathways, and historically
the first described, ß-catenin-dependent, signaling cascade is referred to as the “canonical”
Wnt signaling pathway, while later discovered, ß-catenin-independent pathways were termed
“non-canonical.” Canonical Wnt signaling (Logan and Nusse, 2004; MacDonald et al., 2009)
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is activated by binding of the Wnt ligand to a receptor
complex consisting of the seven-pass transmembrane Frizzled
(Fz) receptor and the low-density lipoprotein receptor-related
protein 6 (LRP6) (MacDonald and He, 2012). Wnt binding to
the Fz/LRP6 receptor complex leads to inactivation of glycogen
synthase kinase 3ß (GSK3ß) regulating various intracellular
substrates. One of these is the transcriptional co-activator ß-
catenin, which is phosphorylated and thereby targeted for
proteasomal degradation. Thus, in the presence of Wnt ligands,
ß-catenin is stabilized, enters the nucleus and regulates in
combination with transcription factors of the Lef (lymphoid
enhancer-binding factor) and Tcf (T cell factor) family the
transcription of target genes. In contrast to canonical Wnt
signaling, non-canonical Wnt signaling pathways encompass
a complex network of signal transducers that do not activate
ß-catenin, but use alternative modes of downstream signaling
(reviewed in Niehrs, 2012). Here, we will focus on the planar
cell polarity (PCP) pathway, as PTK7 has been implicated in its
regulation.

The PCP pathway (Goodrich and Strutt, 2011; Yang and
Mlodzik, 2015) determines the orientation of cells in the plane
of an epithelium and is one of the best-characterized non-
canonical Wnt signaling pathways. PCP was first described
in Drosophila, where genetic screens discovered its function
in the polarization of adult cuticular structures. According to
mutant phenotypes showing wing hair polarity defects the genes
Frizzled (Fz) and Disheveled (Dsh) were identified. Other core
PCP proteins include the four-pass transmembrane protein Van
Gogh (Vang, Strabismus), the atypical cadherin Flamingo (Fmi,
Celsr) and intracellular components like Prickle (Pk) and Diego
(Dgo). These proteins confer intra- and intercellular signaling,
thereby aligning PCP in neighboring cells. Complementary
studies in vertebrates revealed that these core PCP proteins
are also required for the polarization of vertebrate tissues, like
the orientation of hair follicles in the epidermis or the sensory
hair cells in the inner ear (Montcouquiol et al., 2006; Simons
and Mlodzik, 2008; Wallingford, 2012). Furthermore, these
proteins are also involved in the polarized localization of cilia,
microtubule-based protrusions that are found on the surface of
most vertebrate cells and required for fluid movement during
development and homeostasis (Wallingford, 2010; Wallingford
and Mitchell, 2011). In addition to the polarization of tissues,
loss of function studies using the mouse, zebrafish and Xenopus
model systems demonstrated that PCP signaling also affects
morphogenetic cell movements shaping the embryonic body.
One of these is convergent extension, a cell movement whereby
cells intercalate in a way that a tissue converges in one direction
and extends in the perpendicular direction (Wallingford et al.,
2002; Wallingford, 2012). Convergent extension is required
to drive gastrulation and neural tube closure. Consequently,
misregulation of PCP signaling leads to severe gastrulation and
neurulation defects in mouse, zebrafish and Xenopus embryos.
Since the discovery of vertebrate PCP phenotypes, these have also
contributed to the identification of novel vertebrate regulators
of PCP without previous knowledge of a Drosophila phenotype.
One of these genes, which was identified by its mouse neural tube
closure and inner ear hair polarity defect, is PTK7.

PTK7 AFFECTS Wnt SIGNALING
PATHWAYS

Vertebrate PTK7 is according to the current criteria a bona
fide PCP regulator. Using a mouse gene trap-screen for
transmembrane proteins with a function in neural development,
PTK7 mutants were identified showing a combination of severe
neural tube closure and inner ear polarity defects (Lu et al., 2004).
Based on this mutant phenotype, which is typical for known
regulators of PCP (Hamblet et al., 2002; Curtin et al., 2003;
Montcouquiol et al., 2003), as well as its genetic interaction with
Vangl2, PTK7 was added to the list of vertebrate PCP regulators.
Further functional studies using mouse, zebrafish and Xenopus
confirmed a function for PTK7 in processes that are regulated
by PCP signaling, including convergent extension movements
during gastrulation, neurulation and Wolffian duct elongation,
as well as neural crest migration and wound healing (Table 1).
Surprisingly, although PTK7 appears to be a core regulator of
vertebrate PCP, classical PCP phenotypes have so far not been
reported for the Drosophila orthologs of PTK7, off-track (otk),
and off-track2 (otk2). These two genes, which are the result of
a tandem gene duplication, function redundantly in the tubular
morphogenesis of the male ejaculatory duct, leading to male
sterility in the otk, otk2 double mutant (Linnemannstons et al.,
2014). Intriguingly, mesoderm-specific knock-out of PTK7 in the
mouse resulted in tubular morphogenesis defects in the Wolffian
duct, again leading tomale sterility (Xu et al., 2016). In both cases,
tubular morphogenesis defects upon loss of Otk/Otk2 or PTK7
may be caused by the failure to properly execute convergent
extension movements. Thus, although the Drosophila mutants
do not display the classical PCP defects, PTK7/Otk may play an
evolutionarily conserved role in the regulation of cell movements.

The molecular mechanism by which PTK7 affects PCP
signaling is currently unclear. However, as PTK7 interacts with
Wnt ligands and known Wnt receptors (Table 2) it likely affects
PCP by functioning as a Wnt receptor. This is also supported
by the structure of PTK7, which is highly reminiscent of
receptor tyrosine kinases. PTK7 consists of seven extracellular
immunoglobulin domains, a transmembrane domain, and an
evolutionarily conserved tyrosine kinase homology domain. The
kinase homology domain of PTK7 lacks catalytic activity (Miller
and Steele, 2000; Kroiher et al., 2001), but serves as an interaction
site for intracellular signaling molecules like ß-catenin, Dsh, and
Src (Shnitsar and Borchers, 2008; Puppo et al., 2011; Andreeva
et al., 2014). PTK7 interacts with distinctWnt receptors including
Fz7, LRP6, and Ror2 (Peradziryi et al., 2011; Bin-Nun et al., 2014;
Linnemannstons et al., 2014; Martinez et al., 2015; Podleschny
et al., 2015), indicating that PTK7 affects canonical and non-
canonical Wnt signaling pathways. This is also reflected by its
evolutionarily conserved interaction with different Wnt ligands
that are supposed to signal via both canonical and non-canonical
pathways (Peradziryi et al., 2011; Linnemannstons et al., 2014;
Martinez et al., 2015). While its requirement for PCP signaling
is firmly established, the function of PTK7 in canonical Wnt
signaling remains controversial. PTK7 has been reported to
activate canonical Wnt signaling in the context of Spemann’s
organizer formation (Puppo et al., 2011) and the specification
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TABLE 1 | PCP phenotypes upon PTK7 loss of function in vertebrates.

PCP phenotype Process Mutant References

Craniorachischisis Neural tube closure Mouse, hypomorphic mutant (Ptk7XST87 ) Lu et al., 2004

Mouse, chuzhoi mutant (insertion of

MT1-MMP splice site)

Paudyal et al., 2010

Convergent extension defect Neural tube closure Mouse, hypomorphic mutant (Ptk7XST87 ) Lu et al., 2004; Williams et al., 2014

Xenopus, Morpholino knockdown Lu et al., 2004; Wehner et al., 2011

Zebrafish, maternal-zygotic mutant

(ptk7hsc9)

Hayes et al., 2013

Gastrulation Mouse, hypomorphic mutant (Ptk7XST87 ) Yen et al., 2009

Zebrafish, maternal-zygotic mutant

(ptk7hsc9)

Hayes et al., 2013

Wolffian duct morphogenesis Mouse, hypomorphic mutant (Ptk7XST87 ) Xu et al., 2016

Impaired stereociliary bundle

orientation

Development of the organ of corti Mouse, hypomorphic mutant (Ptk7XST87 ) Lu et al., 2004; Lee et al., 2012; Andreeva

et al., 2014

Mouse, chuzhoi mutant (insertion of

MT1-MMP splice site)

Paudyal et al., 2010

Impaired neural crest migration Neural crest migration Xenopus Morpholino knockdown Shnitsar and Borchers, 2008; Podleschny

et al., 2015

Defective wound repair Epidermal wound repair Mouse, hypomorphic mutant (Ptk7XST87 ) Caddy et al., 2010

Defect in cilia development Development of ependymal cell cilia Zebrafish, zygotic mutant (ptk7hsc9) Grimes et al., 2016

TABLE 2 | PTK7 interaction partners with a known function in Wnt signaling.

Interaction partner Interaction domain Biological context References

Wnt ligand Wnt3a, Wnt8 Extracellular domain Xenopus double axis assay Peradziryi et al., 2011

Wnt4 Unknown Xenopus double axis assay Peradziryi et al., 2011

Wnt5a Extracellular domain

(Ig4-7)

Xenopus morphogenesis Martinez et al., 2015

Wnt2 Unknown Drosophila male fertility Linnemannstons et al., 2014

Wnt receptor Fz1 Unknown Drosophila male fertility Linnemannstons et al., 2014

Fz2 Unknown Drosophila male fertility Linnemannstons et al., 2014

Fz7 Extracellular domain Xenopus luciferase reporter assay Peradziryi et al., 2011

Ror2 Extracellular domain

Ig1-7

Xenopus morphogenesis and neural crest

migration

Martinez et al., 2015; Podleschny et al., 2015

LRP6 Transmembrane

domain

Xenopus posterior neural development Bin-Nun et al., 2014

Intracellular Wnt components Dsh Kinase homology

domain (via Rack1/

PKCδ1)

Xenopus neural crest migration and neural

tube closure

Shnitsar and Borchers, 2008; Wehner et al., 2011

β-catenin Kinase homology

domain

Xenopus Spemann Organizer formation Puppo et al., 2011

of posterior neural tissue (Bin-Nun et al., 2014) in Xenopus
embryos. However, PTK7 inhibits canonical Wnt signaling in
Xenopus double axis and luciferase reporter assays (Peradziryi
et al., 2011). This was confirmed by ptk7 mutant zebrafish, which
showed an upregulation of ß-catenin target gene expression,
suggesting that PTK7 functions in attenuating canonical Wnt
signaling (Hayes et al., 2013). Conflicting results were also
obtained analyzing the interaction of PTK7 with Wnt ligands
using immunoprecipitation of overexpressed/tagged constructs.
While we found interaction of PTK7 with canonical Wnt3a and

Wnt8 but not non-canonical Wnt5a (Peradziryi et al., 2011)
in Xenopus lysates, Martinez et al. observed an interaction
with non-canonical Wnt5a, but not canonical Wnt1 (Martinez
et al., 2015) in HEK293T cells. Some of these contradictions
may be explained by receptor context. Using secreted proteins
we showed that the extracellular domain of PTK7 requires
the extracellular Fz7 domain for interaction with recombinant
Wnt3a (Peradziryi et al., 2011). Conversely, Wnt5a binding
may require the Ror2 co-receptor. Although Martinez et al.
confirmed interaction of PTK7 and Wnt5a in cells that were
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depleted of Ror2 using a specific siRNA, there may still be
sufficient endogenous Ror2 present to mediate binding. Thus,
studies analyzing direct interaction of PTK7 andWnt ligands are
currently lacking. Furthermore, experiments testingWnt binding
of combinatorial PTK7 co-receptor complexes are required. As
PTK7 is a versatile receptor interacting not only with Wnt co-
receptors but also with plexin and VEGF receptors (reviewed in
Peradziryi et al., 2012), the latter interactions may also contribute
to tissue-specific differences. Thus, future research will have to
elucidate how receptor context affects PTK7 signaling and its
functions in distinct Wnt signaling pathways.

PTK7 AND DISEASE

As PTK7 has a crucial function in the regulation ofWnt signaling
pathways known to be essential for embryonic development and
homeostasis, mutations in the human PTK7 gene are likely of
clinical relevance. PTK7 was identified as a gene upregulated
in colon carcinoma cells and appears to be misregulated in a
variety of cancers (Dunn and Tolwinski, 2016). Furthermore,
PTK7 mutations have recently been implicated in the etiology of
neural tube defects and scoliosis (Hayes et al., 2014; Wang et al.,
2015). Here, we will briefly describe these respective disorders
and look at the human PTK7 gene variants identified in this
context as well as their functional implications.

The connection between PTK7 and cancer has so far mostly
been deduced on the basis of up- or downregulation of PTK7
in a variety of cancer types. PTK7 levels were reported to be
increased in esophageal (Shin et al., 2013), gastric (Lin et al.,
2012), colorectal (Lhoumeau et al., 2015), breast (Gartner et al.,
2014), intrahepatic bile duct (Jin et al., 2014), prostate (Zhang
et al., 2014), and lung carcinoma (Chen et al., 2014), as well
as liposarcoma (Gobble et al., 2011). In other cancer types
PTK7 was shown to be downregulated, including lung squamous
cell carcinoma (Kim et al., 2014), ovarian carcinoma (Wang
et al., 2014) and metastatic melanoma (Easty et al., 1997). While
the mechanistic contribution of PTK7 to the respective tumor
phenotypes is unclear at present, the upregulation of PTK7
in many tumor types makes it an attractive tumor marker
and therapeutic target. Indeed, the first PTK7 specific reagents
with potential clinical applications have now been published,
including a PTK7-specific fluorescently labeled aptamer for in
vivo detection of tumor tissue (Calzada et al., 2017). Very
interestingly, PTK7 has recently been established as a marker
for normal colon stem cells (Jung et al., 2015) and as a marker
for tumor initiating cells in triple-negative breast cancer, ovarian
cancer and non-small cell lung cancer (Damelin et al., 2017).
The authors of the latter study also developed a PTK7-targeted
antibody-drug conjugate and showed that its application reduces
tumor initiating cells and induces sustained tumor regressions,
paving the way for a PTK7-directed anti-tumor therapy (Damelin
et al., 2017).

Neural tube defects are among the most common human
birth defects affecting 1 per 1000 live births and are caused by
environmental as well as genetic factors (Wilde et al., 2014). PCP
genes are likely among the genetic factors contributing to the

etiology of human neural tube closure defects as loss of function
mutants of PTK7, Vangl, Celsr, Fz, Dvl, and Scribble result in the
most severe neural tube closure defects called craniorachischisis
(Gerrelli and Copp, 1997; Kibar et al., 2001; Hamblet et al., 2002;
Curtin et al., 2003; Murdoch et al., 2003; Lu et al., 2004; Wang
et al., 2006), whereby the neural tube fails to close from the
midbrain-hindbrain boundary to the base of the spine. Indeed,
rare mutations with a predicted damaging role were identified for
a number of PCP genes including Vangl1/2, Celsr1, Fzd6, Dvl2,
Prickle, and Scribble (Kibar et al., 2007; De Marco et al., 2014).
Furthermore, the analysis of a cohort of 473 patients with various
forms of neural tube defects identified six rare PTK7 sequence
variants (Wang et al., 2015). Interestingly, five of these mutations
are located in the extracellular domain of PTK7, which serves as
interaction site for Wnt ligands as well as Fz7 and Ror2 receptors
(Table 2; Peradziryi et al., 2011; Martinez et al., 2015; Podleschny
et al., 2015). Whether these interactions are affected in the
potentially pathogenic sequence variants is currently unclear and
functional validation assays testing their efficiency to rescue for
example Xenopus or zebrafish loss of function phenotypes are
still missing. Nevertheless, the extracellular domain was shown
to be important for promoting PCP and inhibiting canonicalWnt
signaling. In fact, deletion of the extracellular domain abolished
PTK7’s ability to inhibit canonical Wnt signaling in Xenopus
reporter assays (Peradziryi et al., 2011). Conversely, a membrane-
tethered PTK7 extracellular fragment was sufficient to rescue
excess Wnt/ß-catenin signaling and PCP morphogenesis defects
in maternal-zygotic ptk7 mutant zebrafish (Hayes et al., 2013).
Thus, these data point to PTK7 as a risk factor for neural
tube closure defects and stress the functional importance of its
extracellular domain.

In addition to neural tube defects, PTK7 has also been
implicated in the pathogenesis of scoliosis, a complex genetic
disorder characterized by a three-dimensional spinal curvature.
Congenital scoliosis (CS) is apparent at birth and involves
abnormal vertebrae development, while idiopathic scoliosis
is diagnosed during adolescence and does not show vertebral
malformations. Ptk7 mutant zebrafish were recently discovered
as a model for congenital and idiopathic scoliosis. Maternal-
zygotic ptk7 (MZptk7) mutant zebrafish exhibit vertebral
abnormalities at larval stages, phenotypically resembling
congenital scoliosis. Further, zygotic ptk7 (Zptk7) mutants show
late onset spinal curvatures consistent with the idiopathic form
of scoliosis (Hayes et al., 2014). Analysis of maternal-zygotic
mutants showed that PTK7 positively regulates PCP-dependent
morphogenesis, while it attenuates ß-catenin-dependent
canonical Wnt signaling (Hayes et al., 2013). Thus, segmentation
and somite patterning are disturbed, likely causing the observed
vertebral abnormalities. In contrast, zygotic ptk7 mutants did
not show defects in segmentation and somite patterning, but
developed late spinal curvatures resembling idiopathic scoliosis
(Hayes et al., 2014; Grimes et al., 2016). They showed defects in
ependymal cell cilia development leading to irregularities in the
cerebrospinal fluid (CSF) flow. Moreover, the brain ventricles
revealed a severe hydrocephalus, a condition associated with
loss of cilia function. Consistently, the number of motile cilia
was reduced and if cilia were present they lacked the correct

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 April 2017 | Volume 5 | Article 31

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Berger et al. PTK7 Faces the Wnt in Development and Disease

polarization. Transgenic reintroduction of wild-type PTK7 in
motile ciliated cell lineages rescued all phenotypes, proving a
specific function of PTK7 in motile ciliated cells. The authors
hypothesized that impaired cerebrospinal fluid flow due to
abnormal cilia function is most likely the cause of scoliosis in
ptk7-deficient zebrafish (Grimes et al., 2016). The connection
of PTK7 to scoliosis was further evidenced by the isolation
of a novel PTK7 mutation from a single patient suffering
from idiopathic scoliosis. This mutation, hPTK7P545A, exhibits
a proline to alanine substitution in the sixth extracellular
immunoglobulin domain thereby affecting PCP and canonical
Wnt signaling function (Hayes et al., 2014). In fact, in contrast
to wild-type human PTK7, the hPTK7P545A failed to rescue
PCP-dependent axial extension defects as well as nervous system
patterning defects caused by Wnt8 overexpression (Hayes et al.,
2014). Further, the mutant protein accumulated at the plasma
membrane, indicating altered protein stability and/or trafficking
of this mutant compared to the wild-type protein. As PTK7
forms co-receptor complexes with Fz7 and LRP6 (Peradziryi
et al., 2011; Bin-Nun et al., 2014; Linnemannstons et al., 2014),
which were shown to be subject to Wnt-dependent receptor
complex trafficking (Yamamoto et al., 2006; Kim et al., 2008;
Ohkawara et al., 2011), this is likely also the case for PTK7-
containing receptor complexes. Thus, it is tempting to speculate
that the proline residue in position 545—which is conserved in
mammals—is required for interaction with Wnt ligands or co-
receptors, respectively. Interestingly, this conserved P545 residue
is also mutated in one of the six sequence variants identified in
patients with neural tube closure defects. In a patient affected
with myelomeningocele and interestingly also hydrocephalus,

which is indicative of a cilia-defect, the non-polar proline residue
was changed to a positively charged arginine (Wang et al., 2015).
These data indicate that this conserved residue is important for
protein function and mutations are likely pathogenic. Future
studies are required to elucidate the molecular pathomechanism.

CONCLUSIONS

During the last two decades our understanding of the function
of PTK7 has significantly advanced. Diverse biological processes
that are regulated by PTK7 have been identified and its role in
the establishment of polarity and coordinated cell movements has
been acknowledged. Recent publications shed light on a literary
“complex” function of PTK7 in Wnt signaling. While its role
in non-canonical PCP signaling has been confirmed in different
animal model systems and biological contexts, its function
with respect to canonical Wnt signaling remains controversial.
Possibly, these contradictory findings can be explained by the cell
type-specific formation and subcellular localization of distinct
co-receptor complexes. Further characterization of the formation
and dynamics of these ligand-receptor complexes may help us
to understand how PTK7 affects development as well as disease-
related processes.
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