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The patterns of 5-methylcytosine (5mC) and its oxidized derivatives,

5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine (5caC) are

reportedly altered in a range of cancers. Likewise, Wilms’ Tumor protein 1 (WT1),

a transcription factor essential for urogenital, epicardium, and kidney development

exhibits aberrant expression in multiple tumors. Interestingly, WT1 directly interacts with

TET proteins that catalyze the enzymatic oxidation of 5mC and exhibits high affinity

for 5caC-containing DNA substrates in vitro. Here we review recent developments

in the fields of Tet-dependent 5mC oxidation and WT1 biology and explore potential

perspectives for studying the interplay between TETs and WT1 in brain tumors.
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DEVELOPMENTAL BASIS FOR ABERRANT EXPRESSION OF
WILMS’ TUMOR PROTEIN 1 IN CANCERS

Wilms’ Tumor protein 1 (WT1) is a Kruppel-like transcription factor important for development of
the mammalian embryonic kidney, urogenital system and epicardium (Roberts, 2005) that exhibits
developmental and tissue specific expression patterns in mammals (Dressler, 2009; Hastie, 2017).
Inactivating mutations occurring in WT1 during embryonic kidney development result in the
formation of the pediatric renal neoplasmWilms’ tumor (WT) (Pritchard-Jones et al., 1990).

Onset of WT1 expression in murine embryos commences at 9 days post coitum (dpc)
where the protein is detectable in the parietal epithelium lining the coelomic cavity (Armstrong
et al., 1993). At this stage WT1 mRNA transcripts (Pritchard-Jones et al., 1990) localize to
the intermediate mesenchyme/mesoderm (Pelletier et al., 1991b; Vize et al., 1997). At 11 dpc,
WT1 expression is detected in the metanephric mesenchyme, presumptive spinal cord motor
neurons, gonads, and ureter (Armstrong et al., 1993). Significant increase in WT1 expression is
observed in the metanephric mesenchyme and nephrogenic condensates at 12.5 dpc, whereas
gonadal WT1 expression remains level at this stage (Armstrong et al., 1993). Between 13.5
and 15 dpc, developing epicardium, podocytes of the glomerulus, endothelial, and stromal
cells of the ovaries and uterus, Sertoli cells of the testis, retinal ganglia of the eye and
ependymal cells of the fourth ventricle in the brain all possess positive immunostaining for
WT1 (Sharma et al., 1992). At 20 dpc, WT1 is strongly expressed in kidney glomeruli and
is weakly present in the eye and tongue (Mundlos et al., 1993). These periods of murine
embryonic development correlate to 28–70 dpc in human embryos (Reidy and Rosenblum, 2009).
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In murine and human adult tissues, WT1 is present in multiple
genitourinary structures, haematopoietic stem cells, kidney
glomeruli, and podocytes, ependymal cells of the spinal cord and
the area postrema of the medulla (Huang et al., 1990; Mundlos
et al., 1993; Ramani and Cowell, 1996; Clark, 2006; Nakatsuka
et al., 2006).

Homozygous deletion of WT1 (wt1−/−) in mice of C57BL/6
genetic background is embryonically lethal mainly due to
genitourinary, kidney, and cardiac complications occurring
between 12 and 15 dpc (Herzer et al., 1999). Specifically, wt1−/-

mice exhibit lack of seminiferous tubules, complete lack of
spleen and uretic bud formation in kidneys and failure of
epicardium to undergo epithelial to mesenchymal transition
(EMT) (Herzer et al., 1999). In a developmental context,
during embryonic kidney formation, WT1 functions as a proto-
oncogene, inducing proliferation of metanephric mesenchyme
pluripotent progenitor cells required to respond to inductive
WNT9b signals from the invading uretic bud to undergo
mesenchymal to epithelial transitioning (MET) into glomerular
podocytes (Hohenstein and Hastie, 2006). Metanephric
mesenchyme cells originate from intermediate mesoderm arising
at the gradient boundary of inductive bone morphogenetic
protein (BMP) signals from the Splanchnic/lateral plate
mesoderm and repressive retinoic acid (RA) signaling
from the sixth somite of the paraxial mesoderm (Dressler,
2009).

WT1 exhibits a biphasic (at 10 and 12 dpc) pattern of
expression in the developing kidney, specifically in (1)
intermediate mesenchymal stem cells and mesonephric
progenitors prior to their epithelial differentiation, and (2)
during differentiation of epithelia in cap mesenchyme to
glomerular podocytes, S-shaped bodies, comma shaped bodies,
and renal vesicles at 12 dpc (Armstrong et al., 1993; Wilm
et al., 2005). At 10 dpc, WT1 is required for the differentiation
of mesonephric mesenchyme progenitors into transiently
existing caudal tubular structures which function as a primitive
temporary kidney (Wilm et al., 2005). In concordance with
studies revealing that mesonephric progenitor induction
at 10 dpc is regulated by the WT1 signaling-related genes
including Pax2 and Six2 (Dressler et al., 1990; Dressler
and Douglass, 1992), WT1 ablation in these progenitors
results in significant reduction of caudal mesonephric tubules
(Kreidberg et al., 1993). At 12 dpc, wt1−/− murine embryos
fail to induce uretic bud formation and hence patterning of
the metanephric mesenchyme and subsequent glomerular
structures cannot develop, culminating in embryonic lethality
(Kreidberg et al., 1993). In both instances of WT1-contingent
development (i.e., mesonephric and metanephric mesenchyme
differentiation), WT1 is required to regulate the mesenchymal
to epithelial transition of mesodermally derived blastemal
progenitors toward nephrogenic capillary epithelium (Sainio
et al., 1997). In the developing human fetus circa 11–12 weeks
of gestation, WT1 protein expression has been observed in
kidney glomerular podocytes, Bowman’s Capsule parietal
epithelium, mesothelial cells covering surfaces of ovaries
and testis, somatic skeletal muscle, the tongue, and radial
glia of the spinal cord (Parenti et al., 2013; Magro et al.,

2015). WT1 expression in glomerular podocytes is maintained
throughout adult life which may implicate a role in metanephric
mesenchyme maintenance of stemness and organ repair (Guo
et al., 2002).

Approximately 5–20% of Wilms’ Tumors cases exhibit
somatic WT1 gene mutations which tend to be sporadic bi-
allelic aberrations occurring in blastemal progenitors (Kaneko
et al., 2015). The inherited nature of mono-allelic germlineWT1
mutations or deletions occurring within chromosomal regions
11p13 predisposes individuals to Wilms’ Tumor formation and
account for ∼5% of WT cases (Ruteshouser and Huff, 2004;
Charlton et al., 2017). WT1 null mutants in mesonephros
pluripotent progenitors of the intermediate mesoderm exhibit
morphology and genotypic characteristics of paraxial mesoderm-
derived mesenchymal stem cells i.e., they possess adipogenic,
chondrogenic, and osteogenic lineage differentiation potential
(Royer-Pokora et al., 2010). Histologically, Wilms’ Tumors
exhibit a highly disorganized heterogeneous cell population with
blastemal, stromal, undifferentiated mesenchymal, and epithelial
cells represented (Grosfeld, 1999; Scott et al., 2006). Failure
of nephrogenic mesenchyme progenitors to differentiate into
pretubular aggregates, renal vesicles, and eventually glomerula
podocytes is attributable to WT1 mutations (Morizane et al.,
2015). However, mutation of early nephrogenic progenitor
specific genes such as Cited1 and Six2 results in stabilization and
accumulation of β-catenin, thus inducing oncogenic targets of
WNT signaling (Beckwith et al., 1990; Rivera and Haber, 2005;
Huang et al., 2016). Mutations in WT1, Cited1, and Six2 result
in Wilms’ Tumors when they occur in pluripotent nephrogenic
progenitors but not in stromal progenitors (Charlton et al., 2017).
Moreover, Wilms’ tumors exhibit elevated expression of genes
pertaining to early kidney development such as those involved in
uretic bud induction and nephrogenic mesenchyme patterning
(e.g., Pax2, Pax8, Gata3, GDNF, and Wnts 4 and 9b) and down-
regulation of late development genes (Reidy and Rosenblum,
2009; Morizane et al., 2015).

Nephrogenic rests (precursors to malignant Wilms’ tumors)
formed as a consequence of mono-allelic inactivation
transformed into the eponymous renal malignancy upon
secondary WT1 allele inactivation, a classic example of
Knudson’s two hit hypothesis (Ruteshouser et al., 2008; Royer-
Pokora et al., 2010; Kaneko et al., 2015). The nephrogenic
rests themselves occur more frequently as a consequence of
somatic mono-allelicWT1mutation in sporadic Wilms’ Tumors
(90–95%) compared to familial Wilms’ tumor germline WT1
mutations (1–2%; Cardoso et al., 2013). Nephrogenic rests
consist of primitive undifferentiated embryonic blastemal cells
which are observed predominately in intralobar nephrogenic
rests (ILNR) whereas undifferentiated mesenchymal stromal
progenitors populate perilobar nephrogenic rests (PLNR)
(Royer-Pokora et al., 2010; Charlton et al., 2017). WT1
mutations are associated with ILNR which persist in early
kidney development (10 dpc) and is commensurate with
induction of WT1 expression in pluripotent mesonephros
during this time (Wilm and Muñoz-Chapuli, 2016). The
absence of WT1 mutations in PLNR may be due to a WT1-
independent and restricted lineage differentiation potential of
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metanephric stromal progenitors (Wilm and Muñoz-Chapuli,
2016). Collectively, this is suggestive of a developmentally early
WT1-dependent paradigm of patterning and differentiation
of the intermediate mesoderm and metanephric mesenchyme
(Pelletier et al., 1991a; Royer-Pokora et al., 2010). However, the
increased cellular proliferation rate resulting in the formation
of neoplasms with WT1 mutant genotype evident in 5–20% of
Wilms’ Tumor cases implicates a tumor suppressor role forWT1,
indicating both proto-oncogene and tumor suppressor functions
for this transcription factor (Algar et al., 1996; Yamagami et al.,
1996; Inoue et al., 1998; Menke and Van Der Eb, 1998; Tsuboi
et al., 1999; Loeb and Sukumar, 2002; Li et al., 2003; Tatsumi
et al., 2008).

IMPACT OF ECTOPIC WT1 EXPRESSION
ON TUMORIGENESIS

WT1 wildtype mRNA has been detected in a range of
malignancies including oesophageal, gastric, colorectal,
pancreatic, biliary, lung, prostate, renal, breast, cervical,
ovarian, endometrial, soft tissue, and brain cancers, indicative
of a possible oncogenic contribution of ectopic WT1 expression
in tumorigenesis (Nakatsuka et al., 2006). Studies performed on
mouse lung cancer cells revealed a WT1-dependent mechanism
of oncogenic KRAS induced proliferation (Vicent et al.,
2010). Human and mouse lung cancer cells with ablated WT1
reduced proliferation and triggered senescence, highlighting
anti-apoptotic consequences of WT1 ectopic overexpression
(Vicent et al., 2010). These results have been corroborated by
immunohistochemistry by both N- and C-terminus-specific
WT1 antibodies (Nakatsuka et al., 2006). Interestingly, although
WT1 is not expressed in astrocytes and is found only in brain
endothelium in healthy adult humans (Bourne et al., 2010), its
elevated expression is common for brain tumors such as pilocytic
astrocytoma (grade I), anaplastic astrocytoma (grade III), and
glioblastoma multiforme (grade IV) (Nakahara et al., 2004;
Izumoto et al., 2008; Chiba et al., 2010; Rauscher et al., 2014).
Increasing WT1 levels are commensurate with increasing tumor
grade and associated with poor patient prognosis (Nakahara
et al., 2004; Izumoto et al., 2008; Chiba et al., 2010; Rauscher
et al., 2014). Increased incidence of high WT1 expression
levels have been observed to correlate with severity of tumor
grade of pediatric ependymoma with highest levels present in
grade III anaplastic ependymoma (Yeung et al., 2013). WT1
overexpression was observed in 98% of glioblastoma primary
cell samples and 83% of anaplastic astrocytomas compared to
53% of grade II oligodendroglioma and pilocytic astrocytomas
(Schittenhelm et al., 2008). Short hairpin RNA (shRNA)
molecules targeting WT1 mRNA transiently silence WT1 gene
expression and reduce glioblastoma cell proliferation, viability,
and invasion ability suggesting an oncogenic role for WT1 in
these malignancies as opposed to the tumor suppressor role this
protein plays in Wilms’ tumor (Schittenhelm et al., 2008; Clark
et al., 2010; Kijima et al., 2016).

Closer inspection of the WT1 structure provides clues to
its functional role in tumorigenesis. WT1 is encoded by the
corresponding gene located on chromosome 11p13 that is

composed of 10 exons with exons 5 and 9 undergoing alternate
splicing to form functionally different isoforms (Call et al., 1990).
The WT1 gene harbors two ATG start codons, with one at the
conventional +1 site and the second residing between exons 1
and 2, translation from which, synthesizes a curtailed protein
variant at the N terminal (Dallosso et al., 2004). Full length
WT1 protein consists of an N terminal RNA recognition motif
(RRM), dimerization domain, activation domain, alternatively
spliced 17 amino acid auxiliary interaction domain encoded by
exon 5 and 4 and C-terminal Cysteine-Histidine (C2-H2) zinc
finger domains (Bickmore et al., 1992). Zinc fingers 1–4 are
encoded by exons 7, 8, 9, and 10, respectively (Ladomery and
Dellaire, 2002). Alternate splicing between zinc fingers 3 and 4
generates two isoforms either possessing or absent for lysine-
threonine-serine (KTS+/−−) amino acid triplet sequence located
between zinc fingers 3 and 4 (Clark et al., 2007). WT1 Zinc
fingers 1 & 2 can interact with p53 facilitating its sequestration
and stabilization for subsequent ubiquitination and proteolysis
(Maheswaran et al., 1995). Stabilization of p53 by WT1 prevents
induction of pro-apoptotic pathways (Maheswaran et al., 1995).
This occurs in a temporally and spatially regulated fashion during
embryonic kidney development as nephrogenic progenitor cells
(NPCs) within the metanephric mesenchyme are permitted to
undergo differentiation to pretubular aggregates, renal vesicles
and eventually glomerula podocytes at E8.0 (Kreidberg et al.,
1993; Dressler, 2009; Brown et al., 2011; Short et al., 2014; Kann
et al., 2015). Full length WT1 DNA binding domain is required
for its physical interaction with p53 and as such, only +KTS
and not –KTS isoforms can bind to wildtype p53 to stabilize
the protein (Maheswaran et al., 1995). Surprisingly, studies in
osteosarcoma models indicated that the pro-apoptotic effect
of p53 expression can be inhibited by WT1 +KTS isoforms
but not –KTS isoforms (Maheswaran et al., 1995; Mayo et al.,
1999; Loeb, 2006). One explanation for this observation may
include the WT1 facilitated inhibition of E6/E6AP mediated p53
ubiquitination and consequent proteolysis. Upon complexing
with p53, WT1, may sterically prevent proteolytic degradation
of p53 by occluding its ubiquitination sites from targeting by E6
ubiquitin ligase (Yamanouchi et al., 2014). In a murine model
of ovarian cancer, transient overexpression of WT1 −17aa/-
KTS isoform was linked to significant increases in cellular
proliferation, migration, and angiogenesis leading to a significant
reduction of mouse survival time (Yamanouchi et al., 2014).
These results were in stark contrast to over-expression of +KTS
isoforms which did not significantly affect these parameters
and the +17aa/–KTS splice variant which induced apoptosis
via suppression of EGFR transcription (Yamanouchi et al.,
2014).

RECONFIGURATION OF THE DNA
METHYLOME IN BRAIN TUMORS

DNA methylation, denoted by 5-methylcytosine (5mC)

occurring on the 5
′

carbon of cytosine within a CpG dinucleotide
has been well characterized as a transcriptionally repressive mark
(Bird, 2002). Owing to its mutagenic potential to deaminate to
thymine, 5mC is present on 70% of CpG cytosines, accounting
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for ∼1% of mammalian genomes (Youssoufian et al., 1986).
Methylation of CpG cytosines is catalyzed by maintenance and
de novo DNA methyltransferase (DNMT) enzymes DNMT1
and DNMT3A/B, respectively (Kim et al., 2002). Genome
wide methylation studies have compared 5mC distribution
among DNA sequences of varying CpG density including low
CpG density, intermediate CpG density, high CpG density,
differentially methylated regions (DMRs), and long terminal
repeats (LTRs) (Weber et al., 2007). Reduced representation
bisulphite sequencing (RRBS) analysis of these regions revealed
an inversely proportional relationship between CpG density
and methylation level in sequenced fragments of 40–220 base
pairs (bp) across 21 million reads (Weber et al., 2007). In
contrast, methylation levels were significantly higher among
low density CpG regions which correlated with the presence
of transcriptionally permissive or active histone mark histone
3, lysine 4 trimethylation (H3K4me3), and dimethylated lysine
4 tails on histone 3 (H3K4me2) (Weber et al., 2007). Amongst
the minute fraction of methylated CpGs (0.3%) in the vastly
unmethylated high density CpG island sequences, occurrence
of CpG methylation correlated with transcriptionally repressive
histone mark H3K27me3 (Weber et al., 2007).

High-performance liquid chromatography (HPLC) analysis
of 5mC distribution between different tissues detected highest
levels of this modification in the brain (Kriaucionis and Heintz,
2009). Isotope labeled liquid chromatography-coupled mass
spectrometry studies investigating 5mC levels in the adult human
brain depicted significant differences in the distribution of this
epigenetic mark between different brain regions (Kraus et al.,
2012). Frontal and occipital lobes of the cerebral cortex scored
highest for 5mC levels whilst frontal and occipital white matter
tracts exhibited significantly lower 5mC presence (Kraus et al.,
2012). Clues as to the nature of this observed disparity in 5mC
yield between different organs and even distinct regions of the
same tissue may be attributable to the relatively recent discovery
of oxidized forms of 5mC and the mechanism governing
their generation (Kriaucionis and Heintz, 2009; Khare et al.,
2012).

The Ten-Eleven Translocase (TET) proteins, homologous to
J-Base binding proteins (JBP) discovered in Trypanosome bruceii,
can recognize and oxidize 5mC to 5-hydroxymethylcytosine
(5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine
(5caC) (Tahiliani et al., 2009; Ito et al., 2011). According to
a growing body of experimental evidence, these oxidized
forms of 5mC (referred together as oxi-mCs) may play
specific roles in epigenetic regulation of gene expression
(Wu and Zhang, 2010; Seisenberger et al., 2012; Hackett
et al., 2013; Smith and Meissner, 2013; Guo et al., 2014;
Hu et al., 2014; Lewis et al., 2017). Importantly, both
HPLC and the restriction endonuclease enzyme-facilitated
oligonucleotide probe array hybridization mapping at single
base resolution data demonstrate the relative enrichment
of 5hmC within healthy human brains relative to other
organs such as liver, kidney, pancreas, and heart (Khare et al.,
2012).

In a recent study, Brain tumors representing all World
HealthOrganization (WHO) classifications (grades I-IV) ranging

from grade I temporal lobe pilocytic astrocytoma and grade II
cervical spine ependymoma to grade III cerebellum anaplastic
astrocytoma and grade IV parietal lobe glioblastoma multiforme
were interrogated for the presence and magnitude of 5mC
and 5hmC marks (Kraus et al., 2012). The WHO tumor
grades increase with disease severity as characterized by tumor
cell proliferative index, nuclear abnormality, necrosis, micro-
vascularization, invasiveness, and anti-correlate with patient
prognosis and survival rate (Louis et al., 2007). In these
experiments examining the quantity and distribution of 5mC and
5hmC between healthy brain and brain tumor specimens, mass
spectrometry-validated immunohistochemical analysis revealed
no significant difference in 5mC levels between healthy brains
and tissue matched tumors of varying grades, isolated from
multiple locations (Kraus et al., 2012). Contrasting with this,
the same study revealed heterogeneous 5hmC signatures with
greater proportion of positive staining in lower (grade I) tumors
(16.7%) relative to higher (grade IV) ones (1.43%) in the
analyzed brain tumors. Highest 5hmC signal intensity (5hmC/dG
ratio) captured via mass spectrometry was observed also in
grade I tumors (0.22%) whereas grade IV tumors exhibited the
lowest 5hmC signal intensity (0.078%). Frontal and occipital
cortex regions and even their lower white matter tracts scored
considerably higher 5hmC levels relative to all brain tumors
analyzed (Kraus et al., 2012).

Bisulphite and oxidative bisulphite sequencing employing
sodium bisulphite and potassium perruthenate chemistries,
respectively, facilitate the discrimination of 5mC from
unmodified cytosine and 5fC from 5hmC (Johnson et al., 2016).
Sequencing of methylated and demethylation intermediate
attached bases is possible at single base resolution and has
consequently revealed the overall depletion of 5hmC from
glioblastoma cells (Johnson et al., 2016). Examination of
30 glioblastoma cell lines and primary tissues exposed distinct
5hmC occupancy at CpG oceans and shores which are comprised
of low density CpG frequency relative to CpG islands and shores
and, thus, possess intermediate levels of 5mC enrichment.
This highlights a DNA demethylation intermediate role for
5hmC, as 5mC erasure from sequences augments transcriptional
status of genes under regulation (Johnson et al., 2016). The
CpG shelves which displayed highest 5hmC enrichment (75%)
localized within a window of ∼5 kilobases (Kb) upstream from
transcriptional start sites coinciding with enhancer and super-
enhancer territory (Johnson et al., 2016). These genomic features
characterized by association with active chromatin elements
such as H3K27 acetylation (H3K27Ac), positively correlated with
transcription of pathogenicity related genes in the aggressive
glioblastoma cell line U87 (Johnson et al., 2016). In concurrence
with previously mentioned studies highlighting the correlation
of depletion of 5hmC levels with the tumor grade increase
(Orr et al., 2012), Recursive Partition Mixture Model (RPMM)
clustering analysis of 5hmC occupancy in glioblastoma cells
linked the cytosine modification to prolonged patient survival,
an index associated with pro-neural subtypes of glioblastoma
(Verhaak et al., 2010; Johnson et al., 2016). Despite 5hmC
depletion within aggressive brain tumor grades, its presence
within genomic features appears critical to glioblastoma
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pathogenicity with the enrichment of 5hmC identified in gene
regulatory regions upstream of core glioblastoma signaling genes
such as epidermal growth factor receptor vIII (EGFRvIII) and
cyclin-dependent kinase 6 (CDK6) (Johnson et al., 2016).

WT1 MAY MODULATE EPIGENETIC
SIGNATURES IN TUMORS

Whilst WT1 over-expression and null mutations have both been
documented in cancer, implicating its dual properties as a proto-
oncogene and tumor suppressor (Algar et al., 1996; Yamagami
et al., 1996; Inoue et al., 1998; Menke and Van Der Eb, 1998;
Tsuboi et al., 1999; Loeb and Sukumar, 2002; Li et al., 2003;
Tatsumi et al., 2008), recent evidence has begun to demystify
potential epigenetic regulatory functions of this protein in
malignant neoplasms (Akpa et al., 2015). Thus, according to
several studies, WT1 is able to prime metanephric mesenchyme
progenitors for differentiation triggered by inductive WNT9b
signals from the uretic bud via the repression of Enhancer
of Zeste Homologue 2 (EZH2) transcription (Akpa et al.,
2015). The consequent reduction of trimethylated lysine 27
on histone 3 (H3K27me3) enables transcription of beta-
catenin (CTNNB1) in these progenitors and their subsequent
nephrogenic differentiation (Akpa et al., 2015). In Wt1+/−

mutant cells, progenitors cannot respond to WNT9b induction
and thus proliferate into nephrogenic rests that transform into
malignant tumors upon wt1 ablation (Dressler, 2009; Akpa et al.,
2015).

Aberrant DNA methylation has been well documented in
cancers where both hypermethylation of tumor suppressor genes

and hypomethylation of retrotransposons, IAPs and proto-
oncogenes are considered bona fide tumorigenic conditions
(Ehrlich, 2002; Baylin, 2005; Baylin and Ohm, 2006; Hinoue
et al., 2012). In addition, as oxi-mCs may serve as intermediates
in the DNA demethylation process (Jones and Liang, 2009;
Tahiliani et al., 2009; He et al., 2011; Shen et al., 2013; Dawlaty
et al., 2014) these modifications may also be functionally
involved in tumorigenesis (Dawson and Kouzarides, 2012;
Ehrlich and Lacey, 2013; Eleftheriou et al., 2015; Tian et al., 2016;
Ramsawhook et al., 2017). Correspondingly, TET proteins may
display tumor suppressor activity and their mutations, generating
defective or non-functional proteins may result in tumorigenesis
(Ko et al., 2010). Thus, TET2 protein has been implicated in
the development of hematological malignancies such as acute
myeloid leukemia (AML), chronic myelomonocytic leukemia
(CMML), and Myelodysplastic syndrome (MDS) (Tefferi et al.,
2009). Interestingly, WT1 has been demonstrated to directly
recruit DNMT3A to unmodified CpG cytosines (Figure 1) within
gene regulatory sequences (Szemes et al., 2012). Moreover, WT1
has been demonstrated to bind directly to TET2 and TET3
recruiting them to their potential target sequences in acute
myeloid leukemia models where mutation of WT1 resulting in
its inactivation is accompanied with significant locus specific
diminishing of 5hmC levels, a phenotypemimicked bymutations
in the isocitrate dehydrogenase genes (IDH1/2) (Verhaak et al.,
2010; Rampal et al., 2014; Kelly et al., 2017). The IDH1
mutations have been linked to aberrant DNA methylation
signatures in AML (Rampal et al., 2014) and secondary pro-
neural glioblastoma (Verhaak et al., 2010; Turcan et al., 2012;
Rampal et al., 2014; Kelly et al., 2017). In AML and pro-neural
glioblastoma, a CpG island methylator phenotype (G-CIMP)

FIGURE 1 | Potential interplay of WT1 with DNMT3A and CHTOP. (A) WT1 recruits DNMT3A to unmethylated CpGs or nearby WT1 binding sequences (Szemes

et al., 2012) leading to de novo methylation of unmethylated cytosines by DNMT3A and consequently, transcriptional repression of WT1 target genes (B). (C) Tet

protein mediated oxidation of 5 mC to oxi-mC derivatives attracts oxi-mC reader proteins WT1 and CHTOP competing for the same DNA binding sequence. (D) 5mC

oxidation to 5hmC attracts CHTOP to WT1 binding site leading to histone demethylation and transcriptional activation. (E) 5mC oxidation to 5caC, attracting WT1,

which possesses high 5caC binding affinity may also result in transcriptional activation of its target genes.
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is common (Noushmehr et al., 2010; Turcan et al., 2012) and
hypermethylation of non-housekeeping genes has been observed
(Sturm et al., 2012; Hughes et al., 2013; Weisenberger, 2014).
Substitution mutations such as arginine 132 replaced by histidine
(R132H) mutate IDH1, erroneously converting isocitrate to 2-
hydroxyglutarate instead of alpha-ketoglutarate, the canonical
co-factor required by TET enzymes for oxidation of 5mC
(Rampal et al., 2014). The consequent inhibition of TET enzyme
activity correlates with significant 5mC hypermethylation and
reduction in 5hmC observed in AML cells (Rampal et al., 2014).
Similar effects of hypomethylation and 5hmC reduction are
characteristic of Tet2 missense mutations that either result in its
attenuated or abrogated catalytic ability (Konstandin et al., 2011).
Interestingly, the aberrant methylation signatures observed in
AML can be recapitulated in cells with wildtype IDH1&2 and
Tet2 but mutant WT1 (Rampal et al., 2014). Correspondingly,
a negative correlation of IDH1&2 and Tet2 mutations with
mutations ofWT1was reported for a cohort of 398 AML patients
(Rampal et al., 2014). Moreover, a significant reduction in 5hmC
levels was demonstrated for these WT1 mutants compared to
IDH1&2, TET2, and WT1 wildtype AML background controls
(Rampal et al., 2014). Furthermore, next generation sequencing-
based analysis revealed the existence of differentially methylated
and hydroxymethylated regions between the wildtype AML
controls and WT1 mutants, with the majority of 5hmC peaks
localizing to enhancers and distal regulatory regions whereas
differential 5mC peaks between wildtype and mutants clustered
around transcriptional start sites (Rampal et al., 2014). The
5hmC levels at differentially hydroxymethylated distal enhancers
were lower in WT1 AML mutants compared to controls and
differentially methylated regions at transcriptional start sites
were more greatly enriched for 5mC in WT1 mutants (Rampal
et al., 2014). This may suggest a transcriptional priming role
for 5hmC in haematopoiesis which when perturbed by WT1
mutations, may contribute to tumorigenesis (Ko et al., 2010;
Yang et al., 2013). In glioblastoma multiforme, WT1 over-
expression may facilitate competition or co-operative binding
with other transcription factors capable of recognizing 5hmC
occupancy at promoter and enhancer sequences (Takai et al.,
2014). Intriguingly, DNA immunoprecipitation and subsequent
sequencing (DIPSeq) demonstrate possible interactions between
cytosine modifications and protein complexes capable of
“reading” them and altering transcriptional status of associated
genes (Takai et al., 2014). Core GBM signaling pathway genes e.g.,
BRAF,AKT, EGFR,&CDK6 possessed 5hmC enrichment at their
promoters and intergenic regions which positively correlated
with chromatin target of PRMT1 (CHTOP) promoter presence
and binding and consequent transcriptional activation of these
genes (Takai et al., 2014). Excitingly, WT1 and CHTOP share
binding affinity for the same promoter sequence (Figure 1),
implicating WT1 as a strong contender for influencing sustained
pathogenic transcriptional signaling in glioblastoma (Hashimoto
et al., 2015).

In addition to its interaction with TET proteins, recent
studies suggest that WT1 can also specifically bind certain oxi-
mCs (Hashimoto et al., 2014, 2016). WT1, a member of the
Early Growth Response family (EGR) of transcription factors

shares DNA binding consensus sequence 5′-GCG(T/G)GGGCG-
3′ (EGR-1 consensus) with its fellow family members EGR1
and Zif268 (Stoll et al., 2007). WT1 possesses oxi-mC vs. mC
discrimination capabilities in contrast to 5mC vs. unmodified
cytosine recognition as demonstrated by EGR1 and Zif268
(Hashimoto et al., 2014). Amongst oxi-mC derivatives, WT1
displays preferential binding affinity for 5caC over 5hmC
and 5fC. Additionally, preferential binding affinity for 5caC
is enhanced by presence of asymmetric methylation on
the same transcription factor “recognition strand” and by
occupancy of 5mC at CpG sites on the complementary
strand (Hashimoto et al., 2016). This is indicative of specific
epigenetic configurations on DNA sequences which can be
“read” by transcription factors such as WT1 (Hashimoto
et al., 2016). Moreover, the markedly reduced binding affinity
for 5caC and 5mC displayed by WT1 +KTS isoform may
demonstrate a splice variant-specific requirement of certain gene
promoters to undergo transcriptional activation (Hashimoto
et al., 2016). Ergo, this may suggest that oxi-mC presence
or absence on promoters and enhancers may perturb or
enhance WT1-contingent gene expression, thus contributing
WT1-implicated pathologies (Hashimoto et al., 2016). In
this context, it is striking that our recent studies have
highlighted an enrichment of 5caC not only in certain types
of pediatric brain tumors such as medulloblastomas and
ependymomas (Ramsawhook et al., 2017) but also in a number
of samples of glioblastoma multiforme (Eleftheriou et al., 2015),
a cancer previously reported to possess elevated levels of
WT1 (Schittenhelm et al., 2008). Considering the observations
across the board that 5hmC levels are significantly reduced
in malignancies compared to their healthy matched tissue
(Figueroa et al., 2010; Ko et al., 2010; Jin et al., 2011),
the presence of detectable 5caC in brain tumors may seem
rather unexpected and may depend on certain specific features
of their methylation/demethylation machinery influenced by
overexpression of WT1 and or TET2/IDH1 & 2 mutations in
these cancers.

Collectively, these studies imply two potential modes of WT1
interplay with TET-dependent 5mC oxidation that may influence
tumorigenesis. Thus, WT1 can either (1) serve as a binding
partner of TET proteins participating in their recruitment to
target sequences (Wang et al., 2015) or (2) act as a specific
“reader”- of certain oxi-mCs (most notably 5caC) (Hashimoto
et al., 2014, 2016; Figure 2). Presently available experimental
evidence suggests that both these scenarios may take place during
the pathogenesis of brain tumors, particularly glioblastoma
multiforme (Schittenhelm et al., 2008; Hashimoto et al., 2009;
Eleftheriou et al., 2015; Ramsawhook et al., 2017).

Considering the high mortality rate of this tumor and
an immediate need for an efficient strategy for its therapy
(Smoll et al., 2013; Thakkar et al., 2014; Ostrom et al.,
2015), elucidating potential roles of WT1 and its potential
interaction with TETs/oxi-mCs in glioblastomas should represent
an important direction for future research. Commensurate
with this perspective, two groups in Japan have developed
an anti-WT1 peptide vaccine aimed at reducing WT1 protein
activity in glioblastoma multiforme patients that is currently
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FIGURE 2 | Potential interplay of WT1 with TET proteins. (A) WT1 can recruit TET2 to the methylated CpGs within or nearby WT1 binding sites (Rampal et al., 2014)

causing demethylation of these CpGs via TET-dependent 5mC oxidation and activation of transcription of the target genes (B). Alternatively, recruitment of TET2 to

WT1 binding sequences by WT1 within transcriptionally inactive promoters may lead to oxidation of 5mC to 5caC (C). This may enable WT1 that possesses high

affinity for 5caC (Hashimoto et al., 2014), to stabilize this modification and hence potentially facilitate transcriptional activation of its target genes (D).

undergoing phase II clinical trial (Izumoto et al., 2008; Oji et al.,
2016).

Considering the crucial spatiotemporal expression patterns
of WT1 as a developmental master-regulator, tumor suppressor
and proto-oncogene as well as its potential involvement in
the TET/oxi-mCs-related demethylation and transcriptional
repression, it is highly likely that ectopic and anachronistic
involvement of WT1 in biological processes may perturb normal
functioning of cellular machinery, resulting in methylome
reprogramming and ultimately, tumorigenesis. Therefore,
targeted therapies against WT1 in tumors exiting its over-
expression may help curtail disease malignancy and improve
patient survival.
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