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Combining Prediction Algorithms
Thomas B. Hansen*

Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark

Non-coding RNA is an interesting class of gene regulators with diverse functionalities.

One large subgroup of non-coding RNAs is the recently discovered class of circular

RNAs (circRNAs). CircRNAs are conserved and expressed in a tissue and developmental

specific manner, although for the vast majority, the functional relevance remains unclear.

To identify and quantify circRNAs expression, several bioinformatic pipelines have been

developed to assess the catalog of circRNAs in any given total RNA sequencing dataset.

We recently compared five different algorithms for circRNA detection, but here this

analysis is extended to 11 algorithms. By comparing the number of circRNAs discovered

and their respective sensitivity to RNaseR digestion, the sensitivity and specificity of

each algorithm are evaluated. Moreover, the ability to predict de novo circRNA, i.e.,

circRNAs not derived from annotated splice sites, is also determined as well as the

effect of eliminating low quality and adaptor-containing reads prior to circRNA prediction.

Finally, and most importantly, all possible pair-wise combinations of algorithms are tested

and guidelines for algorithm complementarity are provided. Conclusively, the algorithms

mostly agree on highly expressed circRNAs, however, in many cases, algorithm-specific

false positives with high read counts are predicted, which is resolved by using the shared

output from two (or more) algorithms.
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INTRODUCTION

Circular RNA (circRNA) is now a well-established class of non-coding RNA defined by a
covalently closed circular structure facilitated by non-linear splicing (backsplicing). The first
functionally characterized circRNA, CDR1as/ciRS-7, was shown to be highly abundant in neurons
and to act as a miR-7 regulator or sponge using the 70+ encoded miR-7 binding sites (Hansen
et al., 2013; Memczak et al., 2013). CDR1as/ciRS-7 is itself post-transcriptionally regulated by
miR-671-mediated endo-cleavage (Hansen et al., 2011), and just recently, CDR1as/ciRS-7 was
shown to have neurological phenotypes in knock-out mice (Piwecka et al., 2017). Many circRNAs
have now been ascribed miRNA sponge functionalities, although the biological relevance and
the evolutionary significance has still not been convincingly established. In addition, a subset of
circRNAs has been shown to contain circRNA-specific ORFs and to encode proteins (Legnini et al.,
2017; Pamudurti et al., 2017; Yang et al., 2017).

While the functions of most circRNAs are still elusive, great progress has so far been done
toward profiling and characterizing the landscape and dynamic expression of circRNAs in various
cell lines, tissues, organisms, and in disease (Salzman et al., 2013; Rybak-Wolf et al., 2015). Here,
the setup typically relies on Ribosome-depleted RNA subjected to high throughput sequencing.
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The resulting sequence reads are then analyzed using one of
many developed algorithms dedicated to identify and quantify
the expression of circRNAs specifically. The reliability of the
output is obviously crucial for proper annotation of the circRNA
landscape in the given samples. Recently, a thorough description
and comparison of circRNA pipelines was published (Zeng et al.,
2017), and we previously analyzed and compared the output
from 5 different algorithms (Hansen et al., 2015): circRNA_finder
(Westholm et al., 2014), CIRCexplorer (Zhang et al., 2014),
CIRI (Gao et al., 2015), find_circ (Memczak et al., 2013), and
MapSplice (Wang et al., 2010). Here, this analysis is extended by
6 additional algorithms: ACSF (You et al., 2015), CIRCexplorer2
(Zhang et al., 2016), CIRI2 (Gao et al., 2017), DCC (Cheng et al.,
2016), KNIFE (Szabo et al., 2015), and Uroborus (Song et al.,
2016) (See Table 1). Overall, the sensitivity and specificity of
predicted circRNAs are compared by assessing the quantities of
circRNAs found by each algorithm as well as the fraction of true
and false positives in the output—judged by RNAse R resistance.
The impact on pre-processed reads, i.e., low quality read removal
and adaptor-trimming, on the performance of each algorithm
is also addressed. In addition, the de novo prediction (without
relying on gene annotation) accuracy of the algorithms capable of
annotation-independent circRNA prediction are evaluated, and
finally, the gain of conjoining the output from any two algorithms
is evaluated, which shows that all algorithms, although to varying
degrees, benefit from combining and merging the circRNA
prediction output with other algorithms.

MATERIALS AND METHODS

Prediction of circRNA
Prediction of circRNA was performed as described previously
(Hansen et al., 2015): Briefly, RNA sequencing (RNAseq)
samples (see Supplementary Figure 1A) were downloaded from
the Sequence Reads Archive (SRA). Processing of reads was
performed with trim-galore using the following parameters:
-f fastq -e 0.1 -q 20 -O 1 -a AGATCGGAAGAGC. For
each RNAseq sample, circRNA prediction was conducted with
11 different algorithms (see Table 1) adhering to the default
settings by the respective authors and using the GRCh37
(hg19) genome assembly. Gene-annotations were collected
from UCSC genome browser (UCSC Genes track), iGenomes
(hg19.ref.gtf ), and Ensembl (Homo_sapiens.GRCh37.66.gtf ). The
scripts and settings used are outlined in bash.sh (available in the
Supplementary Zip-file).

Analysis of Prediction
For each algorithm, circRNA prediction was performed
separately on all samples (Supplementary Figure 1) and
subsequently the output was merged with custom python scripts
(available upon request) into BED files (see Supplementary
Zip-file). For each algorithm, only circRNAs with at least
three reads in one of the untreated samples were kept for
analysis. For KNIFE, additionally, circRNAs with a posterior
probability below 0.9 were discarded, and for CIRCexplorer, the
circular intronic RNA (ciRNA) candidates were omitted in the
subsequent analysis. Furthermore, in contrast to our previous

analyses, all chrM-derived candidates were collectively removed.
The sum of reads spanning the backsplice junction in the two
control samples was used as a measure of expression level. For
each algorithm, circRNAs were classified as RNaseR resistant or
RNaseR sensitive if a 5-fold enrichment or a reduction in the
RNAseR treated samples was observed, respectively, however
for the samples from Mercer et al. (2015) 2- and 0.7-fold
cutoffs were used. Furthermore, to enable comparison between
algorithms, the starting coordinate was converted to 0-based for
certain algorithms (ACFS, circRNA_finder, CIRI, CIRI2, DCC,
and MapSplice). For de novo prediction, the algorithms with
mandatory gene-annotation input (CIRCexplorer2, KNIFE and
MapSplice) were provided a mock annotation file to eliminate
any annotation-based predictions.

Annotation of circRNAs
To estimate the mature length of circRNAs, annotated mRNAs
from UCSC genes track utilizing the splice sites involved in
backsplicing were used as templates for circRNA exon-intron
structure, i.e., the circRNAs were assumed to have similar internal
splicing pattern as the corresponding host gene. In case of
multiple overlapping isoforms, the average of deduced lengths
was used.

Availability
The merged output from each algorithm is available in the
Supplementary Zip file. Moreover, comparison of algorithms
can be studied interactively at www.ncrnalab.dk/battle_of_
algorithms.

RESULTS

RNase R Resistance
Similar to our previous comparison of circRNA prediction
algorithms (Hansen et al., 2015), we used a deep and
comprehensive dataset on untreated (SRR444655 and
SRR444975) and RNAseR treated (SRR444974 and SRR445016)
samples (Jeck et al., 2013). Here, circRNAs were predicted in all 4
samples using 11 available algorithms, and based on the circRNA
output from the untreated samples, the enrichment of each
circRNA in the RNAseR treated samples was determined. Then,
for each algorithm the fraction of RNAseR depleted, unchanged
and enriched putative circRNA was plotted (Figure 1A) showing
between 500 and 4,000 putative circRNAs of which 11–47%
are depleted by RNAseR indicating a remarkable difference
between algorithm output. Overall, the performance of the
algorithms should be measured by specificity and sensitivity.
Here, specificity is determined by lack of false positives, i.e.,
RNAse R sensitive species, and here, CIRCexplorer (1 and 2)
and MapSplice outperform the others by predicting only ∼11%
RNAseR sensitive species. Conversely, analyzing the circRNA
subset commonly predicted by all algorithms (n = 259), the
sensitivity is here defined by the number of backsplice-spanning
reads found by each algorithm. Here, most algorithms have
median expression of 14–20 reads, while DCC, circRNA_finder,
and Uroborus show the lowest sensitivity with 11, 9, and 5
median reads per circRNA, respectively (Figure 1B).
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TABLE 1 | Algorithms.

Tool Version Language Mapper De novo? URL

ACFS 2.1 Perl Bwa Yes https://github.com/arthuryxt/acfs

CIRCexplorer 1.0.6 Python Tophat No https://github.com/YangLab/CIRCexplorer

CIRCexplorer2 2.0.1 Python Tophat Yes https://github.com/YangLab/CIRCexplorer2

circRNA_finder N/A Perl STAR Default https://github.com/orzechoj/circRNA_finder

CIRI 1.2 Perl Bwa Default https://sourceforge.net/projects/ciri/files

CIRI2 2.0.6 Perl Bwa Default https://sourceforge.net/projects/ciri/files/CIRI2/

DCC 0.4.4 Python STAR Default https://github.com/dieterich-lab/DCC

Find_circ N/A Python Bowtie2 Default http://www.circbase.org/

KNIFE 1.4 Python/Perl/R Bowtie2 Yes https://github.com/lindaszabo/KNIFE

Mapsplice 2.1.8 Python Tophat No http://www.netlab.uky.edu/p/bioinfo/MapSplice2

Uroborus 0.1.2 Perl Tophat No https://github.com/WGLab/UROBORUS

While sensitivity and the overall specificity are important
aspects of predicting algorithms, the lowest expressed species
are typically filtered out in downstream analyses. Thus, focusing
specifically on the top 100 expressed circRNAs predicted by each
algorithm (Figure 1C), we largely observe an increased specificity
for all algorithms except for CIRI, where 63% of the top100
expressed circRNAs are RNaseR sensitive. In fact, plotting the
expressing of all predicted circRNAs stratified by algorithm and
RNaseR sensitivity, the highest expressed circRNA candidates
according to many algorithms are, alarmingly, RNaseR sensitive
(Figure 1D). Overall, the 14 most highly expressed candidates
are RNaseR depleted (8 of these are uniquely predicted by CIRI),
and surprisingly, these seemingly false positives are not caused
by one particular highly abundant locus, but are 14 distinct loci
(Supplementary Table 1). Moreover, apart from one candidate
(predicted by both find_circ and KNIFE), all are exotic circRNA,
i.e. circRNA candidates only predicted by one algorithm. Setting
aside the potential problems of high-scoring candidates with
questionable validity, for all algorithms bona fide circRNAs are
in general higher expressed than the false positives (Figure 1D).

Raw vs. Trimmed Reads
In the above analysis, the raw sequence reads were used in the
prediction. However, as the algorithms use different approaches
to identify back-splice spanning reads, the impact of read quality
and the partly presence of 3’ adaptor sequences in a subset of
reads were determined by re-conducting all predictions (except
for CIRI that requires equal read-length between read pair) on
pre-processed reads. Here, the overall output was very similar
to the raw read analysis (Figure 2A), however, in general, the
number of predicted circRNAs increased by 0–27% and most
notably for Uroborus with almost twice as many (83%) circRNAs
predicted. Surprisingly, this increase came with a concomitant
increase in fraction of false positives (13–67%) compared to
12–48% using raw sequence reads. Moreover, the sensitivity
measured by the read count on circRNAs found using both raw
and processed reads were also modestly increased, however most
algorithms showed unaffected median expression (Figure 2B).
Certain algorithms benefit more from read trimming than others.
Especially for KNIFE, processing the reads prior to running the

algorithm seems beneficial whereas for other algorithms, such as
circRNA_finder and Uroborus, preprocessing of reads actually
reduced the quality of prediction output notably. It should be
emphasized, that these observations are based on one particular
high quality dataset with only a marginal set of reads being
trimmed or removed during processing (Supplementary Figure
1B), and therefore the effects on circRNA prediction could be
much more pronounced in other datasets with lower quality and
increased prevalence of adaptor sequences.

De Novo Prediction
In our previous analyses, we compared the bulk output
from 5 different algorithm of which 2 (CIRCexplorer and
MapSplice) were assisted by exon annotation and thus by
default only predicting circRNA derived from annotated
splice sites, which comprises the vast majority of bona fide
circRNA. This, obviously, provided these algorithms with
information useful for demarcating circRNAs from background
noise and the comparison was therefore not completely fair.
CIRCexplorer, Uroborus, and MapSplice exclusively output
circRNAs derived from annotated splice sites, whereas others,
ACSF, CIRCexplorer2 and KNIFE, require mandatory gene
annotation but they provide an additional de novo list
of circRNAs. Comparing the RNAseR sensitivity of annotated
circRNAs, i.e., circRNAs derived from annotated splice sites,
with circRNAs derived from unannotated splice sites, the de novo
circRNAs (comprising roughly 5% of total circRNA output),
clearly shows that de novo predicted circRNAs are less likely to be
true positives (Figure 3A). The high fraction of RNAseR sensitive
candidates in the de novo subset of circRNAs is not necessarily a
fair reflection of the de novo performance of these algorithms,
as most bona fide circRNAs are associated with annotated
splice sites. Instead, ACSF, CIRCexplorer2 and KNIFE were
provided with mock annotations to force de novo predictions
exclusively. Here, all three algorithms performed less effective,
although only a small to modest difference between guided and
de novo prediction was observed for ACSF and CIRCexplorer2
(Figure 3B). KNIFE, in contrast, performed dramatically inferior
without annotation, suggesting that the de novo feature of KNIFE
prediction is not very reliable. In addition, when comparing the
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FIGURE 1 | Specificity and sensitivity. (A) Stacked barplot of all predicted circRNAs stratified by RNAse R resistant (≥ 5 fold enrichment, green), unaffected (1–5 fold

enrichment, gray) and RNAse R sensitive (depleted in RNaseR treated samples, red), as denoted. Percentage reflects the fraction of RNaseR sensitive circRNAs

defined as false positives. (B) Cumulative fraction plot of read-counts for circRNAs shared by all 11 algorithms (n = 259) color coded as denoted in the associated

boxplot where reads per circRNA is shown. (C) Ranked plot of the top 100 expressed circRNAs predicted by each algorithm color-coded as in A. Percentage reflects

the fraction of RNase R sensitive circRNAs (false positives) within the plotted top 100. (D) Boxplot of circRNA expression predicted by each algorithm stratified by

RNaseR sensitivity (as in A).

forced de novo prediction with default de novo algorithms, CIRI2
serves as the most trustworthy predictor (Figure 3B).

One particular example of de novo prediction is the well-
characterized circRNA, CDR1as/ciRS-7 (Hansen et al., 2011,
2013; Memczak et al., 2013; Piwecka et al., 2017). CiRS-
7 is not derived from pre-annotated host transcript and
consistently linear splicing to this exon is only detectable at
very low levels. Here, all the algorithms with de novo prediction
capabilities except for CIRCexplorer2 were able to predict ciRS-
7 although with various sensitivities (Figure 3C).This limitation
of annotation-guided algorithms can easily be overcome by
manually annotating the small subset of bona fide circRNAs
not deriving from annotated splice sites prior to prediction,

however, this is only an option for well-annotated organisms,
such as humans, and obviously not applicable to species with an
uncharacterized circRNAome.

Improving Find_Circ
Find_circ was one of the first pipelines available to disclose
circRNA in ribo-depleted RNAseq, and probably one of
the most widely used algorithms for circRNA detection to
date. As seen above, find_circ is not the best performing
algorithm available, and using default settings, one specific falsely
annotated circRNA candidate is predicted as very abundant
by find_circ solely (Supplementary Figure 2A). This circRNA
candidate, derived from the TUBA1A-TUBA1B locus, was earlier
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FIGURE 2 | Raw vs. processed reads. (A) Stacked barplot as in Figure 1A comparing the output from raw (“Raw,” as seen in Figure 1A) and circRNA prediction

using pre-processed reads (“Processed”). (B) Boxplot comparing the read-counts on circRNAs shared between “Raw” and “Processed” prediction.

recognized as an example of closely related tandem genes
where conventional splicing was misinterpreted as backsplicing
between the neighboring genes (Gao et al., 2015). Find_circ
outputs the mapping quality (i.e., the probability of misaligned
read) of the mapped anchor sequences, and from this, it is
evident that the TUBA1A-TUBA1B candidate has a suboptimal
mapping quality, indicating as expected that the reads supporting
TUBA1A-TUBA1B backsplicing are genomic multimappers.
However, increasing the threshold for mapping quality from one
anchor with ≥ 35 (default setting) to both anchors having the
highest possible quality, i.e., 40, not only completely removes
the TUBA1A-TUBA1B mis-annotation (Supplementary Figure
2A) but also reduces the fraction of RNaseR sensitive circRNAs
from 23 to 15% (Supplementary Figure 2B). Moreover, additional
abundant but falsely annotated species are discarded by the
increased stringency (Supplementary Figure 2C). Although as
expected, this comes with a concomitant but modest decrease in
overall numbers of predicted circRNAs (Supplementary Figure
2B). Therefore, if find_circ is the algorithm of choice for circRNA
prediction, it is highly recommendable to increase the mapping
quality threshold.

False Negatives
Global transcriptome analysis on RNaseR treated samples is not
commonly performed, and to our knowledge the dataset from
Jeck et al. (2013) currently constitutes the most extensive RNA
sequencing performed on RNaseR treated samples (300–400
mio reads per sample, Supplementary Figure 1A). Although
surprisingly, as also pointed out by Jeck et al, ciRS-7/CDR1as,
a well-established circRNA, exhibits sensitivity toward RNaseR
(Supplementary Figure 3A). This either suggests that: (i) ciRS-
7, in contrast to many other experiments, is not a bona fide
circRNA, at least in Hs68 cells. (ii) ciRS-7 has been nicked by
miR-671 and therefore sensitive toward the RNaseR exonuclease.
(iii) RNaseR has unspecific endonuclease activity and thus a
subset of depleted species are in fact false negatives. With 1,485
nt mature length, ciRS-7 is one of the larger circRNAs known
(circRNA median length is 555 nt, Supplementary Figure 3B). In

fact, there is a significant correlation between circRNA mature
length and RNaseR sensitivity (Supplementary Figure 3C) and
the subset of RNaseR sensitive species commonly predicted by
all 11 algorithms are in general much longer than the resistant
subset (Supplementary Figure 3D). Assuming that these longer
circRNA species are not false positives, this indicates that long
circRNAs are more prone to unspecific RNaseR decay, and
therefore validation and characterization of these species should
be conducted with additional care.

Combining Prediction Algorithms
Previously, we recommended that circRNA pipelines should
be combined in order to avoid annotation of false positives
(Hansen et al., 2015). Similarly, the common pair-wise output
from all possible combinations of algorithms is here evaluated
(Figure 4A, Supplementary Figure 4, and http://www.ncrnalab.
dk/battle_of_algorithms). For most algorithms, combining the
prediction with any other algorithm reduces the fraction of
RNaseR sensitive candidate species from > 15% to around
10%. The algorithms tend to agree on the highly abundant -
and presumably most relevant—circRNAs while the circRNAs
discarded by combining two algorithms were typically of low
abundance shown by a general high frequency of overlap between
high-ranked circRNAs (Figure 4B). Basically, there is a clear
selection of highly abundant and RNaseR resistant circRNA
species when using the conjoined output from 5+ or 10+
algorithms compared to the exotic species unique to one
algorithm (Supplementary Figures 5A,B), and while the overall
bulk of predicted species is reduced upon merging algorithms,
the omitted candidates are mostly false positives or lowly
expressed circRNAs (Supplementary Figures 5B,C). In other
words, most algorithms agree largely on the highly abundant
bona fide circRNAs, and consequently, the inevitable out-filtering
of circRNAs by selecting shared circRNAs predicted by two
(or more) algorithms are almost exclusively species of low
relevance.

While combining algorithms is generally a recommended
approach, the specific pair of algorithms used is not irrelevant.
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FIGURE 3 | De novo prediction of circRNAs. (A) Stacked barplot comparing

the annotated and un-annotated (de novo) default outputs from ACFS,

CIRCexplorer2, and KNIFE. (B) Stacked barplot comparing overall circRNA

predictions output from algorithms (ACFS, CIRCexplorer2, and KNIFE) either

guided by annotation (default setting, as in Figure 1A) or when forced de novo

using mock annotations with algorithms de novo by default (circRNA_finder,

DCC, CIRI, CIRI2, and find_circ, as in Figure 1A). (C) Back-splice spanning

read counts on ciRS-7 obtained from each algorithm as an example of

de novo prediction. For KNIFE, the de novo resolution is 50 bp and ciRS-7

was here defined as chrX:139865300-139866900.

For instance, predictions by circRNA_finder and DCC are both
based on STAR-mapped reads, and therefore, presumably, these
two algorithms seem less suitable to complement each other in
terms of reducing the fraction of false positives (Figure 4A).
To establish general guidelines for combination of algorithms, a
rough measurement of complementarity was established: First,
for each algorithm, an index of true positives (iTP), reflecting
the fraction of preserved circRNAs with RNaseR resistance
after conjoining with any other algorithm, was determined
(Supplementary Figure 6A). For instance, CIRI outputs 2289
RNaseR resistant species of which 1551 are shared with ACSF
resulting in an iTP of 0.68 (= 1551/2289). Then, similarly, the
fraction of discarded true negatives (iTN, Supplementary Figure
6B) was calculated, which is the inverse fraction of shared true
negatives. As an example, CIRI predicts 1105 RNaseR sensitive
species where 251 are also found by ACSF and thus the iTN
index is 0.77 (= 1–(251/1105)). Finally, to evaluate the overall
conjoining effect of any two algorithms, a Complementary score
is proposed (Complementary score = (iTPxiTN)∧2) that scores
the achieved benefit of pairing one algorithm with any other
algorithm (Figure 4C), e.g., the effect of pairing CIRI with ACSF
is 0.27. Based on this it is evident that CIRI, find_circ, and
Uroborus profit the most from combination with almost any
other algorithm, while MapSplice seems to be the preferred
complement to most algorithms. In addition, CIRI2, MapSplice,
and the CIRCexplorers perform well single-handedly and here
the combination with other algorithm only results in subtle
improvements (Figures 4C,D). However, particularly seen here
for CIRI2, while the overall performance is high, relying on one
algorithm solely has the intrinsic risk of highly abundant exotic
candidates being mis-annotated as bona fide circRNAs.

To determine the add-on effect of including a third algorithm,
three-wise Complementary scores for all possible combinations
were computed (see Supplementary Figure 6C). In general, there
is a slight additional improvement when combining with a third
algorithm, especially if the first two algorithms are DCC and
circRNA_finder, which also showed lowest complementarity in
the pair-wise comparison.

Reproducibility
All of the above analyses are based on RNaseR treated and
untreated samples from Jeck et al. (2013). The conclusions drawn
could be dataset-specific and not general themes. To elucidate
this, similar analyses were conducted on a subset of samples
from Mercer et al. (2015) (see Supplementary Figure 7A, in our
hands a few algorithms failed to finalize prediction on certain
samples and these were then overall omitted). First, the fraction
of RNaseR sensitive circRNAs predicted by each algorithm was
compared (as in Figure 1A), however in contrast to the previous
analysis, cutoffs for RNaseR resistance and RNaseR sensitivity
were set at 2 and 0.7, respectively, to adjust for differences in
library size and a less pronounced effect of RNaseR treatment
on backsplice-spanning read-count. Here, once again the best
performing algorithms are MapSplice, the CIRCexplorers and
CIRI2, where CIRI2, as mentioned, is exclusively performing
de novo predictions (Supplementary Figure 7B). Also, the
pairwise combination of algorithms roughly reproduce the
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FIGURE 4 | Conjoining algorithms. (A) Comprehensive stacked barplot analysis of RNaseR sensitivity in the shared predictions by any two algorithms. The “dimmed”

bars denote the unpaired algorithm (as also seen in Figure 1A). (B) Loess regression on fraction of circRNAs found by other algorithm (color-coded as seen in the

legend) as a function of ranked expression of circRNAs identified and quantified by algorithm denoted in strip. (C) Heatmap on Complementary score. The

Complementary score is calculated as (iTF × iTN)∧2, where iTF is the fraction of true positive circRNAs (RNaseR resistant circRNAs) found in algorithm denoted on

the y-axis and shared with algorithm on x-axis (Supplementary Figure 6A), and iTN is 1-fN, where fN is the fraction of RNaseR sensitive species conjointly identified in

other algorithm (see Supplementary Figure 6B). Complementary scores ≥ 0.2 are denoted specifically. (D) For each algorithm, the maximum Complementary score

(from C) is depicted.

effect on prediction output (Supplementary Figures 7C,D). In
particular, all algorithms benefit notably (Complementary score
≥ 0.2) from pairing withMapSplice or CIRI2. And, as seen above,
CIRI, find_circ and Uroborus benefit from the combination with
almost all other algorithms. This is here also seen for DCC and
circRNA_finder, which is a reflection of a rather high level of false
positives in their stand-alone prediction. Overall, this validates
the general conclusions drawn from the initial analyses, and thus

using shared output from two (or more) circRNA prediction
algorithms is highly recommended.

DISCUSSION

Circular RNA is a fascinating subclass of non-coding RNA, and
great efforts are currently invested in characterizing the circRNA
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landscape in various cell lines, tissues, developmental stages, and
organisms. To this end, global transcriptome analysis must be
conducted to gain insights into the non-polyadenylated world
of circRNAs. Going from raw sequencing reads to circRNA
detection and quantification requires specialized pipelines and
algorithms. Here, the circRNA output from 11 different
algorithms are compared, and, as shown above, this reveals
notable differences between algorithms. Ranging from 533 to
4,067 circRNAs of which 11–45% are alleged false positives,
the choice of prediction algorithm will greatly affect the quality
and quantity of predicted circRNAs. Removing low quality and
adaptor containing reads prior to prediction only had a modest
effect, although this likely reflects that the dataset used already is
of high quality.

The gold-standard biochemical delineation of circRNA and
linear RNA is by RNaseR treatment, which on a global scale
enriches circRNA significantly. However, as discussed above,
longer circRNAs seem to exhibit lower resistance than shorter
species. Therefore, titration of RNAseR and alternative validation
methods such as northern blotting or polyA-minus enrichment
could be employed if an expected circRNA candidate has
a long mature length (∼1.5 kb or above) and shows partial
RNaseR-sensitivity. In contrast, it is likely that certain linear
RNA species, e.g., structured transcripts with high GC-content,
will resist the RNaseR digestion. Consequently, the general
recommendation is to address the circular nature of RNAs of
interest by several means.

The most challenging aspect of circRNA detection is de novo
prediction without prior knowledge of exon-intron annotations.
Many algorithms perform de novo prediction by default, while
others use annotations to assist the prediction. Generally,
circRNAs derived from novel and un-annotated splice sites
are less likely to be true positives, and thus annotation-based
prediction is essentially more reliable. As expected, comparison
of annotation-based output with forced de novo prediction
shows reduced overall accuracy from 12–16% false positives to
17–58%, which is more similar to algorithms being de novo by
default (13–27%). Here, impressively, it should be noted, that
CIRI2, which is de novo by default, performs comparably to
annotation-assisted algorithms, and therefore in this setup, CIRI2
is the most reliable algorithm available. However, predicting
circRNAs in thoroughly annotated organisms, the CIRCexplorers
or MapSplice are also suitable choices.

Here, using online available datasets from Jeck et al. (2013)
and Mercer et al. (2015) we have compared the output from
11 different circRNA prediction algorithms. The quality of
prediction seems to translate well between datasets; however,
there could be certain scenarios where the conclusions drawn
here do not apply. For instance, the impact of using RNA
sequencing dataset with either longer or shorter reads or applying
the algorithms to other reference genomes has not been assessed.
Moreover, as discussed above, do novo prediction is definitely
more challenging than annotation-dependent prediction, and
consequently annotation-dependent algorithms are best suited

for well-studied organisms such a humans, whereas do novo
algorithms are recommended for more exploratory research.
In any case, the combination of algorithms results in notable

improvements of overall prediction reliability independently of
the dataset in question, and therefore this most likely applies to
all circRNA prediction scenarios.

The indexes used to determine the effect of combining
algorithms (iTP, iTN, and Complementary score, Figures 4C,D
and Supplementary Figure 6) could be biased by the overall
number of circRNAs predicted. In fact, the iTP scores correlate
negatively with number of circRNAs from 1st algorithm (y-axis)
but positively with 2nd algorithm (Pearson’s correlations:−0.35
and 0.87, respectively, p < 1e-3), whereas the iTN scores
are conversely correlating with circRNA numbers (Pearson’s
correlations: 0.13 and −0.68, respectively, p < 1e-16 for the
latter). The Complementary scores, however, only show amodest
although significant correlation with number of circRNAs
predicted (−0.29 and 0.26, respectively, p < 0.01), but when
omitting Uroborus from this analysis, no significant correlation
was observed (0.13 and −0.04, p > 0.19), and therefore
conclusively the Complementary score is not influenced
considerably by numbers of predicted candidates.

Comparing the circRNA predictions indicate that the
differences between algorithms are mostly seen in their respective
weaknesses, i.e., the subset of false positives. For that reason,
the fundamental motivation to focus selectively on the shared
prediction by two algorithms is to eliminate false positives
while preserving the vast majority of true positive circRNAs. In
addition, as noted above, a large fraction of putative circRNAs
candidates with high abundance are actually RNaseR sensitive
but, importantly, algorithm-specific. Consequently, these exotic
peculiarities are consistently omitted using shared output
from circRNA prediction pipelines. Therefore, conclusively,
circRNA predictions are much more reliable when two or more
prediction algorithms are combined, and the minimal loss of
true positives are greatly outweighed by the removal of false
positives.
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