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Cell populations in multicellular organisms show genetic and non-genetic heterogeneity,

even in undifferentiated tissues of multipotent cells during development and

tumorigenesis. The heterogeneity causes difference of mechanical properties, such as,

cell bond tension or adhesion, at the cell–cell interface, which determine the shape of

clonal population boundaries via cell sorting or mixing. The boundary shape could alter

the degree of cell–cell contacts and thus influence the physiological consequences of

sorting or mixing at the boundary (e.g., tumor suppression or progression), suggesting

that the cell mechanics could help clarify the physiology of heterogeneous tissues.

While precise inference of mechanical tension loaded at each cell–cell contacts has

been extensively developed, there has been little progress on how to distinguish the

population-boundary geometry and identify the cause of geometry in heterogeneous

tissues. We developed a pipeline by combining multivariate analysis of clone shape

with tissue mechanical simulations. We examined clones with four different genotypes

within Drosophila wing imaginal discs: wild-type, tartan (trn) overexpression, hibris (hbs)

overexpression, and Eph RNAi. Although the clones were previously known to exhibit

smoothed or convoluted morphologies, their mechanical properties were unknown. By

applying a multivariate analysis to multiple criteria used to quantify the clone shapes

based on individual cell shapes, we found the optimal criteria to distinguish not only

among the four genotypes, but also non-genetic heterogeneity from genetic one. The

efficient segregation of clone shape enabled us to quantitatively compare experimental

data with tissue mechanical simulations. As a result, we identified the mechanical basis

contributed to clone shape of distinct genotypes. The present pipeline will promote the

understanding of the functions of mechanical interactions in heterogeneous tissue in a

non-invasive manner.

Keywords: cell mechanics, PCA, heterogeneity, tumor, cell sorting, cell mixing, Drosophila, vertex model

INTRODUCTION

There are intrinsic differences among cells within any population, even in genetically uniform
populations such as, clonal populations of bacteria, yeasts, and undifferentiated plant and animal
cells (Elowitz, 2002; Raser, 2004; Raj and van Oudenaarden, 2008; Eldar and Elowitz, 2010;
Itzkovitz et al., 2011; Meyer and Roeder, 2014). The non-genetic (isogenic) heterogeneity stems
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from intrinsic noise due to stochastic fluctuations in gene
expression and extrinsic noise due to stochastic changes in
upstream signal transduction (Paulsson, 2004; Shibata and
Fujimoto, 2005). Theoretical and experimental discrimination
between intrinsic and extrinsic noise (Elowitz, 2002; Swain et al.,
2002) promoted an understanding of not only the molecular
mechanisms but also the functional significance of the non-
genetic heterogeneity (Raj and van Oudenaarden, 2008; Eldar
and Elowitz, 2010). Genetic heterogeneity in tissues arises from
spontaneous mutations in cell lineages. The emergence of cellular
heterogeneity in epithelial tissues alters the morphology of the
boundaries between neighboring populations and thereby affects
the cellular geometry in the tissue. Alterations of the geometrical
cellular configuration between clonal populations (clones) often
have physiological consequences. Clonal segregation caused by
Eph receptors has been shown to play a tumor-suppressive
role in colorectal cancer by compartmentalizing the cancer cells
and thereby limiting their invasion into normal tissues (Cortina
et al., 2007; Porazinski et al., 2016). In the context of the
cell competition, known as the tissue homeostatic system, to
eliminate unfit cells from heterogeneous populations (Vincent
et al., 2013; Amoyel and Bach, 2014; Morata and Ballesteros-
Arias, 2015), the intermingling of cells at clonal boundaries
facilitates the competition by increasing the contact length
between competing genotypes, so-called winner and loser cells
(Levayer et al., 2015; Levayer and Moreno, 2016). Those insights
suggest the potential to predict physiological consequences
(e.g., tumor malignancy) based on the quantification of clone
shapes. Therefore, the establishment of a pipeline that combines
the quantification of clone shapes with an analysis of the
physical mechanisms underlying the clone shapes would be
beneficial.

A major contributing factor for clone shape is mechanical
interactions at the cell–cell interface. Cell–Cell adhesion
mediated by adhesion molecules and contractility exerted by the
actomyosin network contribute to the tension on the cell–cell
interface (Lecuit and Lenne, 2007). The differential adhesion and
contractility among genetically heterogeneous cells have been
experimentally shown to play a major role in cell segregation by
driving or guiding cell rearrangements (Nose et al., 1988; Krieg
et al., 2008; Maitre et al., 2012; Maître et al., 2016). The role of
such mechanical cell–cell interactions on cell sorting has been
also theoretically studied using computer simulations of tissue
mechanics (Graner and Glazier, 1992; Brodland, 2002). More
recently, experimental evidence in combination with models
has shown that the alteration of boundary morphology can be
explained by the tissue anisotropy of mechanical tension at the
cell–cell interface (Landsberg et al., 2009; Monier et al., 2010;
Aliee et al., 2012; Rudolf et al., 2015). The relative strength of such
mechanical tension (or stress) has been estimated non-invasively
from time lapse of cell shape dynamics (Brodland et al., 2010;
Chiou et al., 2012; Ishihara and Sugimura, 2012; Nier et al., 2016)
or images of fixed tissue (Brodland et al., 2014), and invasively
using physical perturbation (e.g., laser ablation of cell junctions)
(Sugimura et al., 2016, and reference therein). Moreover, a recent
study showed that the “clone tension,” which is defined by the
average strength of the junctional tension inside and on the

border of the clone relative to that on the outside, uniquely
distinguishes smoothed and convoluted clone shapes (Bosveld
et al., 2016a). Hence, reliable quantification of clone shape should
make it possible to identify the averaged strength of tensions in
heterogeneous tissue.

Although several quantificationmethods for clone shape, such
as, circularity (Milán et al., 2002; Chang et al., 2011) and cell
mixing index (Umetsu et al., 2014a; Levayer et al., 2015), have
been established, each has been applied only independently. It is
not known whether those methods can be applied to any clone
shape or are suited for some particular clone shape. Moreover,
it has been unknown whether such methods are sufficient to
distinguish clone shapes or the other methods (e.g., cell area)
are required. The combinatorial use of multiple quantitative
methods wouldmore reliably evaluate the clone shapes of various
genotypes.

In this study, we provide a pipeline to quantify the clone
shape difference and identify the cause of the difference by
combining a multivariate quantitative analysis of clone shape
with computer simulations of tissue mechanics (Figure 1A).
Using fixed Drosophila wing imaginal discs, we examined four
genotypes [wild-type control, tartan (trn) overexpression, and
Eph RNAi, hibris (hbs) overexpression], which exhibit smoothed
or convoluted clone morphologies yet have unknown cell
mechanical properties. Clones that overexpress Drosophila trn,
which encodes leucine rich repeat-containing transmembrane
proteins (Milán et al., 2001, 2002; Sakurai et al., 2007), adopt a
smooth shape. The knockdown of Eph, which encodes tyrosine
kinases of the Eph receptor protein family, also generates round
clones (Umetsu et al., 2014b). In contrast, the overexpression
of hbs, an immunoglobulin superfamily member, leads to the
separation of the hbs-overexpressing cells and their partial mixing
into surrounding cells (Bao et al., 2010), resulting in a convoluted
clone morphology. We used multiple cell-based criteria to
quantify the clone morphology. While no single criterion alone
was able to distinguish all four genotypes, by combinatorial
use of multiple criteria, we distinguished the four genotypes
with optimal criteria. Based on the quantitative criteria, we
compared experimental results with vertex model simulations,
which we explored in a wide range of differential tensions. The
comparison enabled us to estimate different contribution of
clone tensions and tension parameters to clone morphologies of
distinct genotypes, noting that the force inference of individual
cells over entire tissue is beyond the scope of the present paper.
The present multivariate clone shape quantification could be
extended to estimate genetic and non-genetic cell mechanics of
heterogeneous populations (e.g., tumorigenic environment) in a
non-invasive manner.

MATERIALS AND METHODS

Drosophila Strains and Genetics
We used y w hs-flp; DE-Cad::GFP; Act>CD2>GAL4, UAS-DsRed
as the tester-stock genotype in our experiments. We crossed the
tester stock with RNAi lines and raised the offspring at 25◦C for
3 days. We then subjected the offspring to heat shock at 37◦C for
40 min to induce somatic clones (Figure 1K). We subsequently
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kept the larvae at 25◦C for 3 days before dissection. We used
the following transgenic strains in our study: UAS-trn (Sakurai
et al., 2007), UAS-hbs (Dworak et al., 2001), and UAS-ds-Eph
(Vienna stock center, 4771). Hereafter, we refer to the Drosophila
tester-stock clone as the wild-type.

Immunohistochemistry
We hand dissected larvae to obtain wing imaginal discs, which
we fixed in PBS with 4% formaldehyde for 40 min at room
temperature. We washed the fixed samples three times with PBT
(PBS with 0.1% triton) and mounted them on a glass slide.

Imaging and Image Processing
We obtained images with a Leica SP8 confocal scanning
microscope with a 40 × NA 1.30oil objective. We visualized
adherens junctions with the localization of a GFP knock-in for
DE-Cadherin (Huang et al., 2009) and used them for image
segmentation. We manually selected the GFP signals derived
from columnar cells of the wing pouch before making a z-stack
projection. We projected the z-stack images by the maximum
projection in Fiji (http://fiji.sc) and used them for further
quantitative analysis. Average pixel size for each cell junction was
8.4 (Supplementary Figure S11).

Clone Shape Quantification
We performed segmentation, cell tracking, and bond tracking
(Figures 1P–S) using the Fiji plugin Tissue Analyzer (Aigouy
et al., 2016). We projected the clones onto the segmented images
and identified cells in the clones using Tissue Analyzer. We
roughly estimated possible error rates by having 5 unexperienced
individuals hand-correct a segmentation mask for one of the
images we used in this study. We estimated the error rate in 4
ways as follows (Supplementary Figure S4); (1) the mean rate
of hand-corrections made after auto-segmentation (0.84% of all
cell junctions), (2) the mean rate of hand-corrections made by
another person after the 1st round of hand-correction (0.28% of
all cell junctions), (3) the mean rate of hand-correction made
by 1st and 2nd round of hand-correction in total (1.12% of all
cell junctions), and 4) the mean final discrepancy rate between 2
individuals (0.23%, max. 0.44%).We note that the correction rate
highly depends on original image quality therefore the rate would
be variable among images.

We quantified the clone shapes using multiple criteria.
Circularity is a measure that calculates the ratio between the
perimeter and the area of a clone and has been used to evaluate
clone shapes (Figure 1C). We also used the following cell-based
criteria: cell area (Figure 1D), cell edge length (Figure 1E), clone
boundary angle (Figure 1F), and three types of cell mixing
index (Figure 1G) [i.e., mutant (MT; Figure 1H), boundary of
mutant (BDMT; Figure 1I), and boundary of wild-type (BDWT;
Figure 1J)].

Principal Component Analysis (PCA)
We performed PCA of the multi-dimensional criteria for clone
shape using the R environment for statistical computing (R
Development Core Team, 2015) with the “prcomp” function.
We plotted the results using the “ggbiplot” function (R package

version 0.55. http://github.com/vqv/ggbiplot). We applied PCA
to both open and closed clones in the wing imaginal discs
using the six criteria (Figures 1D–F,H–J) excluding circularity.
We standardized the variables to have zero mean and unit
variance before the analysis. Factor loadings (Figure 3K), which
were given by the correlation coefficient between observed
variables (criteria) and principal components (PCs), represent
the contribution of criteria on PCs. The range of the value
is −1.0 to 1.0. The value of −1.0 and 1.0 for the criteria
indicates a perfect negative and positive correlation with the PCs,
respectively.

Cell Vertex Model
The cell vertex model quantitatively accounts for the packing
geometry of normal epithelial cells and predicts the forces that
act at cell–cell interfaces, where cell configurations are described
as polygons whose vertices form tri-cellular junctions subjected
to mechanical force (Honda, 1983; Farhadifar et al., 2007; Gibson
et al., 2011). The model can reproduce stable force balance
configurations of the adherens junctions network, which depend
on mechanical parameters characterizing the cell bond tension
and apical area contraction. Cells change their shape based on the
force balance of cell packing. Themodel is represented by balance
of three types of mechanical force exerted on a vertex (Farhadifar
et al., 2007):

d−→xi
dt

= Farea elastisity + Ftension + Fcontractility = − ∂E

∂
−→xi

E = 1

2

∑
α
(aα − 1)2 + γ

∑
<i,j>

lij +
η

2

∑
α
lα

2, (1)

where xi and E are the position vector of each vertex and
the energy function. Farea elasticity denotes the area elasticity,
which decreases as the area of cell α (aα) approaches the
normalized preferred area of unity. The line tension (Ftension)
between vertices i and j (lij) is provided by the cell–cell adhesion
mediated by adhesion molecules and the contractility exerted by
actomyosin. The contraction (Farea elasticity) of the cell perimeter
lα is provided by actomyosin ring. We set the contractility
parameter η = 0.04 and the line tension parameter γ = 0.12
as the control values to account for the cell packing geometry
in Drosophila wild-type clones (Farhadifar et al., 2007). The
line tension at the clone boundary (γb) and at the inner
clonal edges (γc) can differ from γ. Each clone was generated
from a single cell by dividing them to be 40 cells in total,
which is close to the average number of cells in Drosophila
wild-type clones. We performed 5 independent simulations for
each parameter by changing the seed of the random number
generator.

We integrated the vertex model numerically using the Euler
method with free boundary conditions. To achieve a mechanical
equilibrium of the tissue state, we calculated the position vector
of each vertex after each step until the total velocity of all
vertices dropped below a threshold of 1.0. The cell division
time (cell cycle) t of each cell in the cell vertex model obeys
a Gamma distribution with the following probability densities:

p(t) = tk−1exp(−kt/T̄)(T̄/k)
−k

/Γ (k), where Γ (k) is the gamma

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 August 2017 | Volume 5 | Article 68

http://fiji.sc
http://github.com/vqv/ggbiplot
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Tsuboi et al. Multivariate Clone Shape Quantification

function with k = 25.0 (Wartlick, 2011). The average and

standard deviation are given by T̄ and T̄/
√
k, with T̄ = 6.

Cells were divided when the residence times in the cell cycle
became zero. Although the cell area decreases to half the original
cell area after cell division, it increases as the cell achieves a
mechanical equilibrium of energy [Equation (1)]. The mitotic
cleavage-plane orientation obeys the long axis rule (Gibson et al.,
2011; Bosveld et al., 2016b), where the plane passing through
the shorter axis is defined by calculating the inertial tensor of
each cell using the positions of the vertices (Fletcher et al., 2013).
Cell intercalation (T1 transition) was incorporated when the
edge length dropped below a threshold of 0.01. Apoptosis (T2
transition) was introduced into triangular cells (containing 3
vertices) whose area became below a threshold of 0.03 to replace
them by a single vertex. In addition, cells which were squeezed
and reduced their cell area below a threshold of 0.001 were
eliminated by repeating the cell topological changes (T1 and T2
transition) even if the cells containing more than 3 vertices. The
number of apoptotic events (during proliferation of a clone from
a single cell to 40 cells) depends on the model parameters as seen
in earlier studies on homogeneous tissue (Farhadifar et al., 2007).
The apoptotic rate (number of apoptotic events/cell cycle) was 0
(γb/γ = 0.5, γc/γ = 1.8, Figure 4Ai), 1.5 (γb/γ = 1.0, γc/γ = 1.8,
Figure 4Aii), 0 (γb/γ = 0.5, γc/γ = 1.0, Figure 4Aiii), 0 (γb/γ
= 1.0, γc/γ = 1.0, Figure 4Aiv), 0.08 (γb/γ = 1.6, γc/γ = 1.0,
Figure 4Av), 0 (γb/γ= 1.0, γc/γ= 0, Figure 4Avi), 0 (γb/γ= 1.6,
γc/γ = 0, Figure 4Avii).

Clone Tension
Clone tension is given by the balance of line tension parameters
[Equation (1)] at the three types of edges represented by γ, γb,
and γc (Bosveld et al., 2016a):

σ̂ = ∂E

∂L
= γb −

γ + γc

2
. (2)

It represents the energy cost E [Equation (1)] per unit length of
changes in the clone boundary length L (Figure 1C) followed
by cell intercalation. Because the differential of elastic energy
∂E/∂L should be negative to satisfy a stable equilibrium, the
sign of the clone tension σ̂ influences the evolution of the clone
boundary length L. At negative σ̂ , boundary length change δL
should be positive to increase the contact between different cell
populations, leading to a convoluted clone boundary. In contrast,
at positive σ̂ , δL should be negative to decrease the contact
between different cell populations, leading to a smoothed clone
boundary. We used dimensionless clone tension σ = σ̂ /γ

(Bosveld et al., 2016a) in this study.

Projection of the Simulation Data onto the
PCA Space of the Experimental Data
To quantitatively compare the multivariate clone shape data
from genetic experiments with the vertex model simulations
in the PCA space constructed from the experimental data
(Figure 1A), the simulation clones (See Section Cell Vertex
Model for induction of clones) were quantified by an identical
set of quantitative criteria with experiments (Figures 1D–F,H–J).

Subsequently, we subtracted the clone shape dataset for each
criterion in simulations from the mean of that in the four
genotypes and divided the subtracted values by the standard
deviation of that in the genotypes. We calculated the first PC
scores (Y1) of the scaled simulation data (X1, X2, ...., Xn) by
Y1 = a11X1 + a12X2 +...+ a1nXn, where a11, a12, ..., a1n are
the weights (Supplementary Table S1) of four genotypes with n
= 6 (number of criteria; Figures 1D–F,H–J). The weights are
given by the first column of the PC matrix, which contains
variable loadings whose values are returned by “rotation” in
the prcomp function in R. The second PC scores are given
in the same way by using the second column of the matrix.
We projected the calculated first and second PC scores onto
the experimental PCA space using the “ggplot2” function
in R (Wickham, 2009). The PC scores in simulation were
averaged over the clones categorized by the number of consisting
cells (every 5 cells) since the clone size was varied due to
fragmentation of a single clone caused by T1 transitions in a
simulation.

Estimation of the Mechanical Parameters
of the Genetic Experiments in the PCA
Space
We determined the estimated mechanical parameters by
simulation plots inside a confidence ellipse, which we drew by
assuming that the experimental plots of each genotype followed
the multivariate normal distribution. We selected the best
representative parameters for each genotype by identifying the
shortest Mahalanobis distance from the center of the confidence
ellipse.

RESULTS

Clone Shape Quantification
We adopted several geometrical indicators (Figures 1B–J and
Supplementary Figures S1, S2) to quantitatively evaluate the
shape of mosaic clones of distinct genotypes induced in the
wing discs (Figures 1K–O). First, we calculated the circularity of
each clone (Section Clone Shape Quantification; Figures 1C, 2),
and Supplementary Figure S1). The average circularity of the
trn-overexpression clones, which exhibited a round shape with
a smooth border (Figure 1M), was significantly greater than
that of the wild-type clones, as reported previously (Figure 3A;
Milán et al., 2002). In the other genotype, hbs-overexpression
clones, circularity was distinct from that of the wild-type clones
(Figure 3A). The cells overexpressing hbs, however, scattered
into many single-cell clones (Figure 1O and Supplementary
Figure S3), so the circularity of the single-cell clones represented
merely the shape of cells, and not that of clones. Moreover,
circularity cannot be applied to open clones located at the edges
of the images, because the perimeter length and area of those
clones cannot be precisely determined (Figure 2, uppermost
panels and white-colored clone in Circularity panels). Circularity
can be applied only for clones with closed circumference and
is therefore measurable only for those clones with a relatively
small number of cells located in the middle of the tissue, and
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FIGURE 1 | The multivariate estimation pipeline using quantitative evaluation of clone shape. (A) Schematic summary of the inference procedure. (B–J) Criteria used

for the evaluation of clone shape. Circularity (C) was measured only for closed clones, while the other six cell-based criteria (D–J) were measured for both closed

clones and open clones. The cell-based criteria (D–J) were calculated for each edge, tri-cellular junction, or cell, and the values were averaged over each clone. (B)

Scheme for a clone. Orange lines represent adherens junctions, and cells within a clone are shaded. (C) Circularity calculated as 4π A/(L2), where “A” represents the

area of the clone, and “L” is the perimeter length of the clonal interface. The circularity of a perfect circle should be 1. (D–G) Magnified images of the box in (B). (D)

Area of a cell within a clone normalized by that of all wild-type cells surrounding the clone in a disc. (E) Length of edges (cell junctions between neighboring vertices) at

the clone boundary normalized by that of edges between wild-type cells. (F) Boundary angle, which is the smaller angle (<180◦) between neighboring junctions along

the clone boundary at every tri-cellular junction (three-way vertices). (G) Cell mixing index, which is the fraction of the perimeter of a cell that is shared with cells from

the other side of the clone boundary. (H–J) The cells used to calculate the average cell mixing index for MT, BDMT, and BDWT are marked by red dots in (H, all cells

within the clone) (I, clonal cells beside the clone boundary) and blue dots in (J, wild-type cells beside the clone boundary), respectively. (K) Scheme for genetic

manipulation used to generate the clones. GAL4 is expressed only when the CD2 cassette, which includes a transcription termination sequence and is flanked by FRT

sites, is excised upon Flippase (Flp) induction by heat shock. Once expressed, GAL4 binds to the UAS sequence and drives expression of the downstream gene.

(L–O) Clones expressing a marker for wild-type (L), trn (M), double-strand RNA against Eph (N), and hbs (O). (P–S) Segmentation of the cell junctions in (L–O).
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FIGURE 2 | Clone shape quantifications in wing discs. Uppermost panels: Definition of clone type. “Closed” clone is completely enclosed by wild-type cells (left), while

“Open” clone contains an invisible portion due to its location at the distal region of the tissue (middle) or image frame (right). Visualization of individual criteria

(Figures 1C–J) for the examined clones of four genotypes (Figures 1L–O). For open clones, circularity was not measurable, so they were filled by a white color.
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FIGURE 3 | Principal component analysis of clone shape indicators for four genotypes. (A–G) Plots for circularity (A), edge length (B), cell area (C), boundary angle

(D) and cell mixing index of MT cells (E), BDMT cells (F), and BDWT cells (G) of clones of four genotypes including wild-type (red), Eph RNAi (green), trn

overexpression (yellow), and hbs overexpression (blue). The plotted data were obtained from clones with averaging within a disc. Black solid lines and gray broken

lines represent the average and median values, respectively. Wilcoxon rank sum test, n = 6 for control and hbs overexpression; n = 5 for Eph RNAi and trn

overexpression. **P < 0.01, *P < 0.05 and P > 0.05 (N.S., Not Significant). (H–J) Results of principal component analysis using six criteria (edge length, cell area,

boundary angle, and cell mixing index of MT cells, BDMT cells, and BDWT cells) are plotted for PC1 vs. PC2 (H), PC1 vs. PC3 (I), and PC2 vs. PC3 (J). (K) Quantified

contribution (factor loadings; Section Principal Component Analysis (PCA) for definition) of each criterion on PC1 and PC2. The arrow length represents the sum of the

squared correlation coefficient of PC1 and PC2, noting that the sum of all PCs is equal to 1.

the entire clone should lie within the image frame (Figure 2,
uppermost panels). In the Drosophila wing discs, which are
frequently used for mosaic clone analysis, approximately half

of the clones were open clones (46.4% for wild-type clones).
Therefore, a cell-based analysis to quantify the clone shape was
needed.
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In order to quantify clone shape at the single-cell level,
we precisely traced (segmented) the individual cell shapes and
labeled the cells using Tissue Analyzer (Aigouy et al., 2016;
Section Clone Shape Quantification; Figures 1P–S), which has a
sufficiently low error rate of image segmentation (Supplementary
Figure S4). For the segmented images, we measured the
cell mixing index, which has been used to quantitatively
evaluate how much a single cell shares junctions with a
neighboring population (Umetsu et al., 2014a; Levayer et al.,
2015) (Figures 1G–J, 2; and Supplementary Figure S1; MT,
BDMT, and BDWT). Remarkably, the MT and BDMT of the
hbs-overexpression clones were significantly higher than those
of the wild-type clones (Figures 3E,F). In order to test whether
the cell mixing index is sensitive enough to distinguish clone
shapes with different smoothness, we compared Eph-RNAi clones
(Figures 1N,R) with trn-overexpression clones (Figures 1M,Q);
however, none of the indices (MT, BDMT, and BDWT) was
able to distinguish between the Eph-RNAi clones and the
trn-overexpression clones (Figures 3E–G). The boundary angle
(Figure 1F) was also unable to separate the Eph-RNAi and trn-
overexpression clones, although it could distinguish the Eph-
RNAi or trn-overexpression clones from the wild-type clones
(Figures 2, 3D). The edge length (Figure 1E) was not able
to distinguish between any pair of genotypes (Figures 2, 3B).
The cell area (Figure 1D) could uniquely distinguish the Eph-
RNAi clones from the trn-overexpression clones but not from
the wild-type clones (Figure 3C). In summary, there was no
single cell-based criterion that could separate the four genotypes.
The combinatory use of multiple criteria may provide a better
resolution to distinguish the clone shapes of the genotypes, which
could ultimately infer mechanical parameters of each genotype
(Figure 1A).

PCA Separated Sources of Phenotypic
Heterogeneity
The combinatorial use of multivariate (6-dimensional) dataset
increases information of data sets required for the complete
separation, while the multi-dimensional information is too
complex for us to intuitively extract some important criteria for
the efficient separation. Therefore, multi-dimensional analysis
generally has a trade-off between the merits and demerits.
The principal component analysis (PCA) can optimize the
trade-off: It can provide criteria to maximize the variance
of the data and compresses multi-dimensional information
into lower dimensions while retaining most of the original
information. PCA has been extensively developed in the field
of morphometrics of individual cells (Lacayo et al., 2007;
Pincus and Theriot, 2007), organs (Iwata, 2002; Klingenberg,
2011), and individual bodies (Zelditch et al., 2012), but not
of clones in multicellular tissue. We applied PCA to the
data set of the six criteria for the four genotypes (n = 84
clones from six discs for wild-type, n = 61 clones from
five discs for Eph RNAi, n = 53 clones from five discs for
trn overexpression, n = 215 clones from six discs for hbs
overexpression; Figures 3H–K and Supplementary Figures S5,
S6). We averaged over the set of clones in each wing disc

before applying PCA to analyze genetic variation separately
from non-genetic variation. We found that more than 80%
of the information was compressed into only two principal
components (PC1 = 49.4%, PC2 = 31.9%, PC3 = 12.7%;
Figures 3H–J). Each genotype was separated mainly in PC1
without overlap (Figure 3H), while the Eph-RNAi and trn-
overexpression clones were also efficiently separated in PC2
and PC3 (Figures 3H–J). The major criteria with higher factor
loading on PC1 [>0.85; See Section Principal Component
Analysis (PCA) for the definition of factor loading] were MT,
BDMT, and boundary angle, while some other criteria such as,
cell area and edge length showed a high contribution on PC2,
and BDWT contributed relatively on PC1 and PC3 (Figure 3K
and Supplementary Figure S5). Both the separation of genotypes
mainly in PC1 and the contribution of each criterion on
PC1–PC2 were nearly the same “with averaging” or “without
averaging” within the discs (Figures 3H–K and Supplementary
Figure S6).

Note that PCA without averaging within the discs showed
that the variation within a genotype was mainly distributed
in PC2, while each genotype was separated in parallel with
PC1 (Supplementary Figure S6A). Since the variation occurred
in an identical combination of clone (e.g., Eph RNAi) and
non-clone genotypes (wild-type), hereafter we call it “non-
genetic” heterogeneity (Supplementary Figures S1, S7A, middle
panels). Interestingly, PC2 had a positive correlation with the
distance from the center of the disc (Supplementary Figure S7B),
indicating that the non-genetic heterogeneity in PC2 encoded
the positional information of each clone. That might be caused
by spatial gradients of the expression of several genes in the
Drosophila wing pouch (e.g., spalt, optomotor-blind, Distalless,
and vestigial; Milán et al., 2002; Affolter and Basler, 2007; Swarup
and Verheyen, 2012). Therefore, genetic as well as non-genetic
heterogeneities were efficiently segregated in lower dimensions
in the PC space, allowing us to estimate the mechanical basis of
the genetic heterogeneity using PCA.

Vertex Model Simulations with Differential
Line Tension
We analyzed how themechanical cell–cell interactions contribute
to the characteristic clone shapes (Figures 1L–S) by comparing
Drosophila experiments to computer simulations (Figure 1A).
We utilized the cell vertex model, which quantitatively accounts
for the packing geometry of epithelial cells [Section Cell Vertex
Model, Equation (1)]. Clone shape has been shown to be
modulated mainly by the combination of line tension parameters
at three types of edges: γ [default tension in Equation (1)],
γb (clone boundary tension), and γc (inner clonal tension;
Figure 4A, right bottom panel for the classification of edges)
(Graner, 1993; Graner and Sawada, 1993; Brodland, 2002).
Therefore, as a pilot study for the multivariate inference of
mechanical parameters for each genotype, we presupposed that
γb and γc relative to γ are the main causes of clone formation,
although other parameters such as, the rate of cell proliferation
might potentially influence the clone boundary shape (see
Supplementary Figure S3 for detailed data on the numbers
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of cells and clones). We numerically explored the role of the
different combinations of line tension parameters γb and γc in the
formation of clones. As the tension parameter for clone boundary
γb increased relative to the control tension parameter γ, cells
were sorted out so that the clone boundary became smoothly
rounded (Box1 in Figure 4C), as seen previously (Landsberg

et al., 2009; Monier et al., 2010; Aliee et al., 2012; Rudolf et al.,
2015; Bosveld et al., 2016a). We observed a similar tendency to
generate smooth clones by decreasing the inner clonal tension
parameter γc relative to γ, which is equivalent to increasing
adhesion between the inner clonal cells (Box2 in Figure 4C).
Conversely, cell mixing occurred to form convoluted clones as

FIGURE 4 | Cell vertex model simulations. (A) Right bottom: The classification of line tension parameters: γ [default tension at edges between non-clonal cells (white)],

γb (clone boundary tension at edges on the clone boundary), and γc [inner clonal tension at edges between clonal cells (green)]. (i–vii) Snapshots of simulated clones

when the total number of green cells is 40. (B) Parameter space of normalized line tension (γb/γ and γc/γ) with contour lines of clone tension σ (See Section Clone

Tension for definition). Each symbol denotes different combinations of parameters (γb/γ, γc/γ). (C) Representative form of the clones for all simulation parameters in

(B), noting that the model did not work at the three parameter points indicated by “ND.” Clones enclosed within black dashed boxes are the same as those in (i–vii).
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γb decreased or γc increased relative to γ (Figure 4C). Those
results indicate the differences between the default tension (γ)
and the one at the clone boundary and inside the clone (γb
and γc) reflect cell sorting and cell mixing. As a measure to
distinguish between cell sorting and mixing, we examined the
dimensionless clone tension, which is represented by γ, γb,
and γc (σ in Section Clone Tension) (Bosveld et al., 2016a).
We confirmed that negative and positive values of the clone
tension (Figure 4B, gray and light-gray, respectively) mainly
distinguished convoluted and rounded clone morphologies,
respectively (Figure 4C).

Inference of Tension Parameters by
Comparison between Experiments and
Simulations in the PC Space
We quantitatively compared the clone shapes generated by vertex
model simulations using the control parameters (γ = γb =
γc, Figure 4Aiv) to those of Drosophila wild-type clones by
projecting the simulated clones onto the PC1 and PC2 space of
the experimental data (Figure 3H). The simulated control clones
(Figure 5A, black octagonal asterisk at PC1 ∼ 1.07, PC2 ∼ 0.56)
were consistently similar to the wild-type clones in the PC space
(Figure 5A, red confidence ellipse). We inferred the wild-type
tension parameters from the simulations plotted inside the 68%
confidence ellipse of the wild-type clones (Section Estimation
of the Mechanical Parameters of the Genetic Experiments in
the PCA Space). The estimated parameters of the wild-type
clones were distributed around the control parameters of the
simulation (Figure 5B, red), where the clone tension was nearly
zero (Figure 5B, solid line, and Figure 5C, red), indicating that
the vertex model could closely coordinate with the PCA of
static tissue images to non-invasively estimate the mechanical
parameters of the wild-type clone based only on the clone
morphology.

Likewise, when we simultaneously projected simulation data
from a wide range of tension parameter sets (all marks
in Figure 4B) onto the PC space, we found that the two-
dimensionality of the parameter space of the line tension (γc/γ
and γb/γ; Figure 4B) was maintained in the PC1-PC2 space
(Figure 5A), indicating a quantitative link between the tension
parameters at the cell–cell interface and the clone boundary
geometry of heterogeneous populations. Therefore, following
the methods applied to the wild-type clone, we estimated
the mechanical parameters of the other three genotypes (Eph
RNAi, trn overexpression, and hbs overexpression). We found
that the estimated regions of the mechanical parameters for
each genotype (plotted inside the 68% confidence ellipses in
Figure 5A) were distributed in parallel to the contour lines
of the clone tension (Figure 5B). For the Eph-RNAi and
trn-overexpression clones, which had a rounded morphology
(Figures 1M,N), the tension of both clones was higher than
that of the wild-type clone (Figure 5C). The hbs-overexpression
clones had a negative value for clone tension (Figure 5C), which
was consistent with their convoluted morphology (Figure 1O).
The ascending order of clone tension (hbs overexpression<wild-
type < Eph RNAi < trn overexpression; Figure 5C) perfectly

agreed with that of PC1 (Figure 3H), indicating that the value
of PC1 reflects the difference in clone tension. To more directly
relate the clone tension to the PCA, we projected the PC
scores onto the parameter space of the vertex model simulations
(Figure 5D). The contour of the PC1 scores was almost parallel
to that of the clone tension (Figure 5D, red solid line), whereas
that of the PC2 scores was rather perpendicular to that of the
clone tension (Figure 5D, dark gray solid line), indicating that
the clone tension was the mechanical basis of PC1.

To better estimate the tension parameters γb and γc,
we defined the simulation plots closest to the centers of
the confidence ellipses (Figure 5A) as the best representative
combinations of line tension parameters for each genotype
(pentagonal asterisks in Figures 5B, 6). We confirmed that the
representative parameters γb and γc in simulations quantitatively
reproduced experiments of each genotype according to all clone
shape criteria used in PCA (Supplementary Figures S8A, S9A, left
most panels). The representative parameters indicated that the
cause of the higher clone tension was different between the Eph-
RNAi clones and the trn-overexpression clones. The difference
was mainly caused by dominantly reduced γc relative to γ for
the Eph-RNAi genotype and both reduced γc and increased γb
relative to γ for the trn-overexpression genotype (Figure 5B).
The lower clone tension of the hbs-overexpression clones was
caused by dominantly increased γc relative to γ (pentagonal
asterisk in Figure 5B).

At a constant clone tension for each genotype estimated
by PC1, PC2 is sensitive to the combination of γb and γc
(e.g., −4 ≦ PC2 ≦ 2 at clone tension = −0.2 in Figure 5D),
so that the dominant change of γb or γc relative to γ was
determined according to PC2 value of each genotype. The
underlyingmechanics how PC2 distinguished the dominance can
be understood from the mechanical equilibrium of vertex model;
edge length at clone boundary and cell area inside clones, which
had higher contribution to PC2 (Figure 3K), become smaller
as line tension strength γb and γc at constant clone tension
increase in simulations (Supplementary Figure S10). Thus, the
mutual projection of the mechanical parameter space and the
PC space could efficiently and quantitatively estimate the distinct
mechanics of the various clone morphologies.

DISCUSSION

Multivariate Analysis of Clone Shapes
We first developed a PCA of clone shapes in heterogeneous cell
populations, which efficiently segregated clones of each genotype
in the PC space. No single cell-based criterion of clone shape
was able to perfectly segregate all four genotypes (Figure 3). In
addition, becausemost of the conventional ways to quantify clone
shape used in previous studies can only apply to closed clones
(e.g., circularity, Figure 1C), much information regarding open
clones (e.g., white clones in Figure 2) was previously lost during
the quantification process. Open clones are frequently observed,
however, in tissue specimens. The cell-based criteria that we used
(Figures 1D–J) can apply to not only closed clones but also open
clones, so we can use themwidely and independently on the clone
shapes and its location in the tissue. Furthermore, the average

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 August 2017 | Volume 5 | Article 68

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Tsuboi et al. Multivariate Clone Shape Quantification

FIGURE 5 | Inference of tension parameter and clone tension of four genotypes. (A) Projection of simulated clones onto the PC space of Drosophila experiments (See

Section Projection of the Simulation Data onto the PCA Space of the Experimental Data for Projection; Symbols denote parameter values given in Figure 4B). A

limited set of simulation points are plotted for visibility (see Supplementary Figure S12 for the projection of the entire simulated dataset). The experimental confidence

ellipses were identical to those in Figure 3H. The averaged PC scores were plotted with symbol size proportional to the number of cells within a clone and error bar

representing standard deviation. (B) Estimated mechanical parameters of four genotypes. Mechanical parameters within the 38 and 68% confidence ellipses in (A) are

shown by dark and light colors, respectively. Pentagon asterisks (*) mark the best representative parameters, which are the closest to the center of each confidence

ellipse. (C) Estimated clone tension of four genotypes calculated by the estimated mechanical parameters within the 68% confidence ellipse [dark and light colors in

(B)]. The upper/lower hinge and thick middle line represent the 25th/75th and 50th percentiles, respectively. Gray squares show the averaged clone tension.

Octagonal asterisks are the clone tension of the best representative parameters [pentagonal asterisks in (B)]. (D) Projection of the contour lines of PC1 and PC2

scores onto the parameter space of vertex model simulations.

pixel size for each cell junction was only 8.4 (Supplementary
Figure S11), suggesting the relatively low resolution imaging
data is sufficient to distinguish clones of different genotypes
with a minimal manual correction (1.12%, Section Clone Shape
Quantification and Supplementary Figure S4). Therefore, our
cell-based quantification provides a robust method for the clone
shape quantification.

Both genetic and non-genetic heterogeneities influence
tumorigenesis (Cortina et al., 2007; Porazinski et al., 2016), cell

competition, and other events. Elimination of loser cells at the
clone boundary during cell competition has been shown to be
driven by genetic heterogeneity (Vincent et al., 2013; Amoyel
and Bach, 2014; Morata and Ballesteros-Arias, 2015), while
not all of loser cells are eliminated indicating the non-genetic
heterogeneity due to local cell–cell contacts and gene expression
levels in tissues might affect the elimination [e.g., Figure 1 in
Levayer et al. (2015); (Froldi et al., 2010; Chen et al., 2012; Kajita
et al., 2014)]. The PCA applied to individual clones efficiently

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 August 2017 | Volume 5 | Article 68

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Tsuboi et al. Multivariate Clone Shape Quantification

FIGURE 6 | Simulation clones corresponding to the experimental clones. Visualization of individual criteria for the four simulated clones, which correspond to the best

representative combination of line tension parameters for the four genotypes (pentagon asterisks in Figure 5B).
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separated the genetic heterogeneitymainly in PC1, while the non-
genetic heterogeneity was distributed in PC2 (Supplementary
Figures S6, S7), indicating that PC1 and PC2 encode genetic and
non-genetic heterogeneities, respectively. That in turn indicates
that the criteria with high contributions on PC1 (BDMT,MT, and
boundary angle; Supplementary Figure S6D) and PC2 (BDWT,
cell area, and edge length; Supplementary Figure S6D) optimally
indicate the genetic and non-genetic heterogeneity, respectively,
for the four genotypes in our study. The determination of
whether those criteria commonly distinguish between genetic
and non-genetic heterogeneity in other genotypes in the future
will give clues as to how to separately evaluate genetic and non-
genetic contributions to physiological functions of heterogeneous
tissue.

Non-invasive Estimation of Cell Mechanics
We non-invasively estimated the mechanical parameters (i.e.,
clone tension and line tensions) of each genotype by integrating
in a PC space the results of vertex model simulations and the
quantified clone shapes in static images of cells (Figure 5A
and Supplementary Figure S12). As a case study for rounded
clones, we revealed that trn-overexpression clones have greater
clone tension than Eph-RNAi clones (Figure 5C). Despite
the patterned expression and the known, spatially graded
function of trn in the wing pouch (Milán et al., 2002), our
method successfully captured the characteristic features of trn
overexpression, which are significantly distinct from those of
Eph knockdown (Figures 3H–K). That suggests that our method
can be applied to the coarse classification of clones with distinct
genotypes even in the presence of non-genetic variation derived
from a spatial gradient.

We also confirmed that the clone tension of the wild-type was
nearly zero (Figure 5C). In addition, the range of clone tension
for the other genotypes was also close to thatmeasured previously
(0 < σ < 0.6) (Bosveld et al., 2016a), despite the fact that we used
different genotypes (Figure 5C). In addition, difference of the
estimated clone tension (asterisk of Figure 5C) among genotypes
was larger than the variation within each genotype (box height
of each plot in Figure 5C), which was also confirmed by the
estimation precision of clone tension [±0.15 (wild-type), under
±0.1 (Eph), ±0.1 (hbs), ±0.2 (trn) calculated from estimation
precision of γb and γc in Supplementary Figures S8, S9 using
Equation (2)]. The results indicate that our estimated values were
roughly correct and that our method works well to estimate
the mechanics. Moreover, we first showed in vivo that negative
clone tension causes a convoluted morphology by inducing hbs-
overexpression clones (Figure 5C).

Our study revealed the cell mechanics, relative contributions
of γb or γc to the increase or decrease in clone tension. By
examining the underlying cell mechanics, we found that the
relative contributions of the line tension parameters γb and γc
were different among genotypes, even when the sign of the
clone tension was the same. Estimation precision of γb/γ for
each genotype was evaluated by a limit to how much shift
of γb/γ from the best representative (pentagonal asterisks in
Figure 5B) simulation could reproduce experimental data; It
was at most ±0.2 [under ±0.1 (Eph, hbs), ±0.1 (wild-type),

and ±0.2 (trn)] (Supplementary Figure S8), whereas estimation
precision of γc/γ was at most ±0.3 [±0.1 (Eph), ±0.2 (hbs, trn),
and±0.3 (wild-type)] (Supplementary Figure S9). The estimated
parameter variation of γb/γ and γc/γ for each genotype (68%
confidence, dark and light colors in Figure 5B) was consistently
smaller than difference of the best representative parameters
between genotypes (pentagonal asterisks in Figure 5B). The Eph-
RNAi clone had decreased bulk line tension, whereas the trn-
overexpression clone had both increased boundary tension γb
and decreased γc (pentagonal asterisks in Figure 5B), resulting
in positive clone tension. The hbs-overexpression clone, which
showed cell mixing due to negative clone tension, mainly had
increased γc (pentagonal asterisk in Figure 5B). Cell mixing
caused by increased γc was reported previously in myc-induced
cell competition (Levayer et al., 2015). Our inference on the
dominance of γb or γc for each genotype should be verified by
estimation of the mechanical tension by physical perturbation
in the future (e.g., laser cutting of the three types of edges in
Figure 4A, right bottom panel).

Molecular Mechanisms of Cell Sorting and
Mixing Mechanics
The present estimation provides mechanical insights of
the previously reported molecular functions in cell sorting
(Figure 5B): Drosophila trn and its paralog capricious (caps)
encode leucine rich repeat containing transmembrane proteins
that have a function in controlling cell affinity and the regulation
of cell communication for cell survival (Milán et al., 2001,
2002; Sakurai et al., 2007). The mammalian homolog, Lrrn1 is
required for the formation of the midbrain-hindbrain boundary
by regulating cell affinity (Tossell et al., 2011). Eph kinases
comprise a large protein family of receptor protein tyrosine
kinases. Eph receptors are activated by binding to ephrins, their
membrane-anchored ligands, to transduce signals that play
diverse roles in axon guidance, neural crest-cell migration, and
boundary formation of rhombomeres through their function in
repulsive cell–cell interactions (Sela-Donenfeld and Wilkinson,
2005; Fagotto et al., 2014). In addition, mammalian EphB
signaling plays a tumor-suppressive role by compartmentalizing
cancer cells, potentially through cell-repulsive activity by means
of actin cytoskeleton reorganization (Cortina et al., 2007). Our
result showing decreased line tension at homotypic cell junctions
(γc) within the Eph-RNAi clones (Figure 5B) is consistent with
the previously proposed repulsive functions of Eph receptors.
Therefore, our method was consistent with the previously
reported cell functions. Given the common and uncommon
biological functions between trn and Eph, it would be interesting
to investigate how the difference in cell mechanics between the
trn-overexpression clone and Eph-RNAi clone contributes to
biological functions of those genes.

Our analysis showed that the overexpression of hbs alone
can result in negative clone tension (Figure 5C), which leads
to convoluted clonal morphology and cell scattering. The
main contribution to the negative clone tension was the
increase of γc (Figure 5B), which would be a reflection
of either an increase in cortical contractility or a decrease
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in adhesion at homotypic cell junctions within the clone
[Equation (2)]. That suggests that the scattered morphology
of the hbs-overexpression clones was derived from increased
cell bond tension at the hbs–hbs cell interface, which is
independent of the interaction between heterotypic cell junctions
at the wild-type–hbs interface. The mechanical basis of hbs
function has been poorly understood, except for its heterophilic
interaction with the other nephrin family proteins Roughest
and Kirre. Our result therefore provides a new mechanical
insight into the cell mixing mechanisms mediated by those
proteins.

Future Problems
In addition to line tension parameters, the clone boundary
shape could be affected by inter-clonal differences in other
parameters such as, the cell proliferation rate, apoptosis rate,
and cell division orientation, which we will incorporate into
the vertex model in the future. For example, the proliferation
rate appeared to be increased more often in Eph-RNAi cells
than in wild-type cells (Supplementary Figure S3B). Differential
proliferation rates induced by such mutants are known to cause
not only clone boundary smoothing [e.g., RasV12-expressing
(constitutively active form) cells (Prober and Edgar, 2000)
and tkvQ253D-expressing (activated form of Dpp receptor) cells
(Nellen et al., 1996)] but also the mechanical elongation of
slower-dividing cells at the clone boundary and the compaction
of faster-dividing cells [e.g., Hippo mutant clones in wild-type
tissue (LeGoff et al., 2013; Mao et al., 2013; Pan et al., 2016)],
so that cell shape anisotropy, which is a new criterion for
cell elongation (LeGoff et al., 2013; Mao et al., 2013), as well
as BDWT, clonal cell area, and other parameters might be
reliable criteria for differential proliferation. The regulation of
cell division orientation depends on the pathway of planar cell
polarity, morphogen gradient, and mechanical cell stretching
(Gillies and Cabernard, 2011; di Pietro et al., 2016; Stooke-
Vaughan et al., 2017). Specifically, misoriented or directionally
oriented cell division inside or at the periphery of the clone results
in a rounded or convoluted shape of the clone boundary (Li
et al., 2009; Mao et al., 2011; Kale et al., 2016). Taken together,
the incorporation of additional criteria is required (e.g., cell
shape anisotropy) in order to precisely infer the most responsive
parameters of genotypes.

According to the increasing dimensions of the parameter
space, parameter estimation should be performed in the higher
dimensions of the PC space. While we used the PC1-PC2
space containing 80% of the information for the current
estimation (Figure 5A), PC3 contained about 10% of the
information, which segregated Eph-RNAi clones from trn-
overexpression clones (Figures 3I,J). Additionally, we could
narrow down the estimated parameter region by combining our
current analysis with other analyses, such as, a distribution of
several criteria as in the parameter estimation of homogeneous
epithelial tissue (Farhadifar et al., 2007; Aegerter-Wilmsen
et al., 2010). For example, hbs-overexpression clones showed an
anomalous distribution of cell numbers within clones due to
an increasing fraction of clones with smaller numbers of cells

(Supplementary Figures S3A,C), while wild-type clones show
coherent morphologies (Figure 1L) due to the remarkable lack
of cell rearrangement in imaginal discs (Gibson et al., 2006). That
indicates that the combinatorial use of the clone size distribution
(Supplementary Figure S13B) with PCA could estimate the
parameters for hbs-overexpression clones in a narrower range
(Supplementary Figure S13A, parameters covered by both blue
and gray oblique lines). Future studies should also clarify the
limits and applicability of the multivariate inference of cell
mechanics by exploring more complex systems as well as a wider
variety of genotypes.

The pipeline based on cell shape quantification developed
in this study may be extended to an image-based cancer
diagnosis. High-throughput microscopy image-based cancer
prognosis has been developed and is expected to provide useful
prognostic information for precision medicine (Yu et al., 2016).
In addition to the potential contribution to such a classification
of the cancer subtype or grade, our method has a potential to
provide the mechanistic understanding of tumor development.
Elucidation of mechanistic ground of tumor morphology may
help cancer treatment planning. Moreover, manipulation of the
clone tension at the interface between normal cells and cancer
cells (γb) as well as of that between cancer cells (γc) can be
an alternative clinical approach to suppress cancer progression
either by limiting tumor invasion or by promoting cell
competition.
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