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The existence of rare cancer cells that sporadically acquire drug-tolerance through

epigenetic mechanisms is proposed as one mechanism that drives cancer therapy

failure. Here we provide evidence that specific microenvironments impose non-sporadic

expression of proteins related to epithelial plasticity and drug resistance. Microarrays

of robotically printed combinatorial microenvironments of known composition were

used to make cell-based functional associations between microenvironments,

which were design-inspired by normal and tumor-burdened breast tissues, and

cell phenotypes. We hypothesized that specific combinations of microenvironment

constituents non-sporadically impose the induction of the AXL and cKIT receptor

tyrosine kinase proteins, which are known to be involved in epithelial plasticity and

drug-tolerance, in an isogenic human mammary epithelial cell (HMEC) malignant

progression series. Dimension reduction analysis reveals type I collagen as a

dominant feature, inducing expression of both markers in pre-stasis finite lifespan

HMECs, and transformed non-malignant and malignant immortal cell lines. Basement

membrane-associated matrix proteins, laminin-111 and type IV collagen, suppress

AXL and cKIT expression in pre-stasis and non-malignant cells. However, AXL and

cKIT are not suppressed by laminin-111 in malignant cells. General linear models

identified key factors, osteopontin, IL-8, and type VIα3 collagen, which significantly

upregulated AXL and cKIT, as well as a plasticity-related gene expression program

that is often observed in stem cells and in epithelial-to-mesenchymal-transition.

These factors are co-located with AXL-expressing cells in situ in normal and

breast cancer tissues, and associated with resistance to paclitaxel. A greater

diversity of microenvironments induced AXL and cKIT expression consistent with

plasticity and drug-tolerant phenotypes in tumorigenic cells compared to normal or

immortal cells, suggesting a reduced perception of microenvironment specificity in

malignant cells. Microenvironment-imposed reprogramming could explain why resistant
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cells are seemingly persistent and rapidly adaptable to multiple classes of drugs. These

results support the notion that specific microenvironments drive drug-tolerant cellular

phenotypes and suggest a novel interventional avenue for preventing acquired therapy

resistance.

Keywords: breast cancer, MEMA, microenvironment, epithelial plasticity, AXL, cKIT, drug resistance

INTRODUCTION

The confounding reality for anti-cancer treatments is the
heterogeneity of tumors. Generated by genetic and adaptive
epigenetic alterations in gene expression, tumor heterogeneity
supports acquired resistance to anti-cancer treatments. Sporadic
drug-tolerant states within subpopulations of cancer cells are
rapidly achieved by activating drug-resistance genes, that are
also implicated as stem cell-related genes, through chromatin
modifications or transcriptional upregulation (Sharma et al.,
2010; Shaffer et al., 2017). These epigenetic mechanisms provide
rapidly acquired resistance and tumor cell persistence during
treatment. Heterogeneity within the tumor microenvironment
is a source of adaptive drug resistance that supports stem cell-
like phenotypic plasticity in the tumor cells (Bissell and Labarge,
2005; LaBarge, 2010). However, the nature of these plasticity-
inductive microenvironments remains elusive.

In normal tissues, stem cell-states are maintained in
specialized microenvironments termed, niches. Epigenetic
plasticity gene programs that are characteristic of regenerative
stem cells responsive to tissue damage and inflammation are
prominent in aggressive cancers with poor clinical outcome.
These plasticity gene programs are triggered both by protective
anti-tumor immune surveillance and inflammation, and the
constant nutrient and oxygen deprivation characteristic of the
chaotic tumor microenvironment that follows the breakdown
of normal tissue architecture (Nieto, 2013). Tumor cells exploit
these acquired stem cell traits to promote survival and enable
flexibility to transition between different functional states such
as epithelial-to-mesenchymal transition (EMT) (Bissell and
Labarge, 2005; Thiery et al., 2009; LaBarge, 2010; Mora-Blanco
et al., 2013). The connection between EMT and stem cell traits
has beenwell studied in the epithelial cells of themammary gland,
an organ formed by branching morphogenesis, where epithelial
plasticity is essential and where substantial cellular dynamics
continue throughout adulthood (Petersen and Polyak, 2010).
Regulators of EMT induce epithelial plasticity during mammary
gland development and cancer progression (Mani et al., 2008;
Guo et al., 2012). The importance of epithelial plasticity during
the development of malignant breast cancer is evidenced by
EMT gene signatures, which correlate with drug resistance, stem
cell-like traits, basal breast cancer subtypes, metastasis and poor
patient survival (Blick et al., 2010). The receptor tyrosine kinase
(RTK), AXL, is a key driver of tumor cell EMT and is widely
implicated in acquired drug-resistance to multiple cancer drug
classes (Davidsen et al., 2017; Ferreira et al., 2017). Blockade
of AXL inhibits the EMT program and reverses acquired drug
resistance and metastasis (Gjerdrum et al., 2010; Kirane et al.,
2015). AXL is an important therapeutic target currently being

investigated in several cancer clinical trials (Antony and Huang,
2017). The RTK cKIT is enriched on mammary epithelial
progenitor cells and increased expression was observed in
high-risk breast tissue (Lim et al., 2009; Garbe et al., 2012). cKIT
pathway activation is a driver in several cancers and it is related
to acquired drug resistance (Javidi-Sharifi et al., 2015; Zhang
et al., 2015; Lai et al., 2016; Pu et al., 2017). The ability of cells to
modulate proteins related to stem cell-states such as these RTKs,
is an example of epithelial plasticity, which can be useful for
maintaining healthy tissue architecture in the normal context.
Conversely, that same property is dangerous when coopted by
cancer cells, as it promotes their survival and spread.

We hypothesized that sporadic stem cell-like states,
which may be drug tolerant, are favored by specific
microenvironment contexts. To address this, we functionally
interrogated an isogenic human mammary epithelial cell
(HMEC) progression series comprising primary normal
(184, pre-stasis), immortal (184A1, non-malignant), and
adenocarcinoma-forming (184AA3, tumorigenic) cells on
combinatorial MicroEnvironment MicroArrays (MEMA) for
induction of cKIT and AXL. The MEMA consisted of 228
distinct microenvironment features comprising different
combinations of ECM, growth factors and cytokines.
Hierarchical clustering, general linear modeling (GLM),
and dimension reduction analyses were applied to identify
plasticity-inductive microenvironments. Specific combinatorial
microenvironments were shown to induce or maintain cKIT
and AXL, activate an EMT-related gene expression program, and
induce paclitaxel tolerance. The microenvironment components
that were functionally predicted to induce AXL expression
on MEMA, were found co-expressed by cells in breast tumor
microenvironments adjacent to cells expressing AXL. We
report evidence that sporadic drug-tolerance can result from
phenotypic plasticity of carcinoma cells in response to different
microenvironments.

RESULTS

The Normal and Neoplastic Mammary
Microenvironment
Mammary epithelial ducts are encapsulated by a basement
membrane that is enriched with laminins (LAM1 and LAM5)
and type IV collagen (COL4). This matrix systematically
regulates cell growth, induces lumen formation, and serves
as a crucial polarity cue (Petersen et al., 1992). Examples
of immunofluorescence staining in normal breast tissue
demonstrate that epithelial cells are enveloped by basement
membrane components COL4 (Figures 1A,B) pan laminin
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FIGURE 1 | Human mammary epithelial cells from different stages in a malignant progression series exhibit unique growth characteristics in normal- and tumor-like

microenvironments. Immunofluorescence staining of (A–D) normal and (E,F) invasive breast cancer tissue sections. ECM components; (A,B,E) COL4 (red), COL1

(Continued)
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FIGURE 1 | (green), (C,F) pan-laminin (LAM, green) and (D) LAM5 (green) in (A–D) normal mammary gland tissue and (E,F) invasive breast cancer, were stained with

(A–F) nuclei marker Hoechst (blue), (C,E,F) epithelial cell marker (EPCAM) or with (D) myoepithelial cell marker (K14, red). (G) Diagram of the 184-progression series

derivation. (H) Single cell suspensions of 184, 184A1, and 184AA3 cells were embedded in matrigel- and COL1-3D gels, after 12 days cells were fixed and stained

with luminal cell marker (K19, green) and myoepithelial cell marker (K14, red). Images are representative of three individual experiments. (A,C–F,H) Bars represent

50µm and (B) 5µm. (I) Gene expression of microenvironment related genes (RT2ProfilerTM PCR array, Human Epithelial to mesenchymal transition EMT, Qiagen) in

184A1 and 184AA3 cells cultured on matrigel (control = 1) or on COL1. Data represent mean ± SE, from two (184A1) or three (184AA3) individual experiments,

statistical significance was calculated by using student T-test (*p < 0.05, **p < 0.01).

staining (PAN-LAM) and LAM5 (Figures 1C,D, respectively).
Normal breast epithelia were clearly separated from type I
collagen (COL1) that is most prevalent in the surrounding
stroma (Figures 1A,B). The basement membrane is disrupted
during breast cancer progression and local concentrations of
COL4 and laminins decrease (Insua-Rodriguez and Oskarsson,
2016), while expression of matrix components characteristic of
tissue remodeling increase (e.g., hyaluronan, HA, tenascin C,
TNC, osteopontin, OPN, and fibronectin, FN1; Insua-Rodriguez
and Oskarsson, 2016). COL1 accumulates and aligns at the
epithelial-stromal borders of tumors (Provenzano et al., 2006).
Immunofluorescence staining of invasive breast cancer tissues
demonstrates that tumor cells are exposed to COL1 (Figure 1E),
and only modest levels of PAN-LAM (Figure 1F). COL4 was
absent from the tumor stroma, with only perivascular COL4
observed (Figure 1E). Accompanying these changes in ECM
composition, heterogeneous breast cancer microenvironments
are enriched with hormones (Garcia-Robles et al., 2013; Simões
et al., 2015), growth factors (Mimeault et al., 2007; Ye et al.,
2009; Zheng et al., 2014; Ho-Yen et al., 2015; Voudouri et al.,
2015), cytokines (Esquivel-Velazquez et al., 2015; Weichhaus
et al., 2015), chemokines (Palacios-Arreola et al., 2014) and
cell adhesion proteins (Spivey et al., 2012; Beauchemin and
Arabzadeh, 2013; Karousou et al., 2014; Yu and Elble, 2016).

HMEC Progression Series for Probing
Responses to Normal- and Stromal-Like
Microenvironments
The 184 HMEC progression series provides a model of cancer
progression comprising normal, finite lifespan, pre-stasis cells
and derivative cell lines that range from non-malignant immortal
non-malignant tomalignant immortal cells (Figure 1G; Stampfer
et al., 2013). The pre-stasis HMEC 184 strain was derived
from normal reduction mammoplasty tissue of a 21-year
old female with no pathological changes. Pre-stasis HMEC
strains grown as described are known to possess luminal and
myoepithelial cells and cells with progenitor activity (Garbe
et al., 2009, 2012; Labarge et al., 2013). Finite post-stasis
184Aa were derived following benzo-a-pyrene (BaP) exposure
of pre-stasis 184, and lack expression of the CKI p16INK4a

(Stampfer and Bartley, 1985; Brenner et al., 1998). The non-
malignant immortal non-malignant cell line 184A1, which is
wild-type for p53 and retinoblastoma (RB) protein, emerged
from 184Aa as it approached replicative senescence, and exhibits
a low level of genomic instability (Stampfer and Bartley, 1985;
Walen and Stampfer, 1989). The tumorigenic cell line 184AA3
emerged from 184Aa following insertional mutagenesis that
inactivated p53 function (Stampfer et al., 2003). It exhibits

increased genomic instability and forms clinically relevant
ER+ luminal adenocarcinomas in the mouse xenograft model
(Stampfer et al., 2003; Hines et al., 2016). To evaluate how the
HMEC progression series responds to normal-like and stroma-
like microenvironments, we cultured single cell suspensions
in laminin-rich ECM [lrECM (matrigel)] and COL1 3D gels,
respectively. Normal 184 cells enriched for cKIT expression
gave rise to growth arrested acini that have a lumen, with
(K)eratin 14+ myoepithelial cells that are basal relative to
K19+ luminal cells (Figure 1H), whereas growth in COL1 was
negligible (Figure 1H). 184A1 and 184AA3 form solid, multi-
lineage spheres in lrECM (Figure 1H). 184A1 exhibits modest
growth in COL1 gels resulting in small colonies. In contrast,
184AA3-derived spheroids were large and proliferative in COL1
gels (Figure 1H). Gene expression analysis after 24 h growth on
COL1 gels showed that tumorigenic 184AA3 cells, as compared
to 184A1, upregulated expression of matrix metalloproteinases
(MMP2, MMP3, and MMP9), integrins (ITGB1, ITGAV, and
ITGA5) and matrix components [Versican (VCAN), FN1 and
type Vα2 collagen (COL5A2)] (Figure 1I), indicative of enhanced
microenvironment-adaptive activity in the malignant cells.

The Relationship Between Cancer
Progression Stage and Plasticity Marker
Expression in Combinatorial
Microenvironment Contexts
We next asked whether induction of phenotypes associated
with plasticity and drug-tolerant states is sporadic (equally
likely to occur in all microenvironment contexts), or whether
those states are associated with specific microenvironments
(microenvironment-induced). MEMA were used previously to
identify combinatorial microenvironments that induce and
maintain stem- and differentiated-states in HMEC (LaBarge
et al., 2009), and microenvironments that modulate lapatinib
activity in HER2-amplified breast, lung, and prostate cancer
(Lin et al., 2017). We applied this principle to determine
whether cKIT and AXL were expressed in a microenvironment
dependent manner. Individual microenvironment components
were selected based on their enrichment in normal and cancer
microenvironments. In order to recapitulate simplified normal-
or tumor-like microenvironments purified COL1, Laminin-
111 (LAM1), COL4, and LAM1+laminin-332 (LAM5) were
mixed pairwise with OPN, HA, TNC, FN1, bone morphogenetic
protein−2/7 (BMP-2/7), BMP-4, carcinoembryonic antigen
related cell adhesion molecule 6 (CEACAM6), CEACAM8,
CD44, type XXIIIα1 collagen (COL23A1), E-cadherin (ECAD),
epidermal growth factor (EGF), fibroblast growth factor 2
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(FGF-2), growth arrest-specific 6 (GAS-6), hepatocyte growth
factor (HGF), insulin-like growth factor (IGF1), interferon-γ
(IFN-γ), interleukin-1β (IL-1β), IL-6, IL-8, leptin, melanoma
growth stimulating activity alpha (GRO1), nidogen1, lumican,
osteoprotegerin (OPG), stem cell factor (SCF), stromal derived
factor-1β (SDF-1β), and tumor growth factor β (TGFβ) to make
a total of 228 unique combinations that were printed in 10-
fold replicate features. RNA sequencing of the 184 progression
series was performed to characterize the baseline levels of
expression of the genes corresponding to the proteins printed on
MEMA (Figure 2A) and to their known receptors (Figure 2B).
Significant differences were not detected in expression of any of
these genes. However, levels of AXL gene expression are 5 fold
higher in 184A1 cells compared to the other cells and cKIT gene
expression was detected only 184 cells (Figure 2C).

Cells have a dynamic and reciprocal relationship with their
microenvironment, and one would expect cells to gradually
modify their microenvironment following initial exposure. Thus,
in order to measure the impact of the printed combinatorial
microenvironments on the 184 HMEC progression series, they
were cultured on MEMA for only 48 h. After fixing and
staining for AXL and cKIT protein expression, every MEMA
feature was imaged, and single cell data were obtained through
use of marker-based watershed segmentation (Figure 2D). In
addition to protein levels, cell-segmentation enabled assessment
of eight morphological properties of cells that were evaluated
independently. Unsupervised clustering of AXL expression Z-
scores as a function of microenvironment revealed that AXL
expression in 184 and 184A1 was mainly observed in COL1-
rich microenvironments, with less expression in COL4-rich ones
(Figure 2E). In contrast, AXL expression was high in COL1-
and LAM1-rich microenvironments in malignant 184AA3 cells
(Figure 2E). We show an example of AXL and cKIT expression
in cells of the progression series, at the single cell level, on three
single component microenvironments: COL1, COL4, and LAM
1 (Figure 2F). These data show that microenvironments that
impose expression of the RTKs may not do so uniformly, that it
is more a case of triggering a percentage of the cells to express
those proteins instead of shifting the mean of the population,
which underscores the importance of single cell analysis. Single
cell data also revealed that AXL and cKIT expression in
malignant 184AA3 cells was overall more heterogeneous than in
184 and 184A1 cells (Figure 2F). General linearized modeling
(GLM) confirmed that the coefficient of variance describing
the percentage of AXL and cKIT-expressing cells in a given
microenvironment between 184 and 184A1 cells was low, while
the variance between 184 and 184AA3, and 184A1 and 184AA3
was more than two-magnitudes greater (Figure 3A). Thus,
whereas expression of these RTKs in normal and non-malignant
HMEC is tightly regulated by microenvironment, the malignant
cells are effected but not fully restricted by microenvironment.

Next, we applied tSNE to project all the dimensions in 2D
and visualize the data, a method particularly sensitive to the
types of non-linear relationships that are common in biological
data to visualize the relationship between microenvironment and
RTK expression (Amir et al., 2013). Microenvironments were
readily clustered by the primary ECM component (Figure 3B).

FIGURE 2 | Non-sporadic induction of AXL and cKIT expression by

combinatorial microenvironments. (A,B) Unsupervised hierarchical clustering of

mRNA expression levels of genes in the 184 progression series corresponding

the gene products that were printed on MEMA: (A) microenvironment proteins

and (B) their known receptors. (C) mRNA expression level of AXL and cKIT in

(Continued)
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FIGURE 2 | the184 progression. (D) Diagram of the MicroEnvironment

MicroArray (MEMA) experimental design. MEMAs are printed on microscope

slides coated with polyacrylamide (PA) gel. 228 unique extracellular

microenvironments with 5–20 replicate spots are printed on one slide. Cells

are cultured on the arrays and grown 48 h before fixing. AXL and cKIT are

stained for immunofluorescence imaging, and image analysis is used to obtain

single cell expression data in discrete microenvironment contexts.

(E) Unsupervised hierarchical clustering of AXL expression z-scores as a

function of microenvironment in the 184 progression series. Non-sporadic

clustering of AXL expression by major ECM component of microenvironment

was detected. (F) Scatter plot representation of AXL and cKIT expression in

single cells, as a function of ECM components (LAM1, COL4, and COL1) in

the 184 progression series.

Whereas, there was no clear clustering driven by presence of
soluble ligands (Figure 3C), nor by GAS6 (Figure 3D), which is
the cognate ligand for AXL. After only 4 h, array features were
fairly uniformly bound (with a potentially universal attachment
preference for COL1) (data not shown), but differences in cell
number per feature changed with time, revealing some matrix-
type preferences that were progression stage dependent by 48 h.
Normal and non-malignant HMEC preferentially increased in
cell number/spot on LAM1 and COL4, and malignant cells on
COL4 (Figure 3E). The majority of AXL and cKIT expression in
normal and non-malignant cells was detected in cells cultured
on COL1-containing microenvironments, with some weak
enrichment also seen on COL4-containing (Figures 3F–H). In
comparison, malignant cells expressed high amounts of AXL and
cKIT, in COL1- and LAM1-containing microenvironments, but
COL4 was the only ECM that was not associated with expression
of those RTKs (Figures 3F–H). 184AA3 was more likely to have
significantly greater proportions of AXL and cKIT expressing
cells in microenvironments that included COL1 or LAM1
(Figures 3F–H), and GLM analysis showed significantly more
variance (expression of AXL+/cKIT+ population) in COL1
and LAM1 including microenvironments compared to other
ECMs (Table 1). Collectively this cell-based functional analysis of
microenvironment-phenotype associations showed that COL1-
rich stroma-like and LAM1-rich normal-like microenvironments
enabled the induction of AXL and cKIT-expression in malignant
cells, whereas their expression in normal and non-malignant
cells was far more restricted. These data provide a functional
rationale for normal epithelial cell segregation from the stromal
microenvironment by the basement membrane, and reveal an
inherent plasticity of epithelia that engages components of
stem cell-related signaling pathways when exposed to stromal
ECM, for example during trauma or disease. Malignant cells,
by comparison, readily switch between stem- and resistance-
related pathways in microenvironments that normally suppress
plasticity, e.g., LAM1-rich contexts.

OPN, IL-8, and COL6A3 Promote States
Consistent With Drug-Tolerance in
Malignant Cells
GLM analysis of the 184AA3 MEMA showed that TGFβ,
OPN, lumican, leptin, IL-8, HA and COL6A3 were significantly

FIGURE 3 | Visualizing the impact of microenvironment on higher-order cell

phenotypes, including AXL and cKIT expression. (A) Table representing GLM

analysis of expression of the AXL+/cKIT+ phenotype in different

microenvironments and significant differences was detected in patterns of

microenvironment-phenotype associations between comparisons of all

progression stages. **p ≤ 0.01, ***p ≤ 0.001. (B–H) Dimension reduction and

visualization of microenvironment-driven phenotypes with tSNE visualization.

Each point represents a unique combinatorial microenvironment, and the

distance between any two points reflects similarity of the cellular phenotype

that is begotten by the microenvironment. The characteristics that were

measured in cells to establish phenotype were: % of cells that are

AXL+/cKIT+, mean AXL, and cKIT fluorescent intensity in subpopulation and

in ungated population, cell count/spot, -eccentricity, -solidity. (B–D) Shows the

(Continued)
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FIGURE 3 | composition of each microenvironment, where (B) shows

distribution of the major ECMs, (C) shows the distribution of the soluble

factors, and (D) shows the distribution of GAS6 among the major ECM. The

major ECM is a key driver of microenvironment-imposed phenotypes. Even

GAS6, the cognate ligand of AXL does itself impact the tSNE distributions.

(E–H) Show how specific aspects of cell phenotype distribute with

microenvionment: (E) cell number per spot, (F) AXL+/cKIT+-subpopulation

size, (G) mean AXL intensity, and (H) mean cKIT intensity.

TABLE 1 | Effect of ECM on expression of AXL+/cKIT+-phenotype in 184AA3.

ECM Co-efficient estimate

from GLM analysis

P-value

COL1-COL4 −1.64569 < 0.001***

COL1-LAM1 0.04385 0.0621

COL1-LAM1/LAM5 −0.37975 < 0.001***

COL4-LAM1 1.53714 < 0.001***

COL4-LAM1/LAM5 1.26594 < 0.001***

LAM1-LAM1/LAM5 −0.2712 < 0.001***

GLM analysis with Tuckey’s post-hoc test. ***p ≤ 0.001.

associated with increased frequency of the AXL and cKIT
phenotype (Figure 4A). To further investigate this differential
plasticity-inductive effect, we focused on OPN, IL-8, and
COL6A3, which were associated with the largest proportion of
AXL-expressing 184AA3 cells. We examined the expression of
these plasticity-inductive factors in normal human mammary
gland and in triple negative breast cancer (TNBC) tissue sections
(Figures 4B–G). By RNA in situ hybridization the expression
of OPN and IL-8 were found to co-localize with the rare
population of cells with high AXL expression in normal tissue
(Figures 4B,D) and, as well, OPN and IL-8 expressing cells were
also found in the vicinity of the AXL positive tumor cells in
the TNBC tissues (Figures 4C,E). Expression of COL6A3 was
prominent in the normal epithelia (Figure 4F), and also in the
malignant epithelium of TNBC (Figure 4G). This result contrast
with the detection of mature type VI collagen (COL6) fibrils,
which were detected strictly in the stromal compartments in
normal mammary tissues as well as in TNBC specimens (data
not shown), and might indicate a particular role of the α3 chain
of COL6 in homeostasis of mammary epithelia. Thus, in vivo
cells expressing OPN, IL-8 and COL6A3 are co-located with cells
expressing AXL in normal and tumor contexts.

AXL is associated with drug resistance and metastatic spread
of breast cancer (Li et al., 2015; Antony and Huang, 2017;
Davidsen et al., 2017). We evaluated expression of a panel of
EMT- and stem cell-related genes (Table 2) in 184AA3 cells
cultured on lrECM (matrigel), COL1, or COL1 supplemented
with OPN, IL-8 or COL6A3. A number of EMT related genes
were upregulated by the COL1 microenvironment, and the
upregulation was enhanced when COL1 was supplemented with
any of the three factors (Figure 4H). These results indicate that
OPN, IL-8, and COL6A3 in COL1- and LAM1-rich contexts
non-sporadically induce AXL and cKIT expression, and gene
expression consistent with engagement of EMT-related programs

in the COL1-rich context, in tumorigenic HMEC, which may
induce drug-tolerant states. To determine if plasticity-inductive
microenvironments were sufficient to increase drug-tolerance,
184AA3 cells were cultured on COL1-only, COL1+COL6A3,
COL1+IL-8, or COL1+OPN microenvironments and treated
with paclitaxel. These microenvironments significantly increased
tolerance to the drug, consistent with the notion that epithelial
plasticity enables non-sporadic induction of drug-tolerant states
(Figures 4I,J).

DISCUSSION

Here we provide evidence in a breast cancer progression
series, that specific tumor-associated microenvironments favor
induction of two RTKs implicated in plasticity and drug-tolerant
states, in a non-sporadic manner. COL1 is found extensively in
tumor stroma, and when combined with certain other common
tumor microenvironment proteins (i.e., COL6A3, OPN, and
IL-8) the frequency of AXL-expressing cells significantly
increased. We showed this functionally on MEMA, in follow
up validation cell culture experiments, and using RNA in situ
hybridization and immunohistochemistry, we demonstrated
coordinated expression of these microenvironment factors with
AXL expressing cells in breast tumors. Microenvironment
proteins such as ECM molecules are not directly targeted by
currently approved anti-cancer therapeutics, and they have
long in vivo half-lives, e.g., the half-life of COL1 is estimated
between 14 and 400 years depending on the tissue (Verzijl
et al., 2000). Thus, microenvironment-imposed reprogramming
could explain why resistant cells are seemingly persistent and
rapidly adaptable to multiple drugs. Drug-induced sporadic
transcription of a number of other gene markers that are
implicated in drug-tolerance was shown, AXL among them,
though they did not account for microenvironment context
(Shaffer et al., 2017). We reported previously that the response
of HER2-amplified cells to the HER2-targeted drug lapatinib
is partly determined by combinatorial microenvironments (Lin
et al., 2017). We speculate that microenvironment-induced drug-
tolerance via induction of plasticity-related genes and proteins is
a widespread mechanism. Because specific microenvironments
are associated to enable certain cellular phenotypes (e.g., AXL
and cKIT states) the mechanism is not sporadic, and it suggests
an avenue forward for circumventing drug-tolerance.

AXL also is implicated as having a functional role in cells
that possess cancer stem cell (CSC) activity. AXL expression
is a strong negative prognostic factor for human breast
cancer survival and its expression is associated with spread
of metastatic breast cancer (Gjerdrum et al., 2010). AXL
expression is upregulated during EMT, and the EMT gene
program is associated with cells that exhibit normal stem cell
and cancer stem cell (CSC) activity (Liu and Fan, 2015). It
enhances migratory activity of pre-malignant breast epithelial
cells and contributes to breast cancer cell extravasation into
lungs (Vuoriluoto et al., 2011). cKIT also is associated with
cells that possess mammary progenitor activity (Lim et al.,
2009; Garbe et al., 2012), so it is not surprising that many
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FIGURE 4 | Identification and in vivo validation of microenvironment factors that impose AXL and cKIT expression phenotypes in malignant breast cancer cells.

(A) AXL+/cKIT+-184AA3 phenotype expression in MEMA experiments was analyzed by GLM, and the most significant (Tuckey’s post-hoc test, p < 2e-16***)

microenvironment supplemental factors combined with different ECM are presented in bar graph format. (B,C) Co-expression of OPN (cyan), and AXL (red) were

determined by RNA in situ hybridization of normal human mammary gland tissue (B), and TNBC (C) specimens. Co-expression IL-8 (cyan), and AXL (red) in normal

human mammary gland tissue (D), and TNBC (E) specimens. Scale bar represent 20µm (B–E). Expression of COL6A3 in normal human mammary gland tissue

(F), and TNBC (G) specimens were assayed by IHC-P. (F,G) Scale bar = 100µm. Counterstaining by hematoxylin (B–G). (H) Volcano plot represent EMT related gene

expression (RT2ProfilerTM PCR array, Human Epithelial to mesenchymal transition EMT, Qiagen) in 184AA3 cell cultured (24 h) on COL1, with or without OPN, IL-8, or

COL6A3 was compared to expression profile of 184AA3 cells on matrigel. Results represent mean of three individual experiments, and p-values are calculated by

comparing each gene expression in each group with the matrigel group, ***≤0.001. (I) To study drug resistance, 184AA3 cells were cultured on COL1 coated dishes

supplemented with or without COL6A3, and treated with 0.1µM paclitaxel. Data represent EdU positive cells as a percentage of total cells compared to COL1 control

culture. Results represent mean ± SD in 6 individual experiments, significance between COL1 and COL1+COL6A3, *p = 0.02. (J) To study impact of OPN and IL-8

on paclitaxel IC50 values (µg/ml), 184AA3 cells were cultured on COL1 with or without OPN or IL-8. Cells were treated with Paclitaxel (ranging from 0.001 to 1µg/ml).

Results represent mean ± SD in 3 individual experiments, significance between IC50 values, **p < 0.01.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 April 2018 | Volume 6 | Article 41

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Jokela et al. Microenvironment-Induced Epithelial Plasticity

TABLE 2 | EMT related gene expression profile (RT2ProfilerTM PCR array, Human

Epithelial to mesenchymal transition EMT, Qiagen) of 184AA3 cell cultured (24 h).

Gene symbol COL1 +OPN +IL-8 +COL6A3

CAMK2N1 0.59 0.59 0.53 0.55

RGS2 0.68 0.57 0.71 0.56

MAP1B 0.68 0.63 0.74 1.53

GEMIN2 0.69 0.94 1.00 0.90

FGFBP1 0.69 0.79 0.77 1.18

TGFB2 0.69 0.76 0.51 1.05

ZEB2 0.70 0.96 1.38 1.45

ESR1 0.72 1.36 1.91 2.28

STEAP1 0.74 1.39 1.55 1.57

NUDT13 0.75 0.95 1.03 0.61

SNAI2 0.82 3.99 1.08 4.76

PTP4A1 0.82 1.06 0.88 0.81

EGFR 0.88 0.97 1.08 1.07

OCLN 0.88 1.13 0.91 1.37

SMAD2 0.89 1.09 1.23 1.03

RAC1 0.89 1.04 1.06 1.12

DSP 0.91 1.34 1.32 1.29

DESI1 0.91 0.98 1.01 0.97

KRT19 0.93 1.01 1.40 1.87

SPP1 0.93 1.08 0.84 0.70

SNAI1 0.93 2.31 1.47 1.27

PTK2 0.94 1.12 1.21 1.20

GSK3B 0.95 1.02 1.13 1.35

KRT7 0.95 0.77 0.79 0.75

NODAL 0.97 1.37 2.54 1.41

TGFB3 0.98 1.19 1.10 0.90

VPS13A 0.98 1.36 1.61 1.29

IL1RN 1.00 1.35 0.97 2.15

TIMP1 1.00 1.26 1.13 1.25

CAV2 1.00 1.08 1.16 1.16

TSPAN13 1.02 1.16 1.31 1.16

TMEFF1 1.02 1.15 1.30 1.78

TCF3 1.05 1.21 1.00 1.05

BMP7 1.11 2.29 1.73 1.40

FZD7 1.12 1.34 1.30 1.48

STAT3 1.12 1.26 1.10 1.20

TWIST1 1.14 1.28 1.12 1.15

CALD1 1.15 1.49 1.65 1.45

ERBB3 1.21 1.20 1.36 1.45

AHNAK 1.22 1.32 1.47 1.45

AKT1 1.23 1.06 1.17 0.96

F11R 1.24 1.19 1.22 1.19

DSC2 1.25 1.73 1.93 2.20

CTNNB1 1.25 1.40 1.38 1.41

NOTCH1 1.27 1.56 1.33 1.17

TCF4 1.28 1.57 2.90 2.08

ILK 1.29 1.24 1.62 1.57

ZEB1 1.34 1.36 1.91 2.56

CDH1 1.34 1.30 1.55 2.01

ITGB1 1.36 1.94 2.00 2.65

(Continued)

TABLE 2 | Continued

Gene symbol COL1 +OPN +IL-8 +COL6A3

PLEK2 1.36 1.45 1.60 1.91

MSN 1.39 1.66 1.69 1.79

ITGAV 1.41 1.67 1.78 3.39

COL1A2 1.43 1.89 3.17 2.57

FOXC2 1.43 1.52 1.33 1.31

TFPI2 1.43 1.14 1.49 1.60

BMP2 1.45 1.11 1.85 2.37

MST1R 1.48 1.41 1.79 1.40

JAG1 1.57 1.65 2.24 2.81

BMP1 1.62 1.68 2.05 2.00

SERPINE1 1.64 1.47 2.23 2.01

TGFB1 1.69 1.52 1.76 1.57

IGFBP4 1.75 1.33 1.75 1.12

MMP3 1.79 1.74 3.39 3.08

KRT14 1.84 3.18 3.03 1.82

TMEM132A 1.93 1.26 1.41 2.03

COL5A2 2.00 2.38 2.87 3.32

SNAI3 2.03 2.59 3.78 5.66

VCAN 2.07 4.23 3.75 5.33

ITGA5 2.12 1.76 2.54 2.79

GNG11 2.24 1.97 2.33 2.62

SPARC 2.28 1.84 3.07 2.80

VIM 2.53 3.84 3.83 4.84

FN1 3.00 2.12 4.79 8.02

WNT5A 3.18 4.90 6.69 10.86

MMP9 3.80 3.04 3.44 7.49

MMP2 4.00 4.44 5.81 7.06

Fold expression presented in table were calculated using the formula

2(−11Ct), where 11Ct is 1Ct(sample)−1Ct(matrigel sample), 1Ct is

Ct(gene of interest)−Ct(average from control gene setup), and Ct is the cycle at which the

detection threshold is crossed.

of the microenvironments that induced AXL also induced
cKIT, as well as the EMT gene signature. Thus, prior to
this study epithelial plasticity, and the underlying EMT-related
gene programs, have been widely discussed in the context of
metastatic spread. The MEMA platform is probably not the
correct model for understanding processes related to metastasis,
but we demonstrate here its utility in examining the roles
of microenvironment in drug-tolerance. MEMA have proven
useful in functionally defining putative normal stem cell niche
components using the juxtaposition of lineage specific keratins as
cell fatemarkers (LaBarge et al., 2009). From these new results, we
speculate that CSC niche components also could be functionally
identified using the MEMA platform.

In the mature mammary gland, the basement membrane is
located between the epithelium and stroma, compartmentalizing
breast tissue components. COL4, LAM1, and LAM5 are
important basement membrane constituents that promote
attachment of epithelial cells and maintenance of epithelial
polarity (Kleinman et al., 1981), while stroma is rich in COL1.
The MEMA approach revealed that normal HMEC express AXL
and cKIT in the COL1-rich microenvironments. This suggests
that breakdown of normal tissue compartmentalization and
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exposure to COL1-rich stromal ECM is a plasticity signal for
differentiated mammary epithelial cells. While stem cell traits
are a common feature of malignant carcinoma, the reacquisition
of stem cell properties by normal differentiated epithelial cells
is poorly understood (Blanpain and Fuchs, 2014). Our results
reveal that this may be regulated at the level of tissue organization
through distinct combinatorial cell-cell and cell-ECM signals.

OPN, IL-8, and COL6A3 exposure upregulated EMT-
related genes and COL6A3 supported breast cancer cell drug
resistance. OPN is an N-linked glycoprotein and functions
as an extracellular structural protein in many tissues. OPN
expression is relatively low in normal mammary gland but it
is induced during lactation and involution (Insua-Rodriguez
and Oskarsson, 2016). OPN was reported to be part of the
hematopoietic and neural stem cell niche (Haylock and Nilsson,
2006). IL-8 is a pro-inflammatory and pro-angiogenic factor, and
is strongly associated with cancer progression. Genetic variation
and increased expression of IL-8 correlates with increased risk
of breast cancer as well as poor prognosis (Snoussi et al.,
2006; Milovanovic et al., 2013). IL-8, among other cytokines,
has been linked to regulation of the breast CSC state, and
IL-8 can stimulate CSC self-renewal (Korkaya et al., 2011;
Palacios-Arreola et al., 2014). COL6 is a widely distributed ECM
macromolecule that plays a crucial role in tissue development,
it was reported to be part of the normal breast and breast
cancer microenvironments (Ferguson et al., 1992; Karousou
et al., 2014). Upregulation of COL6 was shown to generate
a microenvironment that promotes tumor progression (Chen
D. et al., 2013). COL6 is a heterotrimer composed of three
genetically distinct polypeptide chains: α1, α2, and α3 i.e.,
COL6A3. COL6A3 is the largest of these three chains and
the cleavage of the C5 domain, also called endotrophin, has a
crucial role in breast cancer development, and it is a ligand for
ANTXR1-receptor, which is a putative biomarker for breast CSC
(Chen P. et al., 2013; Karousou et al., 2014). COL6A3 represents
a frequently mutated gene in triple negative breast cancers
(Cancer Genome Atlas Network, 2012; Curtis et al., 2012; Shah
et al., 2012). Based on our cell-based functional experiments, we
suggest that OPN, IL-8 and COL6A3 are part of a CSC niche.

Cooption of epithelial plasticity mechanisms has emerged
as a central challenge for current cancer treatments. In spite
of advances in cancer therapies, most cancer patients still do
not experience lasting clinical benefit. Tumor cells invariably
elude treatment; reemerging as advanced, disseminated
malignancy that is associated with increased mortality. This
study highlights howmalignant carcinoma cells adapt to different
microenvironments by activating drug resistance via clinically
actionable RTKs. Hence a deeper understanding the interplay
between malignant cells and a dynamic microenvironment, and
the underlying signaling pathways will inform new combination
therapy approaches to prevent resistance.

MATERIALS AND METHODS

Contact for Reagent and Resource Sharing
Further information and request for resources and reagents
should be directed to and will be fulfilled by the lead

contact, Jim Lorens (Jim.Lorens@uib.no) or Mark LaBarge
(mlabarge@coh.org).

Cell Culture
Human mammary epithelial cells were cultured in M87A
media supplemented with cholera toxin at 0.5 ng/ml (Sigma-
Aldrich) and oxytocin at 0.1 nM (Bachem, Switzerland) (Garbe
et al., 2009). Cells were isolated from reduction mammoplasty
specimen 184, a 21 year old Caucasian female, and maintained
as previously described (Garbe et al., 2009; Labarge et al., 2013).
Pre-stasis, passage 4,184 cells were sorted by flow cytometry,
and a cKIT positive progenitor subpopulation was used for
experiments. Immortal cell lineages were derived by using the
chemical carcinogen benzo(a)pyrene (BaP) to overcome stasis.
The BaP treated post-stasis 184Aa lineage clonally overcame the
immortalization barrier to generate the non-malignant immortal
184A1 line (Stampfer and Bartley, 1985). The clonal tumorigenic
cell line 184AA3 emerged from 184Aa following insertional
mutagenesis in the p53 locus (Stampfer et al., 2003). Cells were
cultured on 2D plastic dish (unless otherwise mentioned). In 3D
cultures, a single cell suspension was embedded in growth factor
reduced matrigel (Corning) or 1.5 mg/ml COL1 gel (rat tail, non
pepsinized, 5 mg/ml, Ibidi), Culture medium was changed every
other day, and after 12 days cells and gel were fixed and stained.

In Vivo Human Tissue Studies
The archival formalin fixed paraffin embedded (FFPE) tissues
used in this study originates from the Department of Pathology,
Haukeland University Hospital, Bergen, Norway, and the
Regional Institute of Oncology, Iasi, Romania. Tissue histology
and tumor classification were verified by trained pathologists at
the respective institutions. Tissues from Haukeland University
hospital has ethical approval REK (Regional Ethics Committee
#2014/1984), and tissues from Regional Institute of oncology has
approval fromMinisterul sanatatii, IRO, Cod Fiscal 29067408.

Flow Cytometry
One hundred and eighty four passage 4 HMECs were
cultured close to confluence and trypsinized. After that
fluorescein conjugated Anti-CD117/cKIT-antibody (Biolegend,
clone 104D2, 1:50) was added to cells in media for 25 min−1 h
on ice, cells were washed with cold PBS and sorted with FACS
Vantage DIVA or FACS Aria SORP (Becton Dickinson).

MicroEnvironment MicroArray (MEMA)
MEMA method is comprehensively presented here (Lin et al.,
2012; Lin and LaBarge, 2017). Briefly, polyacrylamide (PA) gels
were made on standard glass microscope slide etched with 0.1M
NaOH. Slides were covered with 3-Aminopropyltriethoxysilane
(APES, Sigma-Aldrich), and after 5min slides were soaked in
distilled H2O. Then incubated 30min at 0.5% Glutaraldehyde
(Sigma-Aldrich) solution in PBS. After this, slides were dried
and polyacrylamide gel 350 µl/slide was pipette on the slide
and covered with cover glass. PA gel solution contained
5% acrylamide (Sigma-Aldrich) and 0.15% Bis-Acrylamide
(VWR), final gel modulus was 4,470 ± 1,190 Pa. The MEMA
master plate was prepared by diluting the ECM-combinations
with printing buffer composed of 100mM Tris-Acetate/20%
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glycerol/0.05% TritonX-100 pH5.2. Protein information and
used concentrations used are shown in (Table 3). SpotBotIII
microarrayer (ArrayIt, CA, USA) was used to perform printing,
with 5–20 replicate spots of each microenvironment were
printed. After printing MEMAs were placed into 4-well plates
(Nunc) and first washed with PBS with 50 U/ml of penicillin
and 50 U/ml streptomycin (Gibco), followed by a second wash
with cell culture medium. Cells were diluted to the desired
concentration into 5ml of media, plated over the MEMA slide,
and incubated at +37◦C with 5% CO2. After 4 h one replicate
MEMA was fixed with methanol:acetone (1:1) at −20◦C for
20min, to indicate cell attachment on MEMAs. For replicate
MEMA, non-attached cells were washed away with culture media
and fresh media was added to wells. After 24 h the media
was changed again and after 48 h MEMAs slides were fixed,
as described above. Fixed MEMA were blocked with PBS, 5%
normal goat serum (Invitrogene), 0.1% Triton X-100 (Sigma-
Aldrich), and incubated with anti-AXL (1:200, 10c9) and anti-
cKIT (1:200, CD117, Biolegend) overnight at 4◦C, then visualized
with fluorescent secondary antibodies (VWR), and DRAQ5DNA
dye (Cell signaling). MEMA slides were imaged with InnoScan
1100 (Innopsys) or LSM710 confocal microscope (Carl Zeiss).

Immunohistochemistry
For in vitro immunofluorescence staining, cells were fixed in
methanol:acetone (1:1) at −20◦C for 20min, blocked with PBS,
5% normal goat serum, 0.1% Triton X-100, and incubated with
anti-Keratin14 (1:1,000, Covance, polyclonal) and anti-Keratin19
(1:200 AB7754, Abcam) overnight at 4◦C, then visualized with
fluorescent secondary antibodies (Invitrogen) incubated with
sections for 2 h at room temperature.

Human formalin-fixed paraffin embedded (FFPE) tissue
sections of normal mammary gland, invasive breast cancer
and triple negative breast cancer (TNBC) were deparaffinized
in xylene, and rehydrated according to standard protocols.
Antigen retrieval was performed by boiling the sections in 0.01M
citrate buffer, pH6, for 25min, followed by cooling to RT at
the bench and a 10min wash in dH2O prior to staining. For
detection of ECM components, COL4 (1:100, MAB3326), COL1
(1:100, ab34710), LAM5 (1:50, MAB19562), Pan laminin (1:100,
L9393), EPCAM (1:100, 34202), and K14 (1:1,000, Covance,
polyclonal) antibodies were diluted in permwash buffer (BD
Bioscience) and incubated at +4◦C overnight. Fluorescence
labeled secondary antibodies and Hoechst nuclei label were
diluted also in permwash buffer and incubated 2 h at RT.
For detection of COL6A3 (NBP-71566, Novus Biologicals) in
FFPE tissue sections of normal mammary gland and triple
negative breast cancer (TNBC) specimens, DAKO EnVisionTM

System-HRP (DAB) for Rabbit primary antibodies (K4011,
DAKO)was applied according to themanufacturer’s instructions.
Antibodies were diluted in antibody-diluent with background
reducing components (S3022, DAKO). Stained sections were
counterstained with haematoxylin, prior to mounting using
Faramount AqueousMountingMedium (S3225, DAKO). Images
were obtained on a Leica DMLB microscope equipped with
AnalySIS software (Leica).

Dual RNA in Situ Hybridization
Simultaneous in situ detection of the OPN, IL-8 and AXLmRNA
on human normal mammary FFPE tissue sections and TNBC
specimens were performed using the RNA scope technology.
OPN and IL-8 were detected by C1 probes and AXL by C2-
probes in all experiments. Probes and reagents were provided
by Advanced Cell Diagnostics (ACD, Hayward, CA). Briefly,
freshly cut 5-µm thick human archival mammary gland tissue
sections were deparaffinized in xylene, followed by dehydration
in an ethanol series. Tissue sections were then incubated in
citrate buffer (0.01M, pH 6) maintained at a boiling temperature
(100–103◦C) using a hot plate for 15min, rinsed in deionized
water, and immediately treated with10µg/mL protease (Sigma-
Aldrich, St. Louis, MO) at 40◦C for 30min in a HybEZ
hybridization oven (Advanced Cell Diagnostics, Hayward, CA).
Hybridization with target probes, preamplifier, amplifier, label
probe and chromogenic detection were performed according to
the ACD recommendations. Sections were counterstained with
hematoxylin, and mounted with EcoMount prior to imaging.
Assays using archival FFPE specimens were performed in parallel
with positive and negative controls, to ensure interpretable and
reproducible results.

Drug Resistance Assay
For paclitaxel resistance experiments, 8-well chamber slides were
coated with COL1 (calf skin, Sigma-Aldrich) 100µg/ml with
or without COL6A3 (MyBioSource) 10µg/ml diluted in 50mM
Hepes. 184AA3 cells were plated 24 h prior to drug treatment
to coated chambers, followed by 24 h culturing with paclitaxel
(0.1µM, Sigma-Aldrich). Proliferation rate was analyzed by
using Click-iT R© Plus Edu imaging kit (Molecular probes). For
paclitaxel IC50 analysis, 96-well plates were coated with COL1
(calf skin, Sigma-Aldrich) 100µg/ml with or without OPN
4µg/ml. 184AA3 cells were plated 4 h prior to drug treatment
to coated wells and culture media was supplemented with or
without IL-8 (50 ng/ml) and OPN (50 ng/ml). Followed by 48 h
culturing with 5 different concentration of paclitaxel (0.001–
1µg/ml, Sigma-Aldrich). Cell viability was analyzed by using
CellTiter-Glo 2.0 Assay (Promega). Paclitaxel was dissolved to
DMSO, and control cultures were treated with equally diluted
DMSO-solution.

Real-Time PCR
Cells were cultured 24 h over the matrigel or COL1-gel
(0.5µg/ml, rat tail, non pepsinized, Ibidi) supplemented with
or without 2 ug/ml COL6A3 (MyBioSource). Cell culture
medium was supplemented with or without 10 ng/ml OPN
(R&D systems), 10 ng/ml IL-8 (Abcam). Total RNA was
purified with Trizol (Invitrogen). cDNA was synthesized
with RT2 First strand kit (Qiagen). Transcripts levels were
measured by RT2ProfilerTM PCR arrays, human stem cell and
human epithelial to mesenchymal transition (EMT) using RT2

SYBR Green PCR master mix (Qiagen) and LightCycler480
(Roche). Fold expressions were calculated using the formula
2(−11Ct), where 11Ct is 1Ct(sample)−1Ct(control sample), 1Ct is
Ct(gene of interest)−Ct(average from control gene setup) and Ct is the cycle
at which the detection threshold is crossed.
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TABLE 3 | Key resources table.

Reagent of resource Source Identifier Notes

ANTIBODIES

Anti-CD117 (cKIT) Biolegend 313201

Anti-AXL (10c9) BerGenBio, Bergen, Norway N/A

Cytokeratin 14 antibody Thermo scientific PA5-16722

Anti-Cytokeratin 19 Abcam AB7754

Anti-Collagen type IV Merck millipore MAB3326

Anti-Collagen I Abcam AB34710

Anti-Laminin-5 Merck millipore MAB19562

Anti-Laminin Sigma-aldrich L9393

Anti-human CD326 (EPCAM) Biolegend 34202

Anti-AXL (mAb: 1H12) BerGenBio, Bergen, Norway N/A

Anti-COL6A3 Novus biologicals NBP-71566

BIOLOGICAL SAMPLES

The human FFPE-healthy mammary gland and

breast cancer tissues

The Department of Pathology, Haukeland University

Hospital, Bergen, Norway, and the University

Hospital of Iasi, Iasi, Romania

N/A

Chemicals, peptides, and recombinant

proteins

Concentration in MEMA, Reference;

relevance in cancer

Bone morphogenetic protein 2/7 heterodimer

(BMP-2/7)

R&D systems 3229-BM/CF 1µg/ml, (Ye et al., 2009)

Bone morphogenetic protein 4 (BMP-4) R&D systems 113-BP/CF 1µg/ml, (Ye et al., 2009)

Carcinoembryonic antigen-related cell adhesion

molecule 6 (CEACAM6)

R&D systems 3934-CM-050 1µg/ml, (Beauchemin and Arabzadeh,

2013)

Carcinoembryonic antigen-related cell adhesion

molecule 8 (CEACAM8)

Abnova H00001088-P01 1µg/ml, (Beauchemin and Arabzadeh,

2013)

CD44 R&D systems 3660-cd 1µg/ml, (Karousou et al., 2014)

Collagen I (COL1) Sigma-Aldrich C8919 100µg/ml, (Insua-Rodriguez and

Oskarsson, 2016)

Collagen IV (COL4) Sigma-Aldrich C5533 100µg/ml, (Insua-Rodriguez and

Oskarsson, 2016)

CollagenXXIIIA1 (COL23A1) R&D systems 4165-CL 1µg/ml, (Spivey et al., 2012)

CollagenVIα3 (COL6A3) MyBiosource MBS958856 1µg/ml, (Karousou et al., 2014)

E-Cadherin (ECAD) Sigma-Aldrich E2278 1µg/ml, (Yu and Elble, 2016)

Epidermal growth factor (EGF) Sigma-Aldrich E9644 1µg/ml, (Voudouri et al., 2015)

Fibroblast growth factor basic (FGF-2) R&D systems 233-FB-025 1µg/ml, (Zheng et al., 2014)

Fibronectin (FN1) Sigma-Aldrich f2518 100µg/ml, (Insua-Rodriguez and

Oskarsson, 2016)

Growth arrest specific 6 (GAS-6) R&D systems 885-GS-050 1µg/ml, (Mc Cormack et al., 2008)

Hepatocyte growth factor (HGF) R&D systems 294-HG-005 1µg/ml, (Ho-Yen et al., 2015)

Hyaluronan HMW (HA) R&D systems GLR002 100µg/ml, (Karousou et al., 2014)

Insulin like growth factor-1 (IGF1) R&D systems 291-Gi-250 1µg/ml, (Voudouri et al., 2015)

Interferon- γ (IFN-γ) Gibco PHC4031 1µg/ml, (Esquivel-Velazquez et al., 2015)

Interleucin-1β (IL-1β) Biolegend 579404 1µg/ml, (Esquivel-Velazquez et al., 2015)

Interleucin-6 (IL-6) Biolegend 570804 1µg/ml, (Esquivel-Velazquez et al., 2015)

Interleucin-8 (IL-8, CXCL8) Biolegend 574204 1µg/ml, (Palacios-Arreola et al., 2014)

Laminin-111 (LAM1) Sigma-Aldrich I2020 80 / 100µg/ml, (Insua-Rodriguez and

Oskarsson, 2016)

Laminin-332 (LAM5) Abcam ab42326 20µg/ml, (Insua-Rodriguez and

Oskarsson, 2016)

Leptin Sigma-Aldrich L4146 1µg/ml, (Garcia-Robles et al., 2013)

Lumican Sigma-Aldrich 2846 1µg/ml, (Nikitovic et al., 2014)

(Continued)
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TABLE 3 | Continued

Reagent of resource Source Identifier Notes

Melanoma growth stimulating activity alpha

(GRO-α/CXCL1)

Sigma-Aldrich G0657 1µg/ml, (Palacios-Arreola et al., 2014)

Nidogen1 R&D systems 2570-nd 1µg/ml, (Insua-Rodriguez and Oskarsson,

2016)

Osteopontin (OPN) Novus Biologicals NBC1-21056 1µg/ml, (Insua-Rodriguez and Oskarsson,

2016)

Osteoprotegerin (OPG) R&D systems 185-OS-025 1µg/ml, (Weichhaus et al., 2015)

Stem cell factor (SCF) R&D systems 255-SC-010 1µg/ml, (Mimeault et al., 2007)

Stromal derived factor-1 (SDF-1β/CXCL12) Abnova P4470 1µg/ml, (Palacios-Arreola et al., 2014)

Tenascin C (TNC) Chemicon CC065 1µg/ml, (Insua-Rodriguez and Oskarsson,

2016)

Tumor growth factor β (TGFβ) Biolegend 580704 1µg/ml, (Esquivel-Velazquez et al., 2015)

Paclitaxel Sigma-Aldrich T7191

rat tail Collagen type I Ibidi 50201

Collagen type 1, calf skin Sigma-Aldrich C8919

Matrigel, growth factor reduced Corning 356231

CRITICAL COMMERCIAL ASSAYS

RT2ProfilerTM PCR arrays, human stem cell Qiagen PAHS-405ZF

RT2ProfilerTM PCR arrays, human epithelial to

mesenchymal transition (EMT)

Qiagen PAHS-090ZF

Click-iT® Plus Edu imaging kit Molecular probes C10337

RT2 SYBR Green PCR Master Mix Qiagen 330503

RT2-First Strand Kit Qiagen 330401

Quick-RNA MicroPrep Zymo Research R1050

CellTiter-Glo 2.0 Assay Promega G9242

EXPERIMENTAL MODELS: CELL LINES

HMEC progression series Dr. Martha Stampfer, Lawrence Berkeley national

Laboratory, CA, USA

184

OLIGONUCLEOTIDES

RNAScope probe for AXL Advanced cell diagnostics Probe-Hs-AXL-C2

RNAScope probe for IL-8 Advanced cell diagnostics Probe-Hs-IL8-C1

RNAScope probe for OPN Advanced cell diagnostics Probe-Hs-SPP1-C1

SOFTWARE AND ALGORITHMS

Cell profiler www.cellprofiler.org

R-language, R-studio www.R-project.org/

Cytobank cellmass.cytobank.org

IC50 toolkit www.ic50.tk

Gene Expression Analysis
Total RNAs were isolated using Quick-RNA MicroPrep (Zymo
Research). Sample preparation and Poly(A) enriched mRNA-
sequencing were performed in City of Hope Comprehensive
cancer center, Integrative genomics and bioinformatics
core.

Data Analysis
R was used for all statistical analysis (R foundation for statistical
computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://
www.R-project.org/). To compare two population distributions
t-tests were performed. Significance was established when: ∗p <

0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. RNA sequencing data is
normalized and results are presented as RPKM (Reads Per
Kilobase Million).

MEMA images were analyzed for single cell data with the
CellProfiler (Carpenter et al., 2006) pipeline that is included in
Supplementary File 1. Briefly fluorescence channel images were
analyzed as separated gray scale images. To normalize intensity of
images, threshold method: Background was used. This method
finds the mode of the histogram part of the image, which is
assumed to be the background of the image, and choose a
threshold at twice that value. Threshold value was subtracted
from the remaining pixel intensities. Marker-based watershed
segmentation was used to identify single cells. Fluoresence
intensity, cell size and morphology and cell neighbors were
measured for each cell. Data analyses were performed using
R-software. AXL and cKIT intensities were presented as
mean of pixel intensity values. (AXL+/cKIT+)-subset was
calculated by using threshold from COL4-microenvironment
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spots (mean+SD), cells expressing intensities above threshold
were counted in (AXL+/cKIT+)-subset. Generalized linear
model (GLM) was applied to decouple effects of multiple
microenvironment components from each other, and then
express (AXL+/cKIT+)-subset expression as a function of
each microenvironment component. Tuckey’s post Hoc test
was performed after GLM to identify differences inside the
microenvironmental factors. tSNE-method (Amir et al., 2013) in
Cytobank portal (https://www.cytobank.org) was used to cluster
and visualize MEMA data. For the clustering analysis, the mean
value of each individual microenvironment was calculated from
these data types: percentage of (AXL+/cKIT+)-subpopulation,
fluorescein intensities in (AXL+/cKIT+)-subpopulation and in
total population, cell number/spot, cell eccentricity and cell
solidity.

IC50 was calculated by plotting and fitting data points to curve
and regard the mid-point ligand concentration (IC50), curve
fitting formula y= a+ [b-a]/[1+(x/c)d] is presented in ic50.tk.

ADDITIONAL RESOURCES

Additional information on 184 HMEC progression series: http://
hmec.lbl.gov/mindex.html.
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