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Cell size is amenable by genetic and environmental factors. The highly conserved

nutrient-responsive Target of Rapamycin (TOR) signaling pathway regulates cellular

metabolic status and growth in response to numerous inputs. Timing and duration of TOR

pathway activity is pivotal for both cell mass built up as well as cell cycle progression and

is controlled and fine-tuned by the abundance and quality of nutrients, hormonal signals,

growth factors, stress, and oxygen. TOR kinases function within two functionally and

structurally discrete multiprotein complexes, TORC1 and TORC2, that are implicated in

temporal and spatial control of cell size and growth respectively; however, recent data

indicate that such functional distinctions are much more complex. Here, we briefly review

roles of the two complexes in cellular growth and cytoarchitecture in various experimental

model systems.
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INTRODUCTION

The Target of Rapamycin (TOR) is an evolutionarily conserved Ser/Thr-protein kinase functioning
as the heart of signaling networks toward nutrient and hormonal sensing. The role of these
networks is to regulate anabolism and catabolism by coordinating numerous cellular metabolic
processes, such as protein translation, formation of ribosome components, mRNA stability,
autophagy, cell-cycle, transcription, and cellular architecture (Laplante and Sabatini, 2012; Rallis
and Bahler, 2013; Rodland et al., 2014). Tor genes together with the FKBP12 homolog fpr1 were
first isolated in Saccharomyces cerevisiae (Heitman et al., 1991; Kunz et al., 1993) as the mediators
of the toxic effects of sirolimus or rapamycin, a macrolide from Streptomyces hygroscopicus bacteria
living within the soil on the Rapa Nui or Easter Island (Sehgal et al., 1975; Sehgal, 2003). Rapamycin
exhibits broad anti-proliferative properties and is a potent anti-tumor and immunosuppressant
drug (Law, 2005). Rapamycin directly binds FKBP12 and the complex then binds and inhibits
the TOR kinase (Yang et al., 2013). In all eukaryotes, TOR kinases are found in two distinct
protein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2) (Wullschleger
et al., 2006; Laplante and Sabatini, 2012; Huang and Fingar, 2014). Both complexes are implicated
in cell growth. TORC1 is generally responsible for promoting ribosome biogenesis, protein
anabolism and cell proliferation (Averous and Proud, 2006; Morita et al., 2015) and repressing cell
differentiation (Alvarez and Moreno, 2006). The TSC1–TSC2 (hamartin and tuberin, respectively)
protein complex can repress TORC1 by affecting Rheb, a G-protein that acts as positive regulator
of this complex (Huang and Manning, 2008). TORC2 can have opposing or antagonistic functions
to those of TORC1 (Weisman et al., 2007; Ikai et al., 2011). It gets input from carbon sources and
insulin and regulates actin cytoskeleton (DeVirgilio and Loewith, 2006). Fission and budding yeasts
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have two TOR kinases, Tor1 and Tor2 (Otsubo and Yamamato,
2008; Weisman, 2016). Fission yeast Tor1 protein is not essential
and is found to be associated with both TORC1 and TORC2
(Hartmuth and Petersen, 2009). Tor1 is required for survival in
stress response, appropriate G1 arrest, gene silencing, telomere
integrity and sexual development. Conversely, the essential
protein Tor2 is associated with TORC1 and is pivotal for
growth by positively regulating protein synthesis, metabolism
and transcription (Weisman et al., 2007; Otsubo and Yamamato,
2008; Ikai et al., 2011; Weisman, 2016).

TORC complexes are hubs of huge signaling networks that
govern cellular growth in space in time and are heavily implicated
in pathologies, such as cancer, obesity, type 2 diabetes, and
neurodegeneration (Menon and Manning, 2008; Laplante and
Sabatini, 2012) as well as in lifespan control and aging (Bjedov
and Partridge, 2011; Rallis et al., 2013, 2014). In this mini
review, we discuss roles of TORC1 and TORC2 in temporal
and spatial control of cell growth and size. TORC1 while
traditionally considered to be controlling temporal cell growth
is also implicated in spatial control aspects with interdependent
relationships with the cytoskeleton. Likewise, new interactions of
TORC2 provide further links to TORC1 and temporal cell size
regulation and cell cycle progression.

REGULATION OF CELL SIZE AND
GROWTH ASPECTS BY TORC1

Cell size is regulated depending on nutrient availability,
extracellular signals and stress (Perez-Hidalgo and Moreno,
2016). TORC1 senses diverse inputs, such as nitrogen- and
carbon-containing nutrients, hormonal stimulation, various
stresses, availability of energy within the cell and oxygen (De
Virgilio and Loewith, 2006). Interestingly, various types of
nutrients have diverse effects on the duration and strength
of TORC1 activity that is reflected to the cellular phenotypes
observed (De Virgilio and Loewith, 2006; Stracka et al.,
2014). TORC1 boosts growth by promoting protein translation,
ribosome biogenesis (Averous and Proud, 2006; Ma and Blenis,
2009), and glycolysis (Laplante and Sabatini, 2012) as well as
suppressing stress responses (Lopez-Maury et al., 2008) as well
as autophagy mechanisms (Ganley et al., 2009; Hosokawa et al.,
2009).

TOR complex 1 (TORC1) has major contributions in
temporal aspects of cell size control. For example, inhibition
of TORC1 using rapamycin advances mitotic onset in fission
yeast. The effect is similar to cell size reduction observed
when cells sense and experience poor nitrogen sources. This
is achieved through the stress MAPK pathway via the Pyp2
phosphatase (Petersen andNurse, 2007). Interestingly, regulation
of mitotic entry through the MAPK Sty1 upon rapamycin
treatment involves the Tor1-containing TORC1 and not the
complex that contains Tor2 (Hartmuth and Petersen, 2009).
In budding yeast S. cerevisiae, TORC1 coordinates cell size
by regulating timing of G1-S cell cycle progression. This is
achieved by G1 cyclins and CDK activation as well as through
destabilization of Sic1, a CDK inhibitor. When TORC1 is

pharmacologically inhibited or following starvation, Sic1 is
stabilized by c-terminal phosphorylation. Themechanism behind
this involves endosulfines activated by the greatwall kinase.
These in turn will stimulate Mpk1 and will inhibit the Cdc55
protein phosphatase 2A (Moreno-Torres et al., 2015). When
ample nutrients are present, fission yeast TORC1 is highly active
and inhibits Greatwall (Ppk18) protein kinase and resulting in
PP2A-B55 activation. PP2A-B55 activity prevents Cdk1-Cyclin
B action. Cells, therefore, increase in size during G2 before they
commit tomitosis. In nutrient limitations, TORC1 activity lowers
and Greatwall (Ppk18) activation results in endosulfine (Igo1)
phosphorylation and PP2A-B55 inhibition. These events fully
activate Cdk1·CyclinB and cells commit to mitosis at a small cell
size (Chica et al., 2016). In pancreatic beta cells, TORC1 controls
cell size by regulating cell cycle progression through modulation
of the synthesis and stability of cyclin D2, an important regulator
of beta cell proliferation and mass buildup (Balcazar et al., 2009).

TOR complex 1 (TORC1) promotes cell growth by stimulating
synthesis of the primary building blocks of macromolecules, by
inhibiting autophagy and influencing cell cycle progression (De
Virgilio and Loewith, 2006). TOR functions on cell physiology
are achieved through crosstalk with multiple other signaling
pathways. The Hippo tumor suppressor pathway regulates tissue
homeostasis, cell and organ size (Pfleger, 2017). Functional
connections between TOR and Hippo pathways have started
to emerge: YAP and TAZ are transcriptional co-activators and
represent the major effectors of the Hippo pathway (Hansen
et al., 2015a; Moroishi et al., 2015). YAP and TAZ are able to
activate TORC1 transcriptional induction of the high affinity
leucine transporter LAT1 in HEK293 cells (Hansen et al., 2015b).
In addition, YAP downregulates PTEN, a negative regulator of
TOR pathway, via a posttranscriptional mechanism that involves
miR-29 in the inhibition of PTEN translation (Tumaneng et al.,
2012). In multicellular organisms, TOR function is regulated
by growth signals through the PI3K pathway. Insulin or
Insulin-like factors binding to their receptors result in insulin
receptor substrate phosphorylation (IRS) and activation of PI3K.
The latter converts phosphatidylinositol-4,5-phosphate (PIP2)
to phosphatidylinositol-3,4,5-phosphate (PIP3) which in turn
activates Akt via PDK1. Akt inhibits TSC2, thus, activating
TOR (Wullschleger et al., 2006). AMP-activated protein kinase
signaling (AMPK) monitors energy levels within the cell. Upon
nutritional or energy stress AMPK inhibits TOR pathway
(Gwinn et al., 2008; Davie et al., 2015). This relationship is
conserved from yeast to man. AMPK inhibitory action on TOR is
coordinated with that of the Glycogen Synthase Kinase (Gsk3) an
inhibitor of theWnt signaling pathway in metazoan and a known
regulator of protein translation (Rallis et al., 2017).

Recent data indicate that TORC1 has roles in spatial
cell size and growth control and organization. In budding
yeast, Las24/Kog1 a TORC1 component regulates, as expected,
processes that are directly related to the rapamycin-sensitive
TORC1 complex. These include global protein translation as well
as phosphorylation of the Ser/Thr Npr1p kinase and the Gln3p
GATA transcription factor both involved in nitrogen catabolite
repression (Loewith and Hall, 2011). Nevertheless, Las2/Kog1
is reported to also be implicated in the spatial arrangement
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of the actin cytoskeleton (Araki et al., 2005). The latter has
been related so far mainly with TORC2 functions rather than
TORC1. Cell growth and size in yeast have been shown to be
highly dependent on actin cytoskeleton. Polarized cytoskeleton
that results in morphological changes also leads to reduced
cellular growth (Goranov et al., 2013). Polarization of the actin
cytoskeleton inhibits TORC1 and the Iml1 complex is proved to
be required for this inhibition. Interestingly, the same complex
regulates the activity of TORC1 depending on the availability
of nitrogen sources (Goranov et al., 2013). Both TORC1
and TORC2 protein complexes fractionate with membrane
formations that are resistant to detergents and distinct from
cell membrane rafts (Kunz et al., 2000; Chen and Kaiser, 2003;
Wedaman et al., 2003; Aronova et al., 2007). Proteomics analysis
of the TOR-containing membrane fractions was conducted
revealing numerous endocytosis as well as actin cytoskeleton
regulators. To validate the obtained results further genetic and
biochemistry experiments were undertaken. These experiments
demonstrated important numerous interactions between TORC1
and these regulators and proving the connection of TORC1
and actin cytoskeleton related functions (Aronova et al., 2007).
Importantly, rapamycin is able to disrupt polarization of actin.
Moreover, it can delay actin repolarization following glucose
starvation and delay the localization and accumulation of
Lucifer yellow -a tracer to observe kinetics of endocytosis
and transportation through the vacuole membrane-within the
vacuole (Aronova et al., 2007).

TOR complex 1 (TORC1) has also been implicated in
special aspects of cell growth in mammals and fish. Mammalian
injured mature CNS axons do not regenerate. PTEN inhibition
results in TORC1-dependent, rather than TORC2, CNS axon
regeneration and growth. The effect is mediated through the
S6-kinase (Miao et al., 2016). Without TSC1 or TSC2 (Huang
and Manning, 2008), an increase in the activity TORC1 causes
regional neuronal cell growth with axons having multiple axons
(Choi et al., 2008). In zebrafish, TORC1-dependent translation
of ciliary precursors regulates cilia length, motility and cilia-
directed flow. In particular, activation of TORC1 signaling
increases ciliary length through S6 kinase 1 (S6K1)-mediated
protein synthesis of cilia precursors. Inhibition of TORC1 with
rapamycin, decreases ciliary length through suppression of S6K1-
mediated protein translation (Yuan and Sun, 2012; Yuan S.
et al., 2012). TORC1 can therefore regulate special aspects of cell
growth and organization in mitotic and post mitotic cells.

REGULATION OF CELL SIZE AND
GROWTH ASPECTS BY TORC2

TOR complex 2 (TORC2) is reported to have opposing roles to
TORC1 in fission yeast (Ikai et al., 2011). TORC2 affects cell
growth and size by regulating aspects of glucose metabolism
(Garcia-Martinez and Alessi, 2008; Yuan M. et al., 2012) as well
as the actin cytoskeleton (Oh and Jacinto, 2011) and apoptosis
(Datta et al., 1997). TORC2 activates several kinases belonging to
the AGC family, such as AKT/PKB, PKC, and SGK (serum and
glucocorticoid-regulated kinase) (Zoncu et al., 2011; Aimbetov

et al., 2012). Interestingly, studies have shown that there is a
requirement for ribosomes for TORC2 signaling. Nevertheless,
protein translation is not. TORC2 protein complexes can bind
with the ribosome PI3K activated by insulin is found to promotes
this physical association (Zinzalla et al., 2011). Ribosomal content
is a determinant of cell growth and this physical interaction could
therefore serve to ensure appropriate levels of TORC2 activity
in growing cells (Xie and Guan, 2011). TORC1 and TORC2
are reported to work together to regulate S6 phosphorylation in
both budding and fission yeasts (Du et al., 2012; Yerlikaya et al.,
2016). These findings challenge the role of ribosomal S6 protein
phosphorylation in global translation. In Drosophila, Lst8, a
component of both TORC1 and TORC2, is found to regulate
cell size but not cell cycle phasing in a cell-autonomous manner
through TORC2 (Wang et al., 2012). Likewise in the same animal,
TORC2 regulates cell size throughMyc (Kuo et al., 2015) a known
regulator of organ size that induces cell competition (de la Cova
et al., 2004).

Beyond its roles in spatial aspects of cell growth and size,
TORC2 is also implicated in temporal aspects. Rictor null
mice exhibit mild hyperglycemia and glucose intolerance that
originates from the reduction in both β-cell cellular mass and
multiplication (Gu et al., 2011). A known role for TORC2 is
the maintenance of genome stability during S phase and its
requirement for return to cell cycle progression following stress
(Schonbrun et al., 2013). TORC2 has been linked to cell size upon
division and the timing of mitosis: Fission yeast cells mutant
for Sin1, a TORC2 component (Yang et al., 2006), divide at a
longer cell size. This implies that timing of mitotic initiation
is delayed (Wilkinson et al., 1999). Elongated cell morphology
has also been reported in cells mutated for Tor1 (Kawai et al.,
2001) and for Gad8 kinase (Matsuo et al., 2003), a known
direct substrate of TORC2 related to human AKT. These data
show that TORC2–Gad8 pathway promotes the initiation of
mitosis. Double mutants of Tor1 and Gad8 with cdc25-22, a
temperature-sensitive mutation of the Cdc25 phosphatase that
activates Cdc2 kinase at G2/M (Russell and Nurse, 1986), exhibit
a cell cycle arrest phenotype with highly elongated morphology.
Similar phenotypes are observed when the cdc25-22 mutation is
introduced to cells lacking components of the TORC2 complex,
such as Sin1 and Ste20 strains (Ikeda et al., 2008). These results
support the model in which TORC2 activates Gad8 which in turn
advances mitosis.

Fission yeast TORC2 and Gad8 can be localized within the
nucleus and bound to chromatin. Gad8 can physically interact
with the MBF transcription complex which is implicated in the
regulation of DNA stress response as well as the G1/S cell cycle
progression. Gad8 deletion or genetic inactivation of TORC2
function (by deleting its core components) results in reduced
binding of MBF to its target promoters. Moreover, MBF target
genes fail to be induced in the aforementioned mutants upon
DNA replication stress. Finally, the protein levels of Cdt2 and
Cig2 (both of them MBF targets) are reduced when TORC2 or
Gad8 function is abolished. These data highlight pivotal roles of
TORC2 within the cell nucleus and reveal a TORC2-dependent
mechanism in DNA replication stress response through the
control of MBF transcriptional targets (Cohen et al., 2016).
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FIGURE 1 | Schematic indicating processes affecting cell size and growth

downstream of mammalian TORC complexes. Black arrows indicate

well-established relationships between TORC1 and TORC2 with temporal and

spatial aspects of cell growth, respectively. Red arrows indicate new functional

connections while double red arrows indicate a cross-regulation between

TORC1 and cytoskeleton as well as TORC2 and ribosomes.

Beyond its connections with cell cycle-related proteins,
TORC2 is implicated in the timing of cell growth and division
through interactions with the cytoskeleton. Fission yeast TORC2
regulates the timing and fidelity of cytokinesis: Disruption of
TORC2 intracellular localisation or function leads in defects in
cytokinetic actomyosin ring (CAR) morphology and constriction
(Baker et al., 2016). Interestingly, myosin II proteinMyp2 and the
myosin V protein Myo51 recruit TORC2 to the CAR. TORC2
controls the fidelity of cell division and CAR stability through
phosphorylation of the actin-capping protein 1 (Acp1, a regulator
of cytokinesis) (Baker et al., 2016).

Roles of TORC2 in temporal aspects of cell size and growth
are emerging in systems as diverse as protozoa and human
cancer cells. In the protozoan parasite Trypanosoma brucei
four TOR kinase orthologues TbTOR1, TbTOR2, TbTOR3,
and TbTOR4 have been identified. TbTOR1 and TbTOR2
resemble the structure of all TOR kinases (Saldivia et al.,
2013). However, TbTOR3 contains an additional PDZ domain
while TbTOR4 has no FRB domain (Barquilla et al., 2008).
TbTOR proteins differ in their functions, subcellular localization,
and rapamycin sensitivity. Additionally, each TbTOR protein
has distinct partners forming four TORC complexes (Barquilla
et al., 2008, 2012; Barquilla and Navarro, 2009; de Jesus et al.,
2010). TORC1 and TORC2 complexes contain KOG1/raptor
and AVO3/rictor orthologues, respectively. TbTOR1 controls

cell growth by regulating cell cycle, nucleolus structure, and
protein synthesis, whereas TbTOR2 coordinates cell polarization
and cytokinesis (Saldivia et al., 2013). Rapamycin treatment of
bloodstream trypanosomes results in a profound reduction of
cell proliferation. Nevertheless, this effect of rapamycin is due to
exclusive action on TORC2 inhibition, with no effect on TORC1
(Barquilla et al., 2008). In tumor cells, TORC2 is required for
cell cycle progression (Hietakangas and Cohen, 2008): TORC2
inhibition reduced proliferation of two cancer cell lines MCF7
and PC3. Cells lacking Rictor accumulate in G1 phase and
consistently exhibit reduced levels of Cyclin D1 (Hietakangas and
Cohen, 2008).

CONCLUSIONS AND FUTURE
PROSPECTS

Traditionally TORC1 is linked to temporal aspects of cell size
and growth while TORC2 with spatial growth. Nevertheless,
emerging data indicate more complex relationships (Figure 1).
TORC protein complexes collect information from both
intracellular and extracellular signals and are regulated in
multiple levels including expression of their components and
subcellular localization. Interesting directions and currently
conducted work within the field include the interactions
of TORC1 with cytoskeletal elements and vesicle mediated
transport and their relationships with gene expression programs
in cell size and growth control and during different nutritional
regimes or stress. Another direction with interesting emerging
results is the relationship of TORC2 with the cell cycle machinery
and chromatin organization. These data will significantly enrich
our knowledge on the control of cell size, growth and survival and
will be pivotal for the understanding and treatment of diseases,
such as cancer, diabetes and neurodegeneration.
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