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Autophagy is a conserved catabolic process that results in the lysosomal degradation

of cell components. During development, autophagy is associated with tissue and

organ remodeling, and under physiological conditions it is tightly regulated as it plays

a housekeeping role in removing misfolded proteins and damaged organelles. The

vertebrate inner ear is a complex sensory organ responsible for the perception of sound

and for balance. Cell survival, death and proliferation, as well as cell fate specification

and differentiation, are processes that are strictly coordinated during the development

of the inner ear in order to generate the more than a dozen specialized cell types that

constitute this structure. Here, we review the existing evidence that implicates autophagy

in the generation of the vertebrate inner ear. At early stages of chicken otic development,

inhibiting autophagy impairs neurogenesis and causes aberrant otocyst morphogenesis.

Autophagy provides energy for the clearing of dying cells and it favors neuronal

differentiation. Moreover, autophagy is required for proper vestibular development in

the mouse inner ear. The autophagy-related genes Becn1, Atg4g, Atg5, and Atg9, are

expressed in the inner ear from late developmental stages to adulthood, and Atg4b

mutants show impaired vestibular behavior associated to defects in otoconial biogenesis

that are also common to Atg5 mutants. Autophagic flux appears to be age-regulated,

augmenting from perinatal stages to young adulthood in mice. This up-regulation is

concomitant with the functional maturation of the hearing receptor. Hence, autophagy

can be considered an intracellular pathway fundamental for in vertebrate inner ear

development and maturation.
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AN INTRODUCTION TO AUTOPHAGY

Autophagy is a catabolic process that degrades the cytoplasmic content of a cell in lysosomes,
returning energy, and molecular building bricks to the cell. Indeed, autophagy has a housekeeping
role in cells as it is a way to eliminate damaged macromolecules, organelles, and pathogens. Since
the initial description of autophagy by Christian de Duve in 1963, it has become more and more
relevant as it has become implicated in a variety of physiological and pathological situations
(Jiang and Mizushima, 2014). Indeed, three different types of autophagy are now recognized:
(1) Macroautophagy (herein autophagy), where a double-membrane autophagosome forms and
engulfs cytoplasmic content, subsequently fusing with the lysosome to form an autolysosome and
releasing the autophagosome cargo into the lysosome lumen to be degraded by hydrolases; (2)
Microautophagy, in which the cargo reaches the lumen by invagination of the lysosomalmembrane;
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and (3) Chaperone-mediated autophagy, exclusive to mammals,
where proteins associated to chaperones bind to the LAMP2A
lysosomal receptor and are delivered directly to the lumen (Tasset
and Cuervo, 2016).

The formation of the autophagosome requires the activity of
a set of proteins, most of them encoded by the autophagy related
genes (ATG; Figure 1A). The formation of the autophagosome
involves induction, nucleation, elongation, and completion. A
specific subset of ATG proteins has been associated to each of
these stages (Ariosa and Klionsky, 2016). As such, the ULK1/2
complex (ATG13, ATG101, FIP200) participates in induction
and ULK1 activates the phosphatidylinositol 3-kinase complex
(PI3KC: Beclin-1, Vsp34, Vps15, ATG14) to promote nucleation.
Two ubiquitin-like conjugation systems contribute to elongate
the phagophore: ATG12 (ATG12, ATG7, ATG10, ATG5, and
ATG16L) and ATG8 (LC3, the mammalian homolog of ATG8).
Both these complexes regulate the formation of LC3-II, the
relative levels of which serve as a readout of the autophagic
flux, along with SQSTM1/p62 that facilitates the entry of the
cargo into the autophagosome. Accordingly, the SQSTM1/p62
levels are inversely correlated with those of LC3-II (Katsuragi
et al., 2015; Klionsky et al., 2016). Finally, the ATG9 cycling
system incorporates membranes from cell donor locations
(Pavel and Rubinsztein, 2016). Following the completion of the
autophagosome, its fusion with lysosomes requires the activity
of proteins involved in other vesicular fusion events, such as the
SNARE (soluble NSF attachment protein receptor) and HOPS
(homotypic fusion and vacuole sorting proteins) complexes
(Zhen and Li, 2015).

Autophagy can be induced by starvation, growth factor
deprivation, hypoxia, or infections. These stimuli elicit
an immediate response and long-term gene expression
responses mediated by specific transcription factors like
TFEB (transcription factor EB). TFEB acts as a master regulator
of autophagy by up-regulating the expression of autophagy
genes. Under nutrient-rich conditions, TFEB is phosphorylated
by mTORC1 (mammalian target of rapamycin complex (1) and
kept inactivate in the cytosol, mTORC1 also inhibiting autophagy
by phosphorylation of ATG13, Füllgrabe et al., 2016; Napolitano
and Ballabio, 2016).

Autophagy is a housekeeping mechanism that removes
damaged molecules and organelles from the cell’s cytoplasm,
yet it also participates in the immune response, and it
provides energy and molecules as building blocks when needed.
Autophagy is essential during development, as it contributes to
organ and tissue sculpting in Drosophila by facilitating cell death
(Denton et al., 2012). Indeed, autophagy may promote largescale
cytosolic self-digestion and the removal of certain pro-survival
proteins (Yu et al., 2006). Thus, the final output of autophagy
could be either positive or negative for the cell, and this depends
on the intensity and duration of its induction.

DEVELOPMENTAL AUTOPHAGY

Autophagy contributes to developmental tissue remodeling,
responding to specific extrinsic, and intrinsic stimuli. For

example, following fertilization of the mouse egg, autophagy
removes maternal mRNA and proteins, allowing the egg to
initiate its zygotic program (Tsukamoto et al., 2008; Yamamoto
et al., 2014). Later on in development, autophagy drives the
development of the nervous system, adipose tissue, osseous
tissue, hematopoietic system, and the heart (Aburto et al., 2012a).
The study of genetically modified mice has shed light on the roles
played by the genes involved in autophagy.Ambra1 is an essential
gene for the development of the mouse central nervous system,
the deficiency of which impairs autophagy and induces aberrant
neuronal proliferation (Fimia et al., 2007; Antonioli et al., 2015).
Different mutations in genes that participate in the autophagy
machinery have shown that autophagy is needed for terminal
neuronal differentiation, and specifically for axonal outgrowth
and guidance. For example, axon formation is disturbed in
the cerebellar granule neurons of Ulk1−/− mice (Zhou et al.,
2007) and more recently, ALFY, an adaptor protein between the
cargo and the ATG proteins, was seen to be required for axon
outgrowth in the brain and to establish neuronal connectivity
(Dragich et al., 2016).

Atg mutants have provided evidence that autophagy is needed
for the correct development of adipose, osseous and cardiac
tissues, as well as for the differentiation of hematopoietic cells.
Atg5 and Atg7 deficiency is associated with a reduction in
thymocytes and B-lymphocytes (Pua et al., 2007), as well as
reduced levels of adipocyte differentiation factors and decreased
lipid adipose mass (Singh et al., 2009). In addition, Atg5 and Atg7
deficiency in the embryonic P19CL6 cells inhibited cardiac cell
differentiation (Jia et al., 2014). However, in the analysis of the
phenotypes associated to these mutations it should be considered
that ATG proteins also fulfill functions that are not related to
autophagy (Mauthe and Reggiori, 2016).

During development, autophagy facilitates rapid changes in
intracellular composition, promoting the turnover of specific
proteins, receptors, cytoskeletal components, or transcription
factors necessary to define the different cell fates. It is also
essential for the temporal dynamics of cell organelles, controlling
their number, and quality (e.g., mitochondria). Finally, after birth
and before the initiation of suckling behavior, the up-regulation
of autophagy protects newborns from death by starvation (Kuma
et al., 2004). Autophagy may not only supply energy at this stage
but it may also help control oxidative stress (Schiaffino et al.,
2008).

AN INTRODUCTION TO INNER EAR
ANATOMY

The mammalian inner ear is a complex sensory structure
within the temporal bone that is composed of the cochlea and
the vestibule, structures that are responsible for the senses of
hearing and balance, respectively (Figure 1B). The auditory and
vestibular organs contain the mechanosensory receptors that
transduce mechanical stimuli into electrochemical signals that
are transmitted to the brain by the fibers of the VIIIth cranial
nerve. The auditory receptor is the organ of Corti in the scala
media of the cochlea (Magariños et al., 2012, 2014), which is
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FIGURE 1 | (A) Schematic view of the molecular steps of macroautophagy. Growth factors and nutrient-rich conditions activate mTORC1, a negative regulator of the

ULK1/2 complex and TEFB. In turn, growth factor deprivation, inflammation, or nutrient starvation, activate the ULK1/2 complex, which phosphorylates and activates

the PI3K complex III (PI3KC). The ATG9 cycling system provides membranes to form the autophagosome from different donor sources. Autophagosome formation

also requires the action of two ubiquitin-like (Ubl) systems, ATG8-Ubl and ATG12-Ubl, required for the elongation and completion of the autophagosome. LC3 is

converted into the cytosolic form, LC3-I, by cleavage of ATG4B, and into the membrane associated form, LC3-II, by conjugation with phosphoethanolamine via ATG5

(and the remaining components of the ATG12-Ubl system). SQSTM1/p62 (p62) binds to ubiquitinated proteins and carries them to the autophagosome (adapted from

de Iriarte Rodríguez et al., 2015). (B) Anatomy of the adult mouse inner ear. (a) Lateral view showing a mammalian inner ear. (b,c) Detail of the vestibular macula (b)

and cristae ampullaris (c), where sensory hair cells are labeled for myosin VIIa (green) and neurofilament (red). (d) Detail of the organ of Corti showing myosin VIIa

positive hair cells (green) and SOX2 positive supporting cells (red). (e) The stria vascularis is visualized by labeling for Kir4.1 (green). Development of the mouse inner

ear. The inner ear develops from the otic placode (f, E7.5). The otic placode invaginates to form the otic cup (g, E8-9), which later pinches off to form the otic vesicle

or otocyst (h,i). Neural precursors delaminate from the ventral otocyst epithelium to form the acoustic-vestibular ganglion (AVG: g–i). The cochlear duct evaginates

from the ventromedial region of the otic vesicle, and it will be innervated by the acoustic portion of the AVG, also known as the spiral ganglion (SG: yellow, j–m). The

cochlear duct elongates and grows to form a coiled tube, the membranous labyrinth, which includes the primordium of the scalas media, vestibularis, and tympanic

(j–m). At the cochlear duct the prosensory patch will become the primitive organ of Corti. Scale bars: (a) 0.5mm; (b–e) 50µm. Co, cochlea; V, vestibule; Asc, Lsc

and Psc, anterior, lateral and posterior semicircular canals; Do, dorsal; Cd, caudal; IHC, inner hair cells; OHC, outer hair cells; StV, stria vasculari; SpL, spiral ligament;

SV, scala vestibule; SM, scala media; ST, scala tympani; LW, lateral wall; OC, Organ of Corti (adapted from Magariños et al., 2014).
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formed by sensory hair cells and by non-sensory support cells
(Deiters’, Hensen’s and Claudius’) that maintain the ionic and
metabolic cochlear homeostasis (Forge andWright, 2002). There
are two functional types of hair cells arranged in a stereotypic
manner: one row of inner hair cells (IHC) and three rows of
outer hair cells (OHC; Forge and Wright, 2002; Magariños et al.,
2012). The IHC cells connect to bipolar auditory type I neurons
of the spiral ganglion, whilst the OHC are innervated by type II
neurons (Nayagam et al., 2011; Fritzsch et al., 2015). The axons
of these neurons leave the spiral ganglion to form the cochlear
division of the acoustic-vestibular nerve, which is responsible for
transmitting the auditory information through a multisynaptic,
ascendant pathway from the cochlea to the auditory cortex
(Demanez and Demanez, 2003). HC stereocilia are bathed by
endolymph, which maintains the unique ionic concentration
required for mechanotransduction. The stria vascularis is located
in the lateral wall of the scala media. This three-layered structure
regulates cochlear ion transport and maintains the endocochlear
potential (Patuzzi, 2011).

The vestibular system is formed by five sensory structures,
three cristae located at the base of the semicircular canals and
two maculae. Each of these structures has a similar organization,
with sensory HC and non-sensory support cells innervated by
the vestibular ganglion axons. The vestibule is responsible for
sensing equilibrium, and for the perception of linear and angular
acceleration, and of gravity (Highstein and Fay, 2004; Ekdale,
2016).

THE REGULATION OF INNER EAR
DEVELOPMENT BY EXTRACELLULAR
FACTORS AND INTRACELLULAR
SIGNALING NETWORKS

The development of the inner ear is initiated by the induction
of the otic placode from the ectoderm lying between the
rhombomeres 5 and 6 (Magariños et al., 2014; Whitfield, 2015).
Otic placode induction is orchestrated from mesoderm signals
that coordinate with intrinsic factors in the ectoderm. FGFs,
Notch and WNT signaling play a key role during these initial
events (Ohyama et al., 2006, 2007; Jayasena et al., 2008). The
otic placode then invaginates to form the otic cup that will later
detach and close to form the otocyst or otic vesicle. The otocyst
is transient embryonic round structure whose multipotent cells
will differentiate to produce most adult inner ear cell types
(Bissonnette and Fekete, 1996; Sanchez-Calderon et al., 2007).
The ventral region of the otocyst is specified by the Sonic
hedgehog (Shh) secreted from the floor plate and notochord
(Riccomagno et al., 2002, 2005), as well as through repression
by the WNT signaling pathway (Groves and Fekete, 2012).
Significantly, it is this region that will form the auditory portion
of the inner ear. The vestibule develops from the dorsal otocyst,
instructed by signals from the bone morphogenetic protein
BMP4 (Chang et al., 2008) that antagonize Shh. SensoryHC, non-
sensory support cells, plus the acoustic and vestibular neurons
that contribute to the acoustic-vestibular ganglion (AVG) also
arise from the otocyst. Finally, Notch signaling helps specify the

prosensory domain (Daudet and Lewis, 2005; Hartman et al.,
2010) and in combination with Atoh1 expression, it is involved
in determining the HC and supporting cells (Mizutari et al.,
2013).

Otic vesicle development requires the coordinated response
to apoptosis, survival and proliferation signals. IGF-1 signaling,
mainly through the RAF-MEK-ERK and PI3K/AKT pathways,
fulfills a critical role in regulating these processes. In the
chicken embryo, PI3K/AKT signaling regulates the number of
otic neurons and it determines the timing of their generation
(Aburto et al., 2012b). Moreover, both the RAF-MEK-ERK and
PI3K/AKT pathways modulate AVG neuritogenesis (Magariños
et al., 2010; Aburto et al., 2012b). Phosphatase and tensin
homolog deleted on chromosome 10 (PTEN) is required to
define the size of the neuroblast population (Kim et al.,
2013) and it negatively regulates the AKT signaling pathway,
as well as interacting with the WNT, Notch, and BMP
pathways.

Cell cycle regulation is also essential for correct inner
ear organogenesis. IGF-1, Notch, and WNT are among the
signaling pathways involved in regulating the proliferation of otic
progenitors (Magariños et al., 2014). Through the RAF-MEK-
ERK pathway, IGF-1 promotes the cell cycle progression of otic
progenitors (Sanz et al., 1999b; Magariños et al., 2010). Finally,
the otocyst must undergo the morphogenetic changes that
transform the simple pseudostratified otic vesicle epithelia into
an extremely complex three-dimensional membranous labyrinth
(Kelly and Chen, 2009). The neighboring mesenchymal cells will
be responsible for generating the bony labyrinth (Chang et al.,
2002).

DEVELOPMENTAL AUTOPHAGY IN THE
EMBRYONIC CHICKEN INNER EAR

Beclin-1 and Atg5 transcripts are expressed throughout the
developmental stages in the chick when otic vesicles can be
explanted and studied in organotypic cultures. Indeed, the
Beclin-1 and LC3B proteins are present in the otic epithelium
and the AVG (Aburto et al., 2012c; summarized in Figure 2A).
Chemical and genetic inhibitors of autophagy demonstrate the
importance of the autophagic flux for the development and
cellular dynamics of the otocyst (Aburto et al., 2012c; Figure 2A).
Inhibiting autophagy shows that it is required for the clearance
of apoptotic cells and for cell cycle progression. Developmental
apoptosis is an essential process during inner ear development
(Fekete et al., 1997; Sanz et al., 1999a; Frago et al., 2003;
León et al., 2004; Magariños et al., 2012), and both this cell
death and the elimination of apoptotic cells require energy
(Qu et al., 2007; Mellén et al., 2008). During development,
autophagy provides ATP by degrading intracellular components
and it thereby facilitates apoptosis. Impaired autophagy causes
an accumulation of apoptotic cells that cannot be eliminated
from the otic vesicle, a failing that can be reverted by adding
ATP. The region where otic neural progenitors originate is the
neurogenic zone, where the extracellular matrix is degraded
to detach cells and the migrating detached cells accumulate
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FIGURE 2 | (A) Developmental autophagy in the chicken otocyst. (a) Scheme showing the ex vivo culture of otic vesicles from HH18 embryos. The

acoustic-vestibular ganglion (AVG) develops from the cultured otic vesicle after 20 h in serum-free culture medium (0S). (b) Autophagic flux is typically measured in

Western blots to determine the LC3 ratio in the presence or absence of chemical inhibitors of autophagy (3-MA and CQ). (c) Otic vesicles incubated with an inhibitor

of autophagy accumulate apoptotic cells, as evident by reduced staining for An-V in red and by increased TUNEL green spots (d–g). Aberrant AVG development is

also seen (h,i), with fewer neuroblasts (TuJ-1, red), and (j,k) altered neurite outgrowth and pathfinding (G4, green). (f,g) Higher magnification of the boxed regions in

(d) and (e), respectively. annexin-V, An-V; 3-methyladenin, 3-MA; chloroquine, CQ. Scale bars: (d–i), 150µm; (f), (g), 50µm; (j), (k) 300µm (adapted from Aburto

et al., 2012c). (B) Autophagy in the postnatal and adult mouse inner ear. (a,c) Histograms showing the changes in Beclin-1, Atg4b, and Atg5 expression with age in

the mouse vestibule (a) and cochlea (c), as determined by RT-qPCR. (b,d) Autophagic flux increases with age in the mouse inner ear. The LC3-II/LC3-I and

SQSTM1/p62 (p62/β-actin) ratios were determined in Western blots of the vestibule (b) and cochlea (d) at E18.5 and P270. Significance: *P < 0.05, **P < 0.01, and

***P < 0.001 vs. E18.5; #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. P0; and & P < 0.05 and && P < 0.01 vs. P30–60. E, embryonic day and P, postnatal

day (adapted from de Iriarte Rodríguez et al., 2015).
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autophagic vacuoles. Conversely, the inhibition of autophagy
results in aberrant AVG phenotypes (Aburto et al., 2012c;
Figure 2A). Therefore, autophagy is required for the migration
of the epithelial neuroblasts from the neurogenic zone to form
the AVG. In summary, the early development of the inner ear
is one example of many where developmental autophagy plays
a supporting role to apoptosis and migration (Di Bartolomeo
et al., 2010; Wada et al., 2014; Lorda-Diez et al., 2015; Boya et al.,
2016).

AUTOPHAGY IN THE MOUSE INNER EAR

Autophagy is required for the development of the vestibular
system in the mouse. Atg4 deficient mice have impaired
balance, with different phenotypic penetrance from severe to
mild vestibular alterations. The biogenesis of the otoconia is
defective in both Atg4b−/− and Atg5−/− mice (Mariño et al.,
2010), and otoconial impairment occurs in mice exposed to
streptomycin ototoxicity (Takumida et al., 1997), which can
inhibit autophagy (Levano and Bodmer, 2015) and increase cell
damage in the inner ear due to oxidative stress (Guthrie, 2008).
In fact, autophagy reduces the reactive oxygen species (ROS)
in mice subjected to noise-induced hearing loss (Yuan et al.,
2015). This crucial role of autophagy in eliminating ROS could
explain the similarities between autophagy gene mutants and
streptomycin-treated animals. However, increased ROS are not
the only consequence of inhibiting autophagy during vestibular
development, as otoconial biogenesis requires the secretion and
assembly of specific proteins that are also affected by inhibiting
autophagy (Mariño et al., 2010).

Autophagy plays a key role in newborn mice, and Atg5, Atg7,
Atg9, and Atg16 null mice die soon after birth (Mizushima
and Levine, 2010). The transcriptome of the E18.5 mouse
cochlea shows that a wide variety of Atg genes are expressed,
underlining the relevance of autophagy at perinatal stages (de
Iriarte Rodríguez et al., 2015). Furthermore, several key genes
of the autophagic molecular machinery (Becn1, Atg4b, Atg5,
and Atg9) are expressed in the mouse vestibule and cochlea
throughout development and adulthood (de Iriarte Rodríguez
et al., 2015; summarized in Figure 2B). The expression of
these genes is significantly enhanced from the perinatal stages
(E18.5 and P0) to adulthood (P30) as the inner ear acquires its
complete functionality (Rueda et al., 1996). A temporal analysis
of autophagic proteolysis in the cochlea and vestibule confirms
the induction of autophagy in adults rather than E18.5 embryos.
Moreover, there is significantly less SQSTM1/p62 at P270 than
at E.18.5, whilst the relative LC3-II levels increase in the cochlea
and vestibule (de Iriarte Rodríguez et al., 2015; Figure 2B).
Indeed, autophagosomes are clearly visible in adult neurons
of the spiral ganglion but not at earlier stages. LC3B forms
granular structures in the neuronal soma at P30 and onwards,
yet not at E18.5 (de Iriarte Rodríguez et al., 2015). Autophagy
is essential in neurons because they do not dilute their damaged
molecules or organelles by proliferation. Thus, autophagy is
required for detoxification and to manage damage (Son et al.,
2012; Damme et al., 2015; He et al., 2016). Accordingly, the

postnatal onset of hearing and the concomitant increase in
neuronal activity is correlated with the induction of autophagy
in the cochlea.

THE INFLUENCE OF AUTOPHAGY ON
INNER EAR HOMEOSTASIS AND AGING

Autophagy plays an additional role in inner ear homeostasis
once development is concluded. Otic injury caused by a
combination of aminoglycoside and loop diuretics augments
aspects of autophagy (Taylor et al., 2008). Moreover, autophagy
is activated by rapamycin alleviated ototoxicity in cisplatin-
treated rats (Fang and Xiao, 2014) and in mice exposed
to an auditory insult (Yuan et al., 2015). Thus, autophagy
helps maintain adult hearing in response to stress. Proteostasis
is impaired during aging (López-Otín et al., 2013) and the
stabilization of proteic events that is mostly provided by
molecular chaperones also declines with age (Rodriguez et al.,
2016). In addition, protein degradation systems control the
levels of misfolded or aggregated proteins, the accumulation
of which drives age-related neurodegenerative diseases like
Parkinson’s or Alzheimer’s disease (Balchin et al., 2016). Thus,
it is not surprising that the senescence-accelerated mouse prone
8 (SAMP8) mutant mice exhibit age-related hearing loss and
autophagy stress (Menardo et al., 2012).

Our studies of 9 month-old Igf1−/− mice show they suffer
defects in the proteostasis associated with aging. These Igf1−/−

mice suffer a loss of hearing and a reduced lifespan, among
other traits (Varela-Nieto et al., 2013). Hearing loss in Igf1−/−

deficient mice is accompanied by a general failure of the hearing
receptor (Riquelme et al., 2010), although the weaker autophagy
gene expression in one-year-old cochlea may also contribute
to this auditory phenotype (de Iriarte Rodríguez et al., 2015).
However, the vestibular defects in the Igf1−/− mouse are milder
than those found in the cochlea (Rodríguez-de la Rosa et al.,
2015). Becn1, Atg4b, and Atg5 are more strongly expressed in
9-month-old Igf1−/− vestibules compared to those of wild-
type mice. Thus, the induction of autophagy might provide
Igf1−/− vestibules with some protection, as it does in Igf1−/−

retinas (Arroba et al., 2016). After differentiation, hair cells
do not regenerate in the mammalian cochlea, whilst vestibular
hair cells do to a limited extent (Burns and Stone, 2016).
The up-regulation of autophagy might be partially responsible
for the different potentiality of vestibular and cochlear hair
cells.

CONCLUSIONS

During the development of the vertebrate inner ear, autophagy
participates in cell remodeling and dynamics, and it contributes
to the biogenesis of the vestibular otoconia. In the postnatal
cochlea, the autophagy machinery is upregulated concomitant
with the increase in neuronal activity at the onset of hearing.
Autophagy becomes a housekeeping process in the adult inner
ear, and it is a means to protect hearing during aging and in
response to injury. Further work is needed to fully understand
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the role of autophagy in the inner ear and to explore the potential
of modulating autophagy as a novel strategy to combat inner ear
diseases.
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